1
|
Lin WY, Wu KH, Chen CY, Guo BC, Chang YJ, Lee TA, Lin MJ, Wu HP. Stem Cell Therapy in Children with Traumatic Brain Injury. Int J Mol Sci 2023; 24:14706. [PMID: 37834152 PMCID: PMC10573043 DOI: 10.3390/ijms241914706] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Pediatric traumatic brain injury is a cause of major mortality, and resultant neurological sequelae areassociated with long-term morbidity. Increasing studies have revealed stem cell therapy to be a potential new treatment. However, much work is still required to clarify the mechanism of action of effective stem cell therapy, type of stem cell therapy, optimal timing of therapy initiation, combination of cocurrent medical treatment and patient selection criteria. This paper will focus on stem cell therapy in children with traumatic brain injury.
Collapse
Affiliation(s)
- Wen-Ya Lin
- Department of Pediatrics, Taichung Veterans General Hospital, Taichung 40705, Taiwan;
| | - Kang-Hsi Wu
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 40201, Taiwan;
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Chun-Yu Chen
- Department of Emergency Medicine, Tung’s Taichung MetroHarbor Hospital, Taichung 433, Taiwan;
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 79-9, Taiwan
| | - Bei-Cyuan Guo
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
| | - Yu-Jun Chang
- Laboratory of Epidemiology and Biostastics, Changhua Christian Hospital, Changhua 500, Taiwan;
| | - Tai-An Lee
- Department of Emergency Medicine, Chang Bing Show Chwan Memorial Hospital, Changhua 505, Taiwan;
| | - Mao-Jen Lin
- Division of Cardiology, Department of Medicine, Taichung Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Taichung 427413, Taiwan
- Department of Medicine, College of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Han-Ping Wu
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Pediatrics, Chiayi Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| |
Collapse
|
2
|
Zhao Q, Li H, Li H, Zhang J. Research progress on pleiotropic neuroprotective drugs for traumatic brain injury. Front Pharmacol 2023; 14:1185533. [PMID: 37475717 PMCID: PMC10354289 DOI: 10.3389/fphar.2023.1185533] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023] Open
Abstract
Traumatic brain injury (TBI) has become one of the most important causes of death and disability worldwide. A series of neuroinflammatory responses induced after TBI are key factors for persistent neuronal damage, but at the same time, such inflammatory responses can also promote debris removal and tissue repair after TBI. The concept of pleiotropic neuroprotection delves beyond the single-target treatment approach, considering the multifaceted impacts following TBI. This notion embarks deeper into the research-oriented treatment paradigm, focusing on multi-target interventions that inhibit post-TBI neuroinflammation with enhanced therapeutic efficacy. With an enriched comprehension of TBI's physiological mechanisms, this review dissects the advancements in developing pleiotropic neuroprotective pharmaceuticals to mitigate TBI. The aim is to provide insights that may contribute to the early clinical management of the condition.
Collapse
Affiliation(s)
- Qinghui Zhao
- Institute of Physical Culture, Huanghuai University, Zhumadian, China
| | - Huige Li
- Institute of Physical Culture, Huanghuai University, Zhumadian, China
| | - Hongru Li
- Zhumadian Central Hospital, Zhumadian, China
| | - Jianhua Zhang
- Institute of Physical Culture, Huanghuai University, Zhumadian, China
| |
Collapse
|
3
|
Bonsack B, Heyck M, Kingsbury C, Cozene B, Sadanandan N, Lee JY, Borlongan CV. Fast-tracking regenerative medicine for traumatic brain injury. Neural Regen Res 2020; 15:1179-1190. [PMID: 31960797 PMCID: PMC7047809 DOI: 10.4103/1673-5374.270294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 08/22/2019] [Accepted: 09/26/2019] [Indexed: 12/15/2022] Open
Abstract
Traumatic brain injury remains a global health crisis that spans all demographics, yet there exist limited treatment options that may effectively curtail its lingering symptoms. Traumatic brain injury pathology entails a progression from primary injury to inflammation-mediated secondary cell death. Sequestering this inflammation as a means of ameliorating the greater symptomology of traumatic brain injury has emerged as an attractive treatment prospect. In this review, we recapitulate and evaluate the important developments relating to regulating traumatic brain injury-induced neuroinflammation, edema, and blood-brain barrier disintegration through pharmacotherapy and stem cell transplants. Although these studies of stand-alone treatments have yielded some positive results, more therapeutic outcomes have been documented from the promising area of combined drug and stem cell therapy. Harnessing the facilitatory properties of certain pharmaceuticals with the anti-inflammatory and regenerative effects of stem cell transplants creates a synergistic effect greater than the sum of its parts. The burgeoning evidence in favor of combined drug and stem cell therapies warrants more elaborate preclinical studies on this topic in order to pave the way for later clinical trials.
