1
|
Imoto R, Otani Y, Fujii K, Ishida J, Hirano S, Kemmotsu N, Suruga Y, Mizuta R, Kegoya Y, Inoue Y, Umeda T, Hokama M, Washio K, Yanai H, Tanaka S, Satomi K, Ichimura K, Date I. Tectal glioma: clinical, radiological, and pathological features, and the importance of molecular analysis. Brain Tumor Pathol 2024:10.1007/s10014-024-00494-9. [PMID: 39432011 DOI: 10.1007/s10014-024-00494-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 10/06/2024] [Indexed: 10/22/2024]
Abstract
Tectal glioma (TG) is a rare lower grade glioma (LrGG) that occurs in the tectum, mainly affecting children. TG shares pathological similarities with pilocytic astrocytoma (PA), but recent genetic analyses have revealed distinct features, such as alterations in KRAS and BRAF. We conducted a retrospective review of cases clinically diagnosed as TG and treated at our institute between January 2005 and March 2023. Six cases were identified and the median age was 30.5 years. Four patients underwent biopsy and two patients underwent tumor resection. Histological diagnoses included three cases of PA, one case of astrocytoma, and two cases of high-grade glioma. The integrated diagnosis, according to the fifth edition of the World Health Organization Classification of Tumours of the central nervous system, included two cases of PA and one case each of diffuse high-grade glioma; diffuse midline glioma H3 K27-altered; glioblastoma; and circumscribed astrocytic glioma. Among the three patients who underwent molecular evaluation, two had KRAS mutation and one had H3-3A K27M mutation. Our results demonstrate the diverse histological and molecular characteristics of TG distinct from other LrGGs. Given the heterogeneous pathological background and the risk of pathological progression in TG, we emphasize the importance of comprehensive diagnosis, including molecular evaluation.
Collapse
Affiliation(s)
- Ryoji Imoto
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yoshihiro Otani
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Kentaro Fujii
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Joji Ishida
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Shuichiro Hirano
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Naoya Kemmotsu
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yasuki Suruga
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Ryo Mizuta
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yasuhito Kegoya
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yohei Inoue
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
- Department of Brain Disease Translational Research, Juntendo University Graduate School of Medicine, 2-1-1 Hongou, Bunkyou-ku, Tokyo, 113-8421, Japan
| | - Tsuyoshi Umeda
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Madoka Hokama
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kana Washio
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hiroyuki Yanai
- Department of Pathology, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Shota Tanaka
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kaishi Satomi
- Department of Pathology, Kyorin University Faculty of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, 181-8611, Japan
| | - Koichi Ichimura
- Department of Brain Disease Translational Research, Juntendo University Graduate School of Medicine, 2-1-1 Hongou, Bunkyou-ku, Tokyo, 113-8421, Japan
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
2
|
Zuo P, Li T, Sun T, Wu W, Wang Y, Zhang M, Wu Z, Zhang J, Zhang L. Clinical features and surgical outcomes of high grade pleomorphic xanthoastrocytomas: a single-center experience with a systematic review. Front Oncol 2023; 13:1193611. [PMID: 37448517 PMCID: PMC10338055 DOI: 10.3389/fonc.2023.1193611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Purpose High grade pleomorphic xanthoastrocytomas (HGPXAs) are very rare and their management and prognostic outcomes remain unclear. To better understand the disease, we aimed to evaluate the risk factors for progression-free survival (PFS) and overall survival (OS), and propose a treatment protocol based on cases from our institute and cases from the literature. Methods The authors reviewed the clinical data of 26 patients with HGPXAs who underwent surgical treatment in Department of Neurosurgery of Beijing Tiantan Hospital between August 2014 and September 2021. We also searched the PubMed database using the keywords "anaplastic" combined with "pleomorphic xanthoastrocytoma(s)" between January 1997 and October 2022. Risk factors for PFS and OS were evaluated