1
|
Xu C, He Z, Li J. Melatonin as a Potential Neuroprotectant: Mechanisms in Subarachnoid Hemorrhage-Induced Early Brain Injury. Front Aging Neurosci 2022; 14:899678. [PMID: 35572137 PMCID: PMC9098986 DOI: 10.3389/fnagi.2022.899678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/12/2022] [Indexed: 12/21/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a common cerebrovascular disease with high mortality and disability rates. Despite progressive advances in drugs and surgical techniques, neurological dysfunction in surviving SAH patients have not improved significantly. Traditionally, vasospasm has been considered the main cause of death and disability following SAH, but anti-vasospasm therapy has not benefited clinical prognosis. Many studies have proposed that early brain injury (EBI) may be the primary factor influencing the prognosis of SAH. Melatonin is an indole hormone and is the main hormone secreted by the pineal gland, with low daytime secretion levels and high nighttime secretion levels. Melatonin produces a wide range of biological effects through the neuroimmune endocrine network, and participates in various physiological activities in the central nervous system, reproductive system, immune system, and digestive system. Numerous studies have reported that melatonin has extensive physiological and pharmacological effects such as anti-oxidative stress, anti-inflammation, maintaining circadian rhythm, and regulating cellular and humoral immunity. In recent years, more and more studies have been conducted to explore the molecular mechanism underlying melatonin-induced neuroprotection. The studies suggest beneficial effects in the recovery of intracerebral hemorrhage, cerebral ischemia-reperfusion injury, spinal cord injury, Alzheimer’s disease, Parkinson’s disease and meningitis through anti-inflammatory, antioxidant and anti-apoptotic mechanisms. This review summarizes the recent studies on the application and mechanism of melatonin in SAH.
Collapse
Affiliation(s)
- Chengyan Xu
- Department of Neurosurgery, The Children’s Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Zixia He
- Department of Outpatient, The Children’s Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jiabin Li
- Department of Pharmacy, The Children’s Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- *Correspondence: Jiabin Li,
| |
Collapse
|
2
|
Grossen AA, Ernst GL, Bauer AM. Update on intrathecal management of cerebral vasospasm: a systematic review and meta-analysis. Neurosurg Focus 2022; 52:E10. [PMID: 35231885 DOI: 10.3171/2021.12.focus21629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/22/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Aneurysmal subarachnoid hemorrhage (aSAH) accounts for a relatively small portion of strokes but has the potential to cause permanent neurological deficits. Vasospasm with delayed ischemic neurological deficit is thought to be responsible for much of the morbidity associated with aSAH. This has illuminated some treatment options that have the potential to target specific components of the vasospasm cascade. Intrathecal management via lumbar drain (LD) or external ventricular drain (EVD) offers unique advantages in this patient population. The aim of this review was to provide an update on intrathecal vasospasm treatments, emphasizing the need for larger-scale trials and updated protocols using data-driven evidence. METHODS A search of PubMed, Ovid MEDLINE, and Cochrane databases included the search terms (subarachnoid hemorrhage) AND (vasospasm OR delayed cerebral ischemia) AND (intrathecal OR intraventricular OR lumbar drain OR lumbar catheter) for 2010 to the present. Next, a meta-analysis was performed of select therapeutic regimens. The primary endpoints of analysis were vasospasm, delayed cerebral ischemia (DCI), cerebral infarction, and functional outcome. RESULTS Twenty-nine studies were included in the analysis. There were 10 studies in which CSF drainage was the primary experimental group. Calcium channel antagonists were the focus of 7 studies. Fibrinolytics and other vasodilators were each examined in 6 studies. The meta-analysis included studies examining CSF drainage via LD (n = 4), tissue plasminogen activator in addition to EVD (n = 3), intraventricular nimodipine (n = 2), and cisternal magnesium (n = 2). Results showed that intraventricular nimodipine decreased vasospasm (OR 0.59, 95% CI 0.37-0.94; p = 0.03). Therapies that significantly reduced DCI were CSF drainage via LD (OR 0.47, 95% CI 0.25-0.88; p = 0.02) and cisternal magnesium (OR 0.27, 95% CI 0.07-1.02; p = 0.05). CSF drainage via LD was also found to significantly reduce the incidence of cerebral infarction (OR 0.35, 95% 0.24-0.51; p < 0.001). Lastly, functional outcome was significantly better in patients who received CSF drainage via LD (OR 2.42, 95% CI 1.39-4.21; p = 0.002). CONCLUSIONS The authors' results showed that intrathecal therapy is a safe and feasible option following aSAH. It has been shown to attenuate cerebral vasospasm, reduce the incidence of DCI, and improve clinical outcome. The authors support the use of intrathecal management in the prevention and rescue management of cerebral vasospasm. More randomized controlled trials are warranted to determine the best combination of pharmaceutical agents and administration route in order to formulate a standardized treatment approach.