Collapse
Affiliation(s)
- Brooke Bonsack
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Matt Heyck
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Chase Kingsbury
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Blaise Cozene
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Nadia Sadanandan
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Jea-Young Lee
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| | - Cesar V. Borlongan
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA
| |
Collapse
|
4
|
Zibara K, Ballout N, Mondello S, Karnib N, Ramadan N, Omais S, Nabbouh A, Caliz D, Clavijo A, Hu Z, Ghanem N, Gajavelli S, Kobeissy F. Combination of drug and stem cells neurotherapy: Potential interventions in neurotrauma and traumatic brain injury. Neuropharmacology 2018; 145:177-198. [PMID: 30267729 DOI: 10.1016/j.neuropharm.2018.09.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/17/2018] [Accepted: 09/21/2018] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury (TBI) has been recognized as one of the major public health issues that leads to devastating neurological disability. As a consequence of primary and secondary injury phases, neuronal loss following brain trauma leads to pathophysiological alterations on the molecular and cellular levels that severely impact the neuropsycho-behavioral and motor outcomes. Thus, to mitigate the neuropathological sequelae post-TBI such as cerebral edema, inflammation and neural degeneration, several neurotherapeutic options have been investigated including drug intervention, stem cell use and combinational therapies. These treatments aim to ameliorate cellular degeneration, motor decline, cognitive and behavioral deficits. Recently, the use of neural stem cells (NSCs) coupled with selective drug therapy has emerged as an alternative treatment option for neural regeneration and behavioral rehabilitation post-neural injury. Given their neuroprotective abilities, NSC-based neurotherapy has been widely investigated and well-reported in numerous disease models, notably in trauma studies. In this review, we will elaborate on current updates in cell replacement therapy in the area of neurotrauma. In addition, we will discuss novel combination drug therapy treatments that have been investigated in conjunction with stem cells to overcome the limitations associated with stem cell transplantation. Understanding the regenerative capacities of stem cell and drug combination therapy will help improve functional recovery and brain repair post-TBI. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
Affiliation(s)
- Kazem Zibara
- ER045, Laboratory of Stem Cells, PRASE, Lebanese University, Beirut, Lebanon; Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Nissrine Ballout
- ER045, Laboratory of Stem Cells, PRASE, Lebanese University, Beirut, Lebanon
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Nabil Karnib
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon
| | - Naify Ramadan
- Department of Women's and Children's Health (KBH), Division of Clinical Pediatrics, Karolinska Institute, Sweden
| | - Saad Omais
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Ali Nabbouh
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon
| | - Daniela Caliz
- Lois Pope LIFE Center, Neurosurgery, University of Miami, 33136, Miami, FL, USA
| | - Angelica Clavijo
- Lois Pope LIFE Center, Neurosurgery, University of Miami, 33136, Miami, FL, USA
| | - Zhen Hu
- Lois Pope LIFE Center, Neurosurgery, University of Miami, 33136, Miami, FL, USA
| | - Noël Ghanem
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Shyam Gajavelli
- Lois Pope LIFE Center, Neurosurgery, University of Miami, 33136, Miami, FL, USA.
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon; Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
5
|
Zhang K, Shi Z, Zhou J, Xing Q, Ma S, Li Q, Zhang Y, Yao M, Wang X, Li Q, Li J, Guan F. Potential application of an injectable hydrogel scaffold loaded with mesenchymal stem cells for treating traumatic brain injury. J Mater Chem B 2018; 6:2982-2992. [DOI: 10.1039/c7tb03213g] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this contribution, we developed an injectable hydrogel composed of sodium alginate and hyaluronic acid that acts as a tissue scaffold to create a more optimal microenvironment for the stem cells for potential application of traumatic brain injury implantation.
Collapse
|
6
|
Venegoni W, Shen Q, Thimmesch AR, Bell M, Hiebert JB, Pierce JD. The use of antioxidants in the treatment of traumatic brain injury. J Adv Nurs 2017; 73:1331-1338. [PMID: 28103389 DOI: 10.1111/jan.13259] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2017] [Indexed: 11/26/2022]
Abstract
AIMS The aim of this study was to discuss secondary traumatic brain injury, the mitochondria and the use of antioxidants as a treatment. BACKGROUND One of the leading causes of death globally is traumatic brain injury, affecting individuals in all demographics. Traumatic brain injury is produced by an external blunt force or penetration resulting in alterations in brain function or pathology. Often, with a traumatic brain injury, secondary injury causes additional damage to the brain tissue that can have further impact on recovery and the quality of life. Secondary injury occurs when metabolic and physiologic processes alter after initial injury and includes increased release of toxic free radicals that cause damage to adjacent tissues and can eventually lead to neuronal necrosis. Although antioxidants in the tissues can reduce free radical damage, the magnitude of increased free radicals overwhelms the body's reduced defence mechanisms. Supplementing the body's natural supply of antioxidants, such as coenzyme Q10, can attenuate oxidative damage caused by reactive oxygen species. DESIGN Discussion paper. DATA SOURCES Research literature published from 2011-2016 in PubMed, CINAHL and Cochrane. IMPLICATIONS FOR NURSING Prompt and accurate assessment of patients with traumatic brain injury by nurses is important to ensure optimal recovery and reduced lasting disability. Thus, it is imperative that nurses be knowledgeable about the secondary injury that occurs after a traumatic brain injury and aware of possible antioxidant treatments. CONCLUSION The use of antioxidants has potential to reduce the magnitude of secondary injury in patients who experience a traumatic brain injury.
Collapse
Affiliation(s)
| | - Qiuhua Shen
- School of Nursing, University of Kansas, Kansas, USA
| | | | - Meredith Bell
- School of Nursing, University of Kansas, Kansas, USA
| | | | | |
Collapse
|