in the pooled cases. Results The authors' cohort included 11 males and 15 females with a mean age of 36.7 ± 20.3 years (range: 5.5-71 years). Gross-total resection (GTR) and non-GTR were achieved in 17 (65.4%) and 9 (34.6%) patients, respectively. Radiotherapy and chemotherapy were administered to 22 and 20 patients, respectively. After a mean follow-up of 20.5 ± 21.2 months (range: 0.5-78.1 months), 7 patients suffered tumor recurrence and 6 patients died with a mean OS time of 19.4 ± 10.8 months (range: 8-36 months). In the literature between January 1997 and October 2022, 56 cases of HGPXAs were identified in 29 males and 27 females with a mean age of 29.6 ± 19.6 years (range; 4-74 years). Among them, 24 (44.4%) patients achieved GTR. Radiotherapy and chemotherapy was administered to 31 (62%) patients and 23 (46%) patients, respectively. After a median follow-up of 31.4 ± 35.3 months (range: 0.75-144 months), the mortality and recurrence rates were 32.5% (13/40) and 70% (28/40), respectively. Multivariate Cox regression model demonstrated that non-GTR (HR 0.380, 95% CI 0.174-0.831, p=0.015), age≥30 (HR 2.620, 95% CI 1.183-5.804, p=0.018), no RT (HR 0.334,95% CI 0.150-0.744, p=0.007) and no CT (HR 0.422, 95% CI 0.184-0.967, p=0.042) were negative prognostic factors for PFS. Non-GTR (HR 0.126, 95% CI 0.037-0.422, p=0.001), secondary HGPXAs (HR 7.567, 95% CI 2.221-25.781, p=0.001), age≥30 (HR 3.568, 95% CI 1.190-10.694, p=0.023) and no RT (HR 0.223,95% CI 0.073-0.681, p=0.008) were risk factors for OS. Conclusion High grade pleomorphic xanthoastrocytomas are very rare brain tumors. Children and younger adults have better clinical outcome than elderly patients. Secondary HGPXAs had worse OS than primary HGPXAs. Complete surgical excision plus RT and CT is recommended for this entity. The frequency of BRAF mutations in HGPXAs is 47.5% (19/40) in this study, however, we do not find the connections between BRAF mutations and clinical outcomes. Future studies with larger cohorts are necessary to verify our findings.
Collapse
Affiliation(s)
- Pengcheng Zuo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tian Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Sun
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenhao Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yujin Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mingxin Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhen Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Junting Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
3
|
Nagaishi M, Nakae R, Fujii Y, Inoue Y, Sugiura Y, Takano I, Tanaka Y, Suzuki K. Rare clinical presentations of pleomorphic xanthoastrocytoma with a high proliferative index: Two case reports. Medicine (Baltimore) 2020; 99:e18880. [PMID: 32011515 PMCID: PMC7220053 DOI: 10.1097/md.0000000000018880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Pleomorphic xanthoastrocytomas (PXA) are rare, typically benign, slow-growing tumors that commonly occur in the cerebral hemispheres. We describe two cases of clinically aggressive PXA with uncommon locations; one was in the tectal plate, and the other had simultaneous multicentric lesions. PATIENT CONCERNS The both cases presented with severe headache with no significant past medical history. DIAGNOSIS PXA World Health Organization grade II were histopathologically diagnosed from surgically resected specimens, and immunohistochemical and sequence analysis revealed a high Ki-67 proliferative index and BRAF V600E mutation in both the cases. INTERVENTIONS The first case presented with multicentric lesions and underwent partial resection, whereas the second case presented with a tectal plate tumor that was managed by gross total surgical resection. Strong 5-aminolevulinic acid (5-ALA)-induced fluorescence was observed in both the lesions. Postoperative radiotherapy plus concomitant and adjuvant temozolomide was administered to both the patients. OUTCOMES Despite completing adjuvant chemo-radiotherapy, both the patients had local tumor recurrence at 2 and 5 months after the operation, respectively. CONCLUSION The progressive clinical courses in our cases suggest that additional postoperative therapy should be considered during the treatment of PXA with a high Ki67 index, and that temozolomide with radiotherapy, followed by temozolomide maintenance therapy, may not prevent recurrence in such tumors. Importantly, our experience implies that unlike other subtypes of low grade gliomas, 5-ALA fluorescence is useful for intraoperative visualization of PXA.