Collapse
|
3
|
Fung C, Z'Graggen WJ, Jakob SM, Gralla J, Haenggi M, Rothen HU, Mordasini P, Lensch M, Söll N, Terpolilli N, Feiler S, Oertel MF, Raabe A, Plesnila N, Takala J, Beck J. Inhaled Nitric Oxide Treatment for Aneurysmal SAH Patients With Delayed Cerebral Ischemia. Front Neurol 2022; 13:817072. [PMID: 35250821 PMCID: PMC8894247 DOI: 10.3389/fneur.2022.817072] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/24/2022] [Indexed: 11/22/2022] Open
Abstract
Background We demonstrated experimentally that inhaled nitric oxide (iNO) dilates hypoperfused arterioles, increases tissue perfusion, and improves neurological outcome following subarachnoid hemorrhage (SAH) in mice. We performed a prospective pilot study to evaluate iNO in patients with delayed cerebral ischemia after SAH. Methods SAH patients with delayed cerebral ischemia and hypoperfusion despite conservative treatment were included. iNO was administered at a maximum dose of 40 ppm. The response to iNO was considered positive if: cerebral artery diameter increased by 10% in digital subtraction angiography (DSA), or tissue oxygen partial pressure (PtiO2) increased by > 5 mmHg, or transcranial doppler (TCD) values decreased more than 30 cm/sec, or mean transit time (MTT) decreased below 6.5 secs in CT perfusion (CTP). Patient outcome was assessed at 6 months with the modified Rankin Scale (mRS). Results Seven patients were enrolled between February 2013 and September 2016. Median duration of iNO administration was 23 h. The primary endpoint was reached in all patients (five out of 17 DSA examinations, 19 out of 29 PtiO2 time points, nine out of 26 TCD examinations, three out of five CTP examinations). No adverse events necessitating the cessation of iNO were observed. At 6 months, three patients presented with a mRS score of 0, one patient each with an mRS score of 2 and 3, and two patients had died. Conclusion Administration of iNO in SAH patients is safe. These results call for a larger prospective evaluation.
