1
|
Li Z, Liu Y, Li X, Yang S, Feng S, Li G, Jin F, Nie S. Knockdown the moyamoya disease susceptibility gene, RNF213, upregulates the expression of basic fibroblast growth factor and matrix metalloproteinase-9 in bone marrow derived mesenchymal stem cells. Neurosurg Rev 2024; 47:246. [PMID: 38811382 DOI: 10.1007/s10143-024-02448-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/31/2024]
Abstract
Moyamoya disease (MMD) is a chronic, progressive cerebrovascular occlusive disease. Ring finger protein 213 (RNF213) is a susceptibility gene of MMD. Previous studies have shown that the expression levels of angiogenic factors increase in MMD patients, but the relationship between the susceptibility gene RNF213 and these angiogenic mediators is still unclear. The aim of the present study was to investigate the pathogenesis of MMD by examining the effect of RNF213 gene knockdown on the expression of matrix metalloproteinase-9 (MMP-9) and basic fibroblast growth factor (bFGF) in rat bone marrow-derived mesenchymal stem cells (rBMSCs). Firstly, 40 patients with MMD and 40 age-matched normal individuals (as the control group) were enrolled in the present study to detect the levels of MMP-9 and bFGF in serum by ELISA. Secondly, Sprague-Dawley male rat BMSCs were isolated and cultured using the whole bone marrow adhesion method, and subsequent phenotypic analysis was performed by flow cytometry. Alizarin red and oil red O staining methods were used to identify osteogenic and adipogenic differentiation, respectively. Finally, third generation rBMSCs were transfected with lentivirus recombinant plasmid to knockout expression of the RNF213 gene. After successful transfection was confirmed by reverse transcription-quantitative PCR and fluorescence imaging, the expression levels of bFGF and MMP-9 mRNA in rBMSCs and the levels of bFGF and MMP-9 protein in the supernatant of the culture medium were detected on the 7th and 14th days after transfection. There was no significant difference in the relative expression level of bFGF among the three groups on the 7th day. For the relative expression level of MMP-9, there were significant differences on the 7th day and 14th day. In addition, there was no statistically significant difference in the expression of bFGF in the supernatant of the RNF213 shRNA group culture medium, while there was a significant difference in the expression level of MMP-9. The knockdown of the RNF213 gene affects the expression of bFGF and MMP-9. However, further studies are needed to determine how they participate in the pathogenesis of MMD. The findings of the present study provide a theoretical basis for clarifying the pathogenesis and clinical treatment of MMD.
Collapse
Affiliation(s)
- Zhengyou Li
- Department of Neurosurgery, Shandong Second Provincal General Hospital, Jinan, Shandong, 250022, P.R. China
| | - Yang Liu
- Department of Neurosurgery, Fushan District People's Hospital, Yantai, Shandong, 265500, P.R. China
| | - Xiumei Li
- Department of Neurosurgery, Shandong Second Provincal General Hospital, Jinan, Shandong, 250022, P.R. China
| | - Shaojing Yang
- Department of Neurosurgery, Shandong Second Provincal General Hospital, Jinan, Shandong, 250022, P.R. China
| | - Song Feng
- Department of Neurosurgery, Qingdao Central Hospital, University of Health and Rehabilitation Sciences and Qingdao Central Hospital Medical Group, 127 Siliu South Road, Qingdao, Shandong, 266042, P.R. China
| | - Genhua Li
- Department of Geriatric Neurology, Anti-Aging Monitoring Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, Shandong, 250021, P.R. China
| | - Feng Jin
- Department of Neurosurgery, Qingdao Central Hospital, University of Health and Rehabilitation Sciences and Qingdao Central Hospital Medical Group, 127 Siliu South Road, Qingdao, Shandong, 266042, P.R. China.
| | - Shanjing Nie
- Department of Geriatric Neurology, Anti-Aging Monitoring Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Jinan, Shandong, 250021, P.R. China.