Collapse
|
4
|
Mallick S, Giridhar P, Benson R, Melgandi W, Rath GK. Demography, Pattern of Care, and Survival in Patients with Xanthoastrocytoma: A Systematic Review and Individual Patient Data Analysis of 325 Cases. J Neurosci Rural Pract 2019; 10:430-437. [PMID: 31595115 PMCID: PMC6779544 DOI: 10.1055/s-0039-1697873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Objectives Xanthoastrocytoma (XA) is a low-grade glial tumor seen in young adults and there is lack of robust data on treatment of this rare tumor. In this systematic review and individual patient's data analysis, we aimed to look into the demography, pattern of care, survival outcomes, and prognostic factors in patients with both Grade II and III XA. Methods A comprehensive search was conducted with the Medical Subject Heading terms: "Xanthoastrocytoma; Pleomorphic Xanthoastrocytoma; Anaplastic Xanthoastrocytoma; Xanthoastrocytoma AND treatment; and Anaplastic Xanthoastrocytoma AND survival" to find all possible publications. Results A total of 325 individual patients from a total of 138 publications pertaining to XA were retrieved. Median age of the entire cohort was 19 years. About 56.1% of the patients underwent a gross total resection (GTR) and 31.4% underwent a subtotal resection. Nearly, 76.6% of the patients had a Grade II tumor and adjuvant radiation was delivered in 27.4% of the patients. Estimated 2- and 5-year progression-free survival (PFS) were 68.5 and 51.2%, respectively. Age, grade, and extent of surgery were significant factors affecting PFS. Estimated 2- and 5-year overall survival (OS) was 88.8 and 78%, respectively. The median OS for Grade II and Grade III tumors were 209 and 49 months, respectively. Age and extent of surgery were significant factors affecting OS. Conclusion XA is a disease of young adults with favorable prognosis. Younger patients (<20 years), patients who undergo a GTR, and patients with a lower grade tumor have a better treatment outcome.
Collapse
Affiliation(s)
- Supriya Mallick
- Department of Radiation Oncology, B.R.A. Institute-Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Prashanth Giridhar
- Department of Radiation Oncology, B.R.A. Institute-Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Rony Benson
- Department of Radiation Oncology, B.R.A. Institute-Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Wineeta Melgandi
- Department of Radiation Oncology, B.R.A. Institute-Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Goura Kishor Rath
- Department of Radiation Oncology, B.R.A. Institute-Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Temozolomide is a first-line treatment for newly diagnosed glioblastoma. In this review, we will examine the use of temozolomide in other contexts for treating gliomas, including recurrent glioblastoma, glioblastoma in the elderly, diffuse low- and high-grade gliomas, non-diffuse gliomas, diffuse intrinsic pontine glioma (DIPG), ependymoma, pilocytic astrocytoma, and pleomorphic xanthoastrocytoma. RECENT FINDINGS Temozolomide improved survival in older patients with glioblastoma, anaplastic gliomas regardless of 1p/19q deletion status, and progressive ependymomas. Temozolomide afforded less toxicity and comparable efficacy to radiation in high-risk low-grade gliomas and to platinum-based chemotherapy in pediatric high-grade gliomas. The success of temozolomide in promoting survival has expanded beyond glioblastoma to benefit patients with non-glioblastoma tumors. Identifying practical biomarkers for predicting temozolomide susceptibility, and establishing complementary agents for chemosensitizing tumors to temozolomide, will be key next steps for future success.
Collapse
Affiliation(s)
- Jason Chua
- Department of Neurology, University of Michigan, 1500 E. Medical Center Dr., 1914 Taubman Center, Ann Arbor, MI, 48109, USA
| | - Elizabeth Nafziger
- Department of Neurology, University of Michigan, 1500 E. Medical Center Dr., 1914 Taubman Center, Ann Arbor, MI, 48109, USA
| | - Denise Leung
- Department of Neurology, University of Michigan, 1500 E. Medical Center Dr., 1914 Taubman Center, Ann Arbor, MI, 48109, USA.
| |
Collapse
|