Collapse
Affiliation(s)
- Christian Fung
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
| | - Werner J Z'Graggen
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Stephan M Jakob
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jan Gralla
- Department of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Matthias Haenggi
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Hans-Ulrich Rothen
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Pasquale Mordasini
- Department of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Michael Lensch
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nicole Söll
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nicole Terpolilli
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Munich, Germany
- Department of Neurosurgery, Munich University Hospital, Munich, Germany
| | - Sergej Feiler
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Markus F Oertel
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Andreas Raabe
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Munich, Germany
| | - Jukka Takala
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jürgen Beck
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Ehlert A, Starekova J, Manthei G, Ehlert-Gamm A, Flack J, Gessert M, Gerss J, Hesselmann V. Nitric Oxide-Based Treatment of Poor-Grade Patients After Severe Aneurysmal Subarachnoid Hemorrhage. Neurocrit Care 2021; 32:742-754. [PMID: 31418143 PMCID: PMC7272492 DOI: 10.1007/s12028-019-00809-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Patients with aneurysmal subarachnoid hemorrhage (aSAH) require close treatment in neuro intensive care units (NICUs). The treatments available to counteract secondary deterioration and delayed ischemic events remain restricted; moreover, available neuro-monitoring of comatose patients is undependable. In comatose patients, clinical signs are hidden, and timing interventions to prevent the evolution of a perfusion disorder in response to fixed ischemic brain damage remain a challenge for NICU teams. Consequently, comatose patients often suffer secondary brain infarctions. The outcomes for long-term intubated patients w/wo pupil dilatation are the worst, with only 10% surviving. We previously added two nitroxide (NO) donors to the standard treatment: continuous intravenous administration of Molsidomine in patients with mild-to-moderate aSAH and, if required as a supplement, intraventricular boluses of sodium nitroprusside (SNP) in high-risk patients to overcome the so-called NO-sink effect, which leads to vasospasm and perfusion disorders. NO boluses were guided by clinical status and promptly reversed recurrent episodes of delayed ischemic neurological deficit. In this study, we tried to translate this concept, the initiation of intraventricular NO application on top of continuous Molsidomine infusion, from awake to comatose patients who lack neurological–clinical monitoring but are primarily monitored using frequently applied transcranial Doppler (TCD). Methods In this observational, retrospective, nonrandomized feasibility study, 18 consecutive aSAH comatose/intubated patients (Hunt and Hess IV/V with/without pupil dilatation) whose poor clinical status precluded clinical monitoring received standard neuro-intensive care, frequent TCD monitoring, continuous intravenous Molsidomine plus intraventricular SNP boluses after TCD-confirmed macrospasm during the daytime and on a fixed nighttime schedule. Results Very likely associated with the application of SNP, which is a matter of further investigation, vasospasm-related TCD findings promptly and reliably reversed or substantially weakened (p < 0.0001) afterward. Delayed cerebral ischemia (DCI) occurred only during loose, low-dose or interrupted treatment (17% vs. an estimated 65% with secondary infarctions) in 17 responders. However, despite their worse initial condition, 29.4% of the responders survived (expected 10%) and four achieved Glasgow Outcome Scale Extended (GOSE) 8–6, modified Rankin Scale (mRS) 0–1 or National Institutes of Health Stroke Scale (NIHSS) 0–2. Conclusions Even in comatose/intubated patients, TCD-guided dual-compartment administration of NO donors probably could reverse macrospasm and seems to be feasible. The number of DCI was much lower than expected in this specific subgroup, indicating that this treatment possibly provides a positive impact on outcomes. A randomized trial should verify or falsify our results.
Collapse
Affiliation(s)
- Angelika Ehlert
- Department of Neurosurgery, Asklepios Hospital St. Georg, Lohmühlenstr. 5, 20099, Hamburg, Germany.
| | - Jitka Starekova
- Department of Radiology, University Hospital Hamburg-Eppendorf, Martinistr. 52, 20251, Hamburg, Germany
| | - Gerd Manthei
- Department of Neurosurgery, Asklepios Hospital St. Georg, Lohmühlenstr. 5, 20099, Hamburg, Germany
| | | | - Joachim Flack
- Doctor's Office, Breitenfelderstr. 7, 20251, Hamburg, Germany
| | - Marie Gessert
- Department of Neurology, Asklepios Hospital St. Georg, Lohmühlenstr. 5, 20099, Hamburg, Germany
| | - Joachim Gerss
- Institute of Biostatistics and Clinical Research, University Hospital Münster, Schmeddingstr. 56, 48149, Münster, Germany
| | - Volker Hesselmann
- Department of Neuroradiology, Asklepios Hospital Nord, Tangstedter Landstr. 400, 22417, Hamburg, Germany