| |
Collapse
|
2
|
Dorschel KB, Wanebo JE. Physiological and pathophysiological mechanisms of the molecular and cellular biology of angiogenesis and inflammation in moyamoya angiopathy and related vascular diseases. Front Neurol 2023; 14:661611. [PMID: 37273690 PMCID: PMC10236939 DOI: 10.3389/fneur.2023.661611] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 01/16/2023] [Indexed: 06/06/2023] Open
Abstract
Rationale The etiology and pathophysiological mechanisms of moyamoya angiopathy (MMA) remain largely unknown. MMA is a progressive, occlusive cerebrovascular disorder characterized by recurrent ischemic and hemorrhagic strokes; with compensatory formation of an abnormal network of perforating blood vessels that creates a collateral circulation; and by aberrant angiogenesis at the base of the brain. Imbalance of angiogenic and vasculogenic mechanisms has been proposed as a potential cause of MMA. Moyamoya vessels suggest that aberrant angiogenic, arteriogenic, and vasculogenic processes may be involved in the pathophysiology of MMA. Circulating endothelial progenitor cells have been hypothesized to contribute to vascular remodeling in MMA. MMA is associated with increased expression of angiogenic factors and proinflammatory molecules. Systemic inflammation may be related to MMA pathogenesis. Objective This literature review describes the molecular mechanisms associated with cerebrovascular dysfunction, aberrant angiogenesis, and inflammation in MMA and related cerebrovascular diseases along with treatment strategies and future research perspectives. Methods and results References were identified through a systematic computerized search of the medical literature from January 1, 1983, through July 29, 2022, using the PubMed, EMBASE, BIOSIS Previews, CNKI, ISI web of science, and Medline databases and various combinations of the keywords "moyamoya," "angiogenesis," "anastomotic network," "molecular mechanism," "physiology," "pathophysiology," "pathogenesis," "biomarker," "genetics," "signaling pathway," "blood-brain barrier," "endothelial progenitor cells," "endothelial function," "inflammation," "intracranial hemorrhage," and "stroke." Relevant articles and supplemental basic science articles almost exclusively published in English were included. Review of the reference lists of relevant publications for additional sources resulted in 350 publications which met the study inclusion criteria. Detection of growth factors, chemokines, and cytokines in MMA patients suggests the hypothesis of aberrant angiogenesis being involved in MMA pathogenesis. It remains to be ascertained whether these findings are consequences of MMA or are etiological factors of MMA. Conclusions MMA is a heterogeneous disorder, comprising various genotypes and phenotypes, with a complex pathophysiology. Additional research may advance our understanding of the pathophysiology involved in aberrant angiogenesis, arterial stenosis, and the formation of moyamoya collaterals and anastomotic networks. Future research will benefit from researching molecular pathophysiologic mechanisms and the correlation of clinical and basic research results.
Collapse
Affiliation(s)
- Kirsten B. Dorschel
- Medical Faculty, Heidelberg University Medical School, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - John E. Wanebo
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
- Department of Neuroscience, HonorHealth Research Institute, Scottsdale, AZ, United States
| |
Collapse
|
3
|
Luo Y, Cao Z, Wu S, Sun X. Ring Finger Protein 213 in Moyamoya Disease With Pulmonary Arterial Hypertension: A Mini-Review. Front Neurol 2022; 13:843927. [PMID: 35401401 PMCID: PMC8987108 DOI: 10.3389/fneur.2022.843927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/09/2022] [Indexed: 11/28/2022] Open
Abstract
Moyamoya disease (MMD), most often diagnosed in children and adolescents, is a chronic cerebrovascular disease characterized by progressive stenosis at the terminal portion of the internal carotid artery and an abnormal vascular network at the base of the brain. Recently, many investigators show a great interest in MMD with pulmonary arterial hypertension (PAH). Ring finger protein 213 (RNF213) is a major susceptibility gene for MMD and also has strong correlations with PAH. Therefore, this review encapsulates current cases of MMD with PAH and discusses MMD with PAH in the aspects of epidemiology, pathology, possible pathogenesis, clinical manifestations, diagnosis, and treatment.
