1
|
Raspagliesi L, D'Ammando A, Gionso M, Sheybani ND, Lopes MB, Moore D, Allen S, Gatesman J, Porto E, Timbie K, Franzini A, Di Meco F, Sheehan J, Xu Z, Prada F. Intracranial Sonodynamic Therapy With 5-Aminolevulinic Acid and Sodium Fluorescein: Safety Study in a Porcine Model. Front Oncol 2021; 11:679989. [PMID: 34235081 PMCID: PMC8256685 DOI: 10.3389/fonc.2021.679989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/25/2021] [Indexed: 02/02/2023] Open
Abstract
Background Sonodynamic therapy (SDT) is an emerging ultrasound-based treatment modality for malignant gliomas which combines ultrasound with sonosensitizers to produce a localized cytotoxic and modulatory effect. Tumor-specificity of the treatment is achieved by the selective extravasation and accumulation of sonosensitizers in the tumor-bearing regions. The aim of this study is to demonstrate the safety of low-intensity ultrasonic irradiation of healthy brain tissue after the administration of FDA-approved sonosensitizers used for SDT in experimental studies in an in vivo large animal model. Methods In vivo safety of fluorescein (Na-Fl)- and 5 aminolevulinic acid (5-ALA)-mediated low-intensity ultrasound irradiation of healthy brain parenchyma was assessed in two sets of four healthy swine brains, using the magnetic resonance imaging (MRI)-guided Insightec ExAblate 4000 220 kHz system. After administration of the sonosensitizers, a wide fronto-parietal craniotomy was performed in pig skulls to allow transmission of ultrasonic beams. Sonication was performed on different spots within the thalamus and periventricular white matter with continuous thermal monitoring. Sonication-related effects were investigated with MRI and histological analysis. Results Post-treatment MRI images acquired within one hour following the last sonication, on day one, and day seven did not visualize any sign of brain damage. On histopathology, no signs of necrosis or apoptosis attributable to the ultrasonic treatments were shown in target areas. Conclusions The results of the present study suggest that either Na-FL or 5-ALA-mediated sonodynamic therapies under MRI-guidance with the current acoustic parameters are safe towards healthy brain tissue in a large in vivo model. These results further support growing interest in clinical translation of sonodynamic therapy for intracranial gliomas and other brain tumors.
Collapse
Affiliation(s)
- Luca Raspagliesi
- Neurosurgery Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Antonio D'Ammando
- Neurosurgery Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Natasha D Sheybani
- Division of Oncology, Department of Medicine, Stanford Cancer Institute, Stanford University, Stanford, CA, United States
| | - Maria-Beatriz Lopes
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
| | - David Moore
- Focused Ultrasound Foundation, Charlottesville, VA, United States
| | - Steven Allen
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Jeremy Gatesman
- Center for Comparative Medicine, University of Virginia, Charlottesville, VA, United States
| | - Edoardo Porto
- Neurosurgery Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Department of Health Sciences, University of Milan, Milan, Italy
| | - Kelsie Timbie
- Focused Ultrasound Foundation, Charlottesville, VA, United States
| | - Andrea Franzini
- Department of Neurosurgery, Humanitas Clinical and Research Center, Milan, Italy
| | - Francesco Di Meco
- Neurosurgery Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Department of Health Sciences, University of Milan, Milan, Italy.,Department of Neurological Surgery, Johns Hopkins Medical School, Baltimore, MD, United States
| | - Jason Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, United States
| | - Zhiyuan Xu
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, United States
| | - Francesco Prada
- Neurosurgery Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Focused Ultrasound Foundation, Charlottesville, VA, United States.,Department of Neurological Surgery, University of Virginia, Charlottesville, VA, United States.,Acoustic Neuroimaging and Therapy Laboratory, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
2
|