| |
Collapse
|
5
|
Hugelshofer M, Buzzi RM, Schaer CA, Richter H, Akeret K, Anagnostakou V, Mahmoudi L, Vaccani R, Vallelian F, Deuel JW, Kronen PW, Kulcsar Z, Regli L, Baek JH, Pires IS, Palmer AF, Dennler M, Humar R, Buehler PW, Kircher PR, Keller E, Schaer DJ. Haptoglobin administration into the subarachnoid space prevents hemoglobin-induced cerebral vasospasm. J Clin Invest 2020; 129:5219-5235. [PMID: 31454333 DOI: 10.1172/jci130630] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022] Open
Abstract
Delayed ischemic neurological deficit (DIND) is a major driver of adverse outcomes in patients with aneurysmal subarachnoid hemorrhage (aSAH), defining an unmet need for therapeutic development. Cell-free hemoglobin that is released from erythrocytes into the cerebrospinal fluid (CSF) is suggested to cause vasoconstriction and neuronal toxicity, and correlates with the occurrence of DIND. Cell-free hemoglobin in the CSF of patients with aSAH disrupted dilatory NO signaling ex vivo in cerebral arteries, which shifted vascular tone balance from dilation to constriction. We found that selective removal of hemoglobin from patient CSF with a haptoglobin-affinity column or its sequestration in a soluble hemoglobin-haptoglobin complex was sufficient to restore physiological vascular responses. In a sheep model, administration of haptoglobin into the CSF inhibited hemoglobin-induced cerebral vasospasm and preserved vascular NO signaling. We identified 2 pathways of hemoglobin delocalization from CSF into the brain parenchyma and into the NO-sensitive compartment of small cerebral arteries. Both pathways were critical for hemoglobin toxicity and were interrupted by the large hemoglobin-haptoglobin complex that inhibited spatial requirements for hemoglobin reactions with NO in tissues. Collectively, our data show that compartmentalization of hemoglobin by haptoglobin provides a novel framework for innovation aimed at reducing hemoglobin-driven neurological damage after subarachnoid bleeding.
Collapse
Affiliation(s)
- Michael Hugelshofer
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Raphael M Buzzi
- Division of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland
| | - Christian A Schaer
- Division of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland
| | - Henning Richter
- Clinic for Diagnostic Imaging, Department of Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Kevin Akeret
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Vania Anagnostakou
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Leila Mahmoudi
- Division of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland.,Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Raphael Vaccani
- Division of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland
| | - Florence Vallelian
- Division of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland
| | - Jeremy W Deuel
- Division of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland
| | - Peter W Kronen
- Veterinary Anaesthesia Services - International, Winterthur, Switzerland.,Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| | - Zsolt Kulcsar
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Luca Regli
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Jin Hyen Baek
- Center of Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ivan S Pires
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Matthias Dennler
- Clinic for Diagnostic Imaging, Department of Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Rok Humar
- Division of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland
| | - Paul W Buehler
- Center of Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Patrick R Kircher
- Clinic for Diagnostic Imaging, Department of Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Emanuela Keller
- Neurointensive Care Unit, University Hospital of Zurich, Zurich, Switzerland
| | - Dominik J Schaer
- Division of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Li K, Barras CD, Chandra RV, Kok HK, Maingard JT, Carter NS, Russell JH, Lai L, Brooks M, Asadi H. A Review of the Management of Cerebral Vasospasm After Aneurysmal Subarachnoid Hemorrhage. World Neurosurg 2019; 126:513-527. [PMID: 30898740 DOI: 10.1016/j.wneu.2019.03.083] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 01/27/2023]
Abstract
BACKGROUND Despite decades of research, cerebral vasospasm (CV) continues to account for high morbidity and mortality in patients who survive their initial aneurysmal subarachnoid hemorrhage. OBJECTIVE To define the scope of the problem and review key treatment strategies that have shaped the way CV is managed in the contemporary era. METHODS A literature search was performed of CV management after aneurysmal subarachnoid hemorrhage. RESULTS Recent advances in neuroimaging have led to improved detection of vasospasm, but established treatment guidelines including hemodynamic augmentation and interventional procedures remain highly variable among neurosurgical centers. Experimental research in subarachnoid hemorrhage continues to identify novel targets for therapy. CONCLUSIONS Proactive and preventive strategies such as oral nimodipine and endovascular rescue therapies can reduce the morbidity and mortality associated with CV.