Collapse
Affiliation(s)
- Yuting Luo
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhixin Cao
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shaoqing Wu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Shaoqing Wu
| | - Xunsha Sun
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Xunsha Sun
| |
Collapse
|
4
|
Xiao Y, Liu W, Hao J, Jiang Q, Wang X, Yu D, Zhang L, Dong Z, Wang J. CRISPR Detection and Research on Screening Mutant Gene TTN of Moyamoya Disease Family Based on Whole Exome Sequencing. Front Mol Biosci 2022; 9:846579. [PMID: 35355511 PMCID: PMC8959584 DOI: 10.3389/fmolb.2022.846579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Moyamoya disease (MMD) has a high incidence in Asian populations and demonstrates some degree of familial clustering. Whole-exome sequencing (WES) is useful in establishing key related genes in familial genetic diseases but is time-consuming and costly. Therefore, exploring a new method will be more effective for the diagnosis of MMD. We identified familial cohorts showing MMD susceptibility and performed WES on 5 affected individuals to identify susceptibility loci, which identified point mutation sites in the titin (TTN) gene (rs771533925, rs559712998 and rs72677250). Moreover, TTN mutations were not found in a cohort of 50 sporadic MMD cases. We also analyzed mutation frequencies and used bioinformatic predictions to reveal mutation harmfulness, functions and probabilities of disease correlation, the results showed that rs771533925 and rs72677250 were likely harmful mutations with GO analyses indicating the involvement of TTN in a variety of biological processes related to MMD etiology. CRISPR-Cas12a assays designed to detect TTN mutations provided results consistent with WES analysis, which was further confirmed by Sanger sequencing. This study recognized TTN as a new familial gene marker for moyamoya disease and moreover, demonstrated that CRISPR-Cas12a has the advantages of rapid detection, low cost and simple operation, and has broad prospects in the practical application of rapid detection of MMD mutation sites.
Collapse
Affiliation(s)
- Yilei Xiao
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, China
| | - Weidong Liu
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, China
| | - Jiheng Hao
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, China
| | - Qunlong Jiang
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, China
| | - Xingbang Wang
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Ji’nan, China
| | - Donghu Yu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Liyong Zhang
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, China
- *Correspondence: Liyong Zhang, ; Zhaogang Dong, ; Jiyue Wang,
| | - Zhaogang Dong
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Ji’nan, China
- *Correspondence: Liyong Zhang, ; Zhaogang Dong, ; Jiyue Wang,
| | - Jiyue Wang
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, China
- *Correspondence: Liyong Zhang, ; Zhaogang Dong, ; Jiyue Wang,
| |
Collapse
|
5
|
Thery F, Martina L, Asselman C, Zhang Y, Vessely M, Repo H, Sedeyn K, Moschonas GD, Bredow C, Teo QW, Zhang J, Leandro K, Eggermont D, De Sutter D, Boucher K, Hochepied T, Festjens N, Callewaert N, Saelens X, Dermaut B, Knobeloch KP, Beling A, Sanyal S, Radoshevich L, Eyckerman S, Impens F. Ring finger protein 213 assembles into a sensor for ISGylated proteins with antimicrobial activity. Nat Commun 2021; 12:5772. [PMID: 34599178 PMCID: PMC8486878 DOI: 10.1038/s41467-021-26061-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 09/14/2021] [Indexed: 12/20/2022] Open
Abstract
ISG15 is an interferon-stimulated, ubiquitin-like protein that can conjugate to substrate proteins (ISGylation) to counteract microbial infection, but the underlying mechanisms remain elusive. Here, we use a virus-like particle trapping technology to identify ISG15-binding proteins and discover Ring Finger Protein 213 (RNF213) as an ISG15 interactor and cellular sensor of ISGylated proteins. RNF213 is a poorly characterized, interferon-induced megaprotein that is frequently mutated in Moyamoya disease, a rare cerebrovascular disorder. We report that interferon induces ISGylation and oligomerization of RNF213 on lipid droplets, where it acts as a sensor for ISGylated proteins. We show that RNF213 has broad antimicrobial activity in vitro and in vivo, counteracting infection with Listeria monocytogenes, herpes simplex virus 1, human respiratory syncytial virus and coxsackievirus B3, and we observe a striking co-localization of RNF213 with intracellular bacteria. Together, our findings provide molecular insights into the ISGylation pathway and reveal RNF213 as a key antimicrobial effector.