Prada F, Sheybani N, Franzini A, Moore D, Cordeiro D, Sheehan J, Timbie K, Xu Z. Fluorescein-mediated sonodynamic therapy in a rat glioma model. J Neurooncol 2020; 148:445-454. [PMID: 32500440 DOI: 10.1007/s11060-020-03536-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/12/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Malignant gliomas have a dismal prognosis and significant efforts are being made to develop more effective treatments. Sonodynamic therapy (SDT) is an emerging modality for cancer treatment which combines ultrasound with sonosensitizers to produce a localized cytotoxic effect. The aim of this study is to demonstrate the efficacy of SDT with fluorescein (FL) and low-intensity focused ultrasound in inhibiting the growth of ectopic gliomas implanted in the rat's subcutaneous tissue. METHODS In vivo cytotoxicity of FL-SDT was evaluated in C6 rat glioma cells which were inoculated subcutaneously. Tumor specific extracellular FL extravasation and accumulation was assessed with IVIS imaging in rats receiving systemic FL. Effects of FL-SDT with focused low-intensity ultrasound on tumor growth, and histological features of the rat's tumors were investigated. Treatment related apoptosis and necrosis were analyzed using hematoxylin & eosin, and apoptosis-specific staining. RESULTS IVIS imaging revealed a high degree of FL accumulation within the tumor, with a nearly threefold increase in tumoral epifluorescence signal over background. SDT significantly inhibited outgrowth of ectopic C6 gliomas across all three FUS exposure conditions. TUNEL and active caspase-3 staining did not reveal conclusive trends across control and SDT condition for apoptosis. CONCLUSION Our results suggest that SDT with FL and low-intensity FUS is effective in inhibiting the growth of ectopic malignant gliomas in rats. The selective FL extravasation and accumulation in the tumor areas where the blood-brain barrier is damaged suggests the tumor-specificity of the treatment. The possibility to use this treatment in intracranial models and in human gliomas will have to be explored in further studies.
Collapse
Affiliation(s)
- Francesco Prada
- Department of Neurological Surgery, University of Virginia Health Science Center, Charlottesville, VA, USA. .,Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy. .,Focused Ultrasound Foundation, Charlottesville, VA, USA.
| | - Natasha Sheybani
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Andrea Franzini
- Department of Neurological Surgery, University of Virginia Health Science Center, Charlottesville, VA, USA.,Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - David Moore
- Focused Ultrasound Foundation, Charlottesville, VA, USA
| | - Diogo Cordeiro
- Department of Neurological Surgery, University of Virginia Health Science Center, Charlottesville, VA, USA
| | - Jason Sheehan
- Department of Neurological Surgery, University of Virginia Health Science Center, Charlottesville, VA, USA
| | - Kelsie Timbie
- Focused Ultrasound Foundation, Charlottesville, VA, USA
| | - Zhiyuan Xu
- Department of Neurological Surgery, University of Virginia Health Science Center, Charlottesville, VA, USA
| |
Collapse
|
3
|
Redmond KJ, Mehta M. Stereotactic Radiosurgery for Glioblastoma. Cureus 2015; 7:e413. [PMID: 26848407 PMCID: PMC4725736 DOI: 10.7759/cureus.413] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/17/2015] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults and one of the most aggressive of all human cancers. GBM tumors are highly infiltrative and relatively resistant to conventional therapies. Aggressive management of GBM using a combination of surgical resection, followed by fractionated radiotherapy and chemotherapy has been shown to improve overall survival; however, GBM tumors recur in the majority of patients and the disease is most often fatal. There is a need to develop new treatment regimens and technological innovations to improve the overall survival of GBM patients. The role of stereotactic radiosurgery (SRS) for the treatment of GBM has been explored and is controversial. SRS utilizes highly precise radiation techniques to allow dose escalation and delivery of ablative radiation doses to the tumor while minimizing dose to the adjacent normal structures. In some studies, SRS with concurrent chemotherapy has shown improved local control with acceptable toxicities in select GBM patients. However, because GBM is a highly infiltrative disease, skeptics argue that local therapies, such as SRS, do not improve overall survival. The purpose of this article is to review the literature regarding SRS in both newly diagnosed and recurrent GBM, to describe SRS techniques, potential eligible SRS candidates, and treatment-related toxicities. In addition, this article will propose promising areas for future research for SRS in the treatment of GBM.
Collapse
Affiliation(s)
- Kristin J Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Minesh Mehta
- Department of Radiation Oncology, University of Maryland
| |
Collapse
|