Collapse
Affiliation(s)
- Kenny Li
- School of Medicine, Faculty of Health, Deakin University, Geelong, Victoria, Australia.
| | - Christen D Barras
- University of Adelaide, North Terrace Campus, Adelaide, South Australia, Australia; South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Ronil V Chandra
- Interventional Neuroradiology Service, Monash Health, Clayton, Victoria, Australia
| | - Hong K Kok
- Interventional Radiology Service, Northern Health, Epping, Victoria, Australia
| | - Julian T Maingard
- School of Medicine, Faculty of Health, Deakin University, Geelong, Victoria, Australia; Interventional Radiology Service, Department of Radiology, Austin Hospital, Heidelberg, Victoria, Australia; Interventional Neuroradiology Service, Department of Radiology, Austin Hospital, Heidelberg, Victoria, Australia
| | - Nicole S Carter
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Jeremy H Russell
- Department of Neurosurgery, Austin Health, Heidelberg, Victoria, Australia
| | - Leon Lai
- Department of Neurosurgery, Monash Health, Clayton, Victoria, Australia
| | - Mark Brooks
- Interventional Radiology Service, Department of Radiology, Austin Hospital, Heidelberg, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Hamed Asadi
- School of Medicine, Faculty of Health, Deakin University, Geelong, Victoria, Australia; Interventional Radiology Service, Department of Radiology, Austin Hospital, Heidelberg, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| |
Collapse
|
7
|
Eisenhut M, Choudhury S. In Premature Newborns Intraventricular Hemorrhage Causes Cerebral Vasospasm and Associated Neurodisability via Heme-Induced Inflammasome-Mediated Interleukin-1 Production and Nitric Oxide Depletion. Front Neurol 2017; 8:423. [PMID: 28868047 PMCID: PMC5563367 DOI: 10.3389/fneur.2017.00423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 08/04/2017] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Intraventricular hemorrhage (IVH) occurs in 60-70% of neonates weighing 500-750 g and 10-20% of those weighing 1,000-1,500 g. All forms of IVH have been associated with neurocognitive deficits. Both subarachnoid and IVHs have been associated with delayed vasospasm leading to neurological deficits. Pathways linking hemoglobin release from blood clots to vasospasm include heme-induced activation of inflammasomes releasing interleukin-1 (IL-1) that can cause calcium dependent and independent vasospasm. Free hemoglobin is a potent scavenger of nitric oxide (NO). Depletion of NO, a potent endogenous vasodilator, has been associated with features of vasospasm. HYPOTHESIS In premature newborns, IVH causes cerebral vasospasm and associated neurodisability via heme-induced increased inflammasome-mediated IL-1 production and NO depletion. CONFIRMATION OF HYPOTHESIS AND IMPLICATIONS This hypothesis could be confirmed in the IVH animal model with visualization of any associated vasospasm by angiography and in newborns with IVH by transcranial Doppler ultrasonography and correlation with cerebrospinal fluid IL-1 and NO metabolite levels. Confirmation of the role of heme in activation of inflammasomes causing IL-1 production and NO binding could be achieved by measuring the effect of heme scavenging interventions on IL-1 levels and levels of NO metabolites. In addition to removal of the accumulated blood of an IVH by drainage, irrigation, and fibrinolytic therapy intrathecal application of vasodilators and heme scavenging agents like haptoglobin and haemopexin and systemic treatment with inhibitors of inflammasomes like telmisartan could be used to prevent and treat cerebral vasospasm, and thus reduce the risk of associated brain injury in premature neonates.
Collapse
Affiliation(s)
- Michael Eisenhut
- Pediatric Department, Luton and Dunstable University Hospital NHS Foundation Trust, Luton, Bedfordshire, United Kingdom
| | - Samyami Choudhury
- Pediatric Department, Luton and Dunstable University Hospital NHS Foundation Trust, Luton, Bedfordshire, United Kingdom
| |
Collapse
|