Collapse
Affiliation(s)
- Fabien Thery
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Lia Martina
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Caroline Asselman
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Yifeng Zhang
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Madeleine Vessely
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Heidi Repo
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Koen Sedeyn
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - George D Moschonas
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Clara Bredow
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biochemistry, Berlin, Germany
| | - Qi Wen Teo
- HKU-Pasteur Research Pole, School of Public Health, University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Jingshu Zhang
- HKU-Pasteur Research Pole, School of Public Health, University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Kevin Leandro
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Denzel Eggermont
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Delphine De Sutter
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Katie Boucher
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Proteomics Core, VIB, Ghent, Belgium
| | - Tino Hochepied
- VIB Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Nele Festjens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Nico Callewaert
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Bart Dermaut
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Klaus-Peter Knobeloch
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Antje Beling
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Biochemistry, Berlin, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), partner side Berlin, Berlin, Germany
| | - Sumana Sanyal
- HKU-Pasteur Research Pole, School of Public Health, University of Hong Kong, Pok Fu Lam, Hong Kong
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Lilliana Radoshevich
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
| | - Sven Eyckerman
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium.
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium.
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
- VIB Proteomics Core, VIB, Ghent, Belgium.
| |
Collapse
|
6
|
Wang C, Sun C, Zhao Y, Song H, Li Z, Jin F, Cui C. RNF213 gene silencing upregulates transforming growth factor β1 expression in bone marrow-derived mesenchymal stem cells and is involved in the onset of Moyamoya disease. Exp Ther Med 2021; 22:1024. [PMID: 34373710 PMCID: PMC8343649 DOI: 10.3892/etm.2021.10456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/12/2020] [Indexed: 12/11/2022] Open
Abstract
Moyamoya disease (MMD) is a chronic and progressive cerebrovascular occlusion disease, the precise etiology of which is poorly understood. Ring finger protein 213 (RNF213) has been previously identified as a susceptibility gene that serves an important role in angiogenesis, where it has been shown to be closely associated with the onset of MMD. Patients with MMD exhibit increased expression levels of various pro-inflammatory molecules and angiogenic factors. Under certain conditions, bone marrow mesenchymal stem cells (BMSCs) have the ability to differentiate to form neuron-like and microglia-like cells. In the present study, a total of 40 MMD patients and 40 healthy individuals were enrolled. ELISA assays revealed that the expression of serum vascular endothelial growth factor (VEGF) and transforming growth factor β1 (TGF-β1) were higher than that in healthy controls. Furthermore, rat BMSCs (rBMSCs) were isolated and cultured using the whole bone marrow adherence method, which were then phenotyped using flow cytometry. Osteogenic and adipogenic differentiation were determined by using Alizarin red and oil red O staining, respectively. RNF213 was knocked-down using a lentivirus-mediated short hairpin RNA system in passage three rBMSCs, and successful transfection of the RNF213 was confirmed by RT-qPCR and fluorescence imaging. The expression levels of VEGF and TGF-β1 in these rBMSCs were measured on days 7 and 14, respectively. The results demonstrated that RNF213 knockdown upregulated TGF-β1 at both protein and mRNA levels, but did not exert any effect on VEGF gene expression. In conclusion, these findings suggested that that RNF213 knockdown may contribute to aberrant TGF-β1 expression via a pathway that remains to be unidentified, indicating that quantitative changes in RNF213 gene expression may serve an important role in the pathogenesis of MMD.
Collapse
Affiliation(s)
- Changshui Wang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Cuilian Sun
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Yueshu Zhao
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Huimin Song
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Zhengyou Li
- Department of Neurosyrgery, Shandong Province Western Hospital, Shandong Province ENT Hospital, Jinan, Shandong 250022, P.R. China
| | - Feng Jin
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Changmeng Cui
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| |
Collapse
|
7
|
Zhang X, Yin L, Jia X, Zhang Y, Liu T, Zhang L. iTRAQ-based Quantitative Proteomic Analysis of Dural Tissues Reveals Upregulated Haptoglobin to be a Potential Biomarker of Moyamoya Disease. CURR PROTEOMICS 2021. [DOI: 10.2174/1570164617666191210103652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Moyamoya Disease (MMD) is a rare cerebrovascular disease with a high rate
of disability and mortality. Immune reactions have been implicated in the pathogenesis of MMD, however,
the underlying mechanism is still unclear.
Objective:
To identify proteins related to MMD specially involved in the immunogenesis, we performed
a proteomic study.
Methods:
In this work, dural tissues or plasma from 98 patients with MMD, 17 disease controls without
MMD, and 12 healthy donors were included. Proteomic profiles of dural tissues from 4 MMD and
4 disease controls were analyzed by an isobaric tag for relative and absolute quantitation (iTRAQ)-
based proteomics. The immune-related proteins were explored by bioinformatics and the key MMDrelated
proteins were verified by western blot, multiple reaction monitoring methods, enzyme-linked
immunosorbent assay, and tissue microarray.
Results:
1,120 proteins were identified, and 82 MMD-related proteins were found with more than 1.5
fold difference compared with those in the control samples. Gene Ontology analysis showed that 29
proteins were immune-related. In particular, Haptoglobin (HP) was up-regulated in dural tissue and
plasma of MMD samples compared to the controls, and its up-regulation was found to be sex- and
MMD Suzuki grade dependent. Through Receiver Operating Characteristic (ROC) analysis, HP can
well discriminate MMD and healthy donors with the Area Under the Curve (AUC) of 0.953.
Conclusion:
We identified the biggest protein database of the dura mater. 29 out of 82 differentially
expressed proteins in MMD are involved in the immune process. Of which, HP was up-regulated in
dural tissue and plasma of MMD, with sex- and MMD Suzuki grade-dependence. HP might be a potential
biomarker of MMD.
Collapse
Affiliation(s)
- Xiaojun Zhang
- The 85th Hospital of the Chinese People's Liberation Army, Shanghai 200052, China
| | - Lin Yin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Xiaofang Jia
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yujiao Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Tiefu Liu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Lijun Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| |
Collapse
|
8
|
Zhu B, Liu X, Zhen X, Li X, Wu M, Zhang Y, Zhao Z, Zhang D, Zhao J. RNF213 gene polymorphism rs9916351 and rs8074015 significantly associated with moyamoya disease in Chinese population. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:851. [PMID: 32793695 DOI: 10.21037/atm-20-1040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background Gene polymorphism especially Ring Finger Protein 213 (RNF213) p.R4810K is one of the main cause of moyamoya disease (MMD) in Asian populations, especially among Japanese people. However, missense mutation may not explain the reduced frequency of MMD in Chinese patients. We performed a hospital based case-control study in a Chinese population to elucidate the possible underlying reasons. Methods Five gene polymorphism loci, namely, rs35692831, rs9916351, rs9913636, rs8074015 and rs112735431, were included. A total of 98 patients and 114 healthy controls were enrolled in the study. Genomic DNA was genotyped by Mass Array methods. Results A significant difference was observed between patients and healthy controls in rs9916351, rs9913636, and rs8074015 loci under three genotypes and allelic models (P<0.01). Logistic regression analysis revealed the significant differences under the dominant, recessive and additional model in rs9916351 [odds ratio (OR) =4.173, 95% confidence interval (CI): 2.290-7.606, P<0.001; OR =3.152, 95% CI: 1.585-6.267, P=0.001; OR =0.199, 95% CI: 1.727-3.764, P<0.001; respectively] and rs8074015 (OR =0.359, 95% CI: 0.206-0.627, P<0.001; OR =0.348, 95% CI: 0.148-0.81, P=0.015; OR =0.208, 95% CI: 0.311-0.703, P<0.001; respectively), even adjusting for age and gender. In addition, the haplotype rs9913636-rs8074015 under "GACG" showed significant association with MMD. Conclusions Our results had revealed the polymorphism of RNF213 rs9916351 and rs8074015 were significantly associated with MMD especially in Chinese population.
Collapse
Affiliation(s)
- Bin Zhu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xingju Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorder, Beijing, China
| | - Xueke Zhen
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Xixi Li
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mingfen Wu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorder, Beijing, China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dong Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorder, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorder, Beijing, China
| |
Collapse
|
9
|
Yang J, Song GF, Li HB, Zhang SH, Yang FY. Clinical efficacy of extracranial-intracranial bypass for the treatment of adult patients with moyamoya disease: A protocol of systematic review of randomized controlled trials. Medicine (Baltimore) 2019; 98:e18211. [PMID: 31804345 PMCID: PMC6919537 DOI: 10.1097/md.0000000000018211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Moyamoya disease (MMD) is a major health concern associated with blocked arteries at the base of the brain. The aim of this study will synthesize the current evidence of the efficacy and safety of extracranial-intracranial bypass (EIB) for the treatment of adult patients with MMD. METHODS A systematically and comprehensively literature search will be performed in PubMed, EMBASE, Web of Science, CENTRAL, CINAHL, AMED, CBM, and CNKI to identify relevant randomized controlled trails (RCTs) investigating the efficacy and safety of EIB for treating MMD. We will search all above electronic databases from their inception to the July 30, 2019. Two review authors will independently perform study selection, data extraction, and conduct risk of bias evaluation using Cochrane risk of bias tool. We will also explore heterogeneity across studies. RevMan 5.3 software will be applied for statistical analysis performance. RESULTS This study will evaluate the efficacy and safety of EIB for the treatment of adult patients with MMD. CONCLUSION The results of this study will provide latest evidence of the efficacy and safety of EIB for MMD. DISSEMINATION AND ETHICS This study is based on published studies, thus, no ethical consideration is needed. The results of this study are expected to be published in peer-reviewed journals or will be presented on conference meeting.Systematic review registration: PROSPERO CRD42019155839.
Collapse
Affiliation(s)
| | | | | | | | - Fu-yi Yang
- Department of Neurology, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| |
Collapse
|
10
|
McCrea N, Fullerton HJ, Ganesan V. Genetic and Environmental Associations With Pediatric Cerebral Arteriopathy. Stroke 2019; 50:257-265. [DOI: 10.1161/strokeaha.118.020479] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Nadine McCrea
- From the Department of Neurology, Great Ormond Street Hospital for Children NHS Foundation Trust, London (N.M.)
| | | | - Vijeya Ganesan
- Clinical Neurosciences, UCL Great Ormond Street Institute of Child Health, London (V.G.)
| |
Collapse
|
11
|
Zhang X, Zhou Y, Ding W, Zhang R, Yan S, Deng Y, Gao F, Lou M. TPO-Ab plays a role in arterial remodeling in patients with intracranial stenosis. Atherosclerosis 2018; 280:140-146. [PMID: 30513409 DOI: 10.1016/j.atherosclerosis.2018.11.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/22/2018] [Accepted: 11/22/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND AIMS Intracranial stenosis (ICS), the common cause of ischemic stroke worldwide, is associated with a high risk of recurrent stroke. We aimed to investigate the relationship between arterial remodeling and antithyroid peroxidase-antibody (TPO-Ab) level in ICS and the effect of TPO-Ab level on the migration of vascular smooth muscle cells (VSMCs). METHODS We analyzed data of mild-to-severe ICS patients with normal thyroid function who underwent high-resolution magnetic resonance imaging in our center. Vessel area (VA), lumen area, wall area and plaque size were assessed at the most narrowed lumen (MNL) and reference site, respectively. The remodeling index (RI) was defined as VAMNL/VAreference. Negative remodeling (NR) or non-NR was defined as RI ≤ 0.95 or > 0.95. A scratch-wound healing assay was also designed to analyze the impact of TPO-Ab level on migration of VSMCs, which were isolated from thoracic aorta segments of Sprague Dawley rats. RESULTS A total of 88 patients were included. Patients with elevated TPO-Ab had smaller VA, wall area, plaque size and RI than those with normal level (p < 0.05). Elevated TPO-Ab was significantly associated with NR after adjusting for demographic and vascular risks (odds ratio 10.629, 95% confidence interval, 1.842-61.327, p = 0.008). The rate of VSMCs migration was significantly increased after culture with TPO-Ab (TPO-Ab 1 μg/ml vs. Mock, 29.8% vs. 12.0%, p < 0.01). CONCLUSIONS Elevated TPO-Ab in ICS patients was related to NR. TPO-Ab could promote VSMCs migration, which might be involved in the NR of intracranial artery.
Collapse
Affiliation(s)
- Xuting Zhang
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Ying Zhou
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Wenhong Ding
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Ruiting Zhang
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Shenqiang Yan
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Yujie Deng
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Feng Gao
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Min Lou
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China.
| |
Collapse
|
12
|
Chen X, Wang J, Liu Y, Yang Y, Zhou F, Li X, Zhang B, Zhao X. Proximal internal carotid artery stenosis associates with diffuse wall thickening in petrous arterial segment of moyamoya disease patients: a three-dimensional magnetic resonance vessel wall imaging study. Neuroradiology 2018; 61:29-36. [PMID: 30402746 DOI: 10.1007/s00234-018-2124-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 10/26/2018] [Indexed: 12/01/2022]
Abstract
PURPOSE To investigate the association between proximal internal carotid artery (ICA) luminal narrowing and diffuse wall thickening (DWT) in ipsilateral petrous ICA in moyamoya disease (MMD) patients. METHODS Forty-one MMD (mean age 42.8 ± 11.0 years, 19 males) and 36 atherosclerotic patients (mean age 61.5 ± 7.1 years, 31 males) and 41 healthy controls were recruited and underwent carotid MR vessel wall imaging. The luminal narrowing of proximal ICA was evaluated by the diameter ratio of ICA to common carotid artery (DRICA/CCA). The wall thickness of petrous ICA was measured on T1-VISTA images. The enhancement degree of petrous ICA was recorded and graded into four grades (none to marked) on the CE-T1-VISTA images. The correlation between wall thickness in petrous ICA and DRICA/CCA was analyzed. RESULTS: In total, 81 arteries of MMD patients and 64 arteries of atherosclerotic patients were included for analysis. The DRICA/CCA was significantly correlated with the wall thickness in petrous ICA in MMD (r = - 0.434, P < 0.001) and atherosclerotic groups (r = - 0.604, P < 0.001). Logistic regression analysis revealed that odds ratio (OR) of DRICA/CCA was 4.433 (95% CI 1.980-9.925, P < 0.001) and 2.212 (95% CI 1.253-3.905, P = 0.006) in MMD and atherosclerotic groups in discriminating petrous ICA DWT after adjusting for confounding factors. An increasing trend was found in prevalence of DWT and wall thickness with enhancement grades in petrous ICA in MMD (P = 0.02 and P = 0.01) and atherosclerotic groups (P < 0.001 and P < 0.001), respectively. CONCLUSIONS The proximal ICA luminal narrowing is significantly associated with wall thickness and diffuse wall thickening in ipsilateral petrous ICA in patients with carotid steno-occlusive diseases regardless of MMD or atherosclerosis.
Collapse
Affiliation(s)
- Xiaoyi Chen
- Department of Radiology, Beijing Geriatric Hospital, Beijing, China.,Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
| | - Jian Wang
- Department of Neurosurgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yang Liu
- Department of Radiology, The First People's Hospital of Yangzhou, Yangzhou, China
| | - Yongbo Yang
- Department of Neurosurgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Fei Zhou
- Department of Radiology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Xueping Li
- Department of Radiology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Bing Zhang
- Department of Radiology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Xihai Zhao
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
| |
Collapse
|
13
|
Patel A, Belykh E, Miller EJ, George LL, Martirosyan NL, Byvaltsev VA, Preul MC. MinION rapid sequencing: Review of potential applications in neurosurgery. Surg Neurol Int 2018; 9:157. [PMID: 30159201 PMCID: PMC6094492 DOI: 10.4103/sni.sni_55_18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 05/22/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Gene sequencing has played an integral role in the advancement and understanding of disease pathology and treatment. Although historically expensive and time consuming, new sequencing technologies improve our capability to obtain the genetic information in an accurate and timely manner. Within neurosurgery, gene sequencing is routinely used in the diagnosis and treatment of neurosurgical diseases, primarily for brain tumors. This paper reviews nanopore sequencing, an innovation utilized by MinION and outlines its potential use for neurosurgery. METHODS A literature search was conducted for publications containing the keywords of Oxford MinION, nanopore sequencing, brain tumor, glioma, whole genome sequencing (WGS), epigenomics, molecular neuropathology, and next-generation sequencing (NGS). In total, 64 articles were selected and used for this review. RESULTS The Oxford MinION nanopore sequencing technology has had successful applications within clinical microbiology, human genome sequencing, and cancer genotyping across multiple specialties. Technical details, methodology, and current use of MinION sequencing are discussed through the prism of potential applications to solve neurosurgery-related scientific and diagnostic questions. The MinION device has proven to provide rapid and accurate reads with longer read lengths when compared with NGS. For applications within neurosurgery, the MinION device is capable of providing critical diagnostic information for central nervous system (CNS) tumors within a single day. CONCLUSIONS MinION provides rapid and accurate gene sequencing with better affordability and convenience compared with current NGS methods. Widespread success of the MinION nanopore sequencing technology in providing accurate, rapid, and convenient gene sequencing suggests a promising future within research laboratories and to improve care for neurosurgical patients.
Collapse
Affiliation(s)
- Arpan Patel
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
- College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Evgenii Belykh
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
- Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
| | - Eric J. Miller
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
- College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Laeth L. George
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
- College of Medicine-Phoenix, University of Arizona, Phoenix, Arizona, USA
| | - Nikolay L. Martirosyan
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Vadim A. Byvaltsev
- Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
| | - Mark C. Preul
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| |
Collapse
|
14
|
Houba A, Laaribi N, Meziane M, Jaafari A, Abouelalaa K, Bensghir M. Moyamoya disease in a Moroccan baby: a case report. J Med Case Rep 2018; 12:165. [PMID: 29895322 PMCID: PMC5998455 DOI: 10.1186/s13256-018-1642-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 03/06/2018] [Indexed: 11/16/2022] Open
Abstract
Background A stroke in a baby is uncommon, recent studies suggested that their incidence is rising. Moyamoya disease is one of the leading causes of stroke in babies. This condition is mostly described in Japan. In Morocco, moyamoya disease has rarely been reported and a few cases were published. We report a rare Moroccan case of a 23-month-old baby boy who presented with left-sided hemiparesis and was diagnosed as having moyamoya disease. Case presentation A 23-month-old full-term Moroccan baby boy born to a non-consanguineous couple was referred to our hospital with the complaint of sudden onset left-sided hemiparesis. On neurological examination, there were no signs of meningeal irritation, his gait was hemiplegic, tone was decreased over left side, power was 2/5 over left upper and lower limb, and deep tendon reflexes were exaggerated. Preliminary neuroimaging suggested an arterial ischemic process. Clinical and laboratory evaluation excluded hematologic, metabolic, and vasculitic causes. Cerebral angiography confirmed the diagnosis of moyamoya disease. Our patient was treated with acetylsalicylic acid 5 mg/kg per day and referred to follow-up with pediatric neurosurgeon. Cerebral revascularization surgery using encephaloduroarteriosynangiosis was performed. At 8-month follow-up, his hemiparesis had improved and no further ischemic events had occurred. Conclusion This case highlights the importance of considering moyamoya disease to be one of the classic etiologies of acute ischemic strokes in children from North Africa. It also emphasizes the rare presentation among the African population and the use of neurovascular imaging techniques to facilitate diagnosis of moyamoya disease.
Collapse
Affiliation(s)
- Abdelhafid Houba
- Department of Anesthesiology, Military Hospital Mohammed V Rabat, Faculty of Medicine and Pharmacy, University of Mohammed V, Souissi, district Riyadh, BP: 1000, Rabat, Morocco.
| | - Nisrine Laaribi
- Department of Pediatric, Children's Hospital Rabat, Faculty of Medicine and Pharmacy, University of Mohammed V, Souissi, Rabat, Morocco
| | - Mohammed Meziane
- Department of Anesthesiology, Military Hospital Mohammed V Rabat, Faculty of Medicine and Pharmacy, University of Mohammed V, Souissi, district Riyadh, BP: 1000, Rabat, Morocco
| | - Abdelhamid Jaafari
- Department of Anesthesiology, Military Hospital Mohammed V Rabat, Faculty of Medicine and Pharmacy, University of Mohammed V, Souissi, district Riyadh, BP: 1000, Rabat, Morocco
| | - Khalil Abouelalaa
- Department of Anesthesiology, Military Hospital Mohammed V Rabat, Faculty of Medicine and Pharmacy, University of Mohammed V, Souissi, district Riyadh, BP: 1000, Rabat, Morocco
| | - Mustapha Bensghir
- Department of Anesthesiology, Military Hospital Mohammed V Rabat, Faculty of Medicine and Pharmacy, University of Mohammed V, Souissi, district Riyadh, BP: 1000, Rabat, Morocco
| |
Collapse
|
15
|
Tortora D, Severino M, Pacetti M, Morana G, Mancardi MM, Capra V, Cama A, Pavanello M, Rossi A. Noninvasive Assessment of Hemodynamic Stress Distribution after Indirect Revascularization for Pediatric Moyamoya Vasculopathy. AJNR Am J Neuroradiol 2018; 39:1157-1163. [PMID: 29674415 DOI: 10.3174/ajnr.a5627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/14/2018] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Indirect revascularization surgery is an effective treatment in children with Moyamoya vasculopathy. In the present study, we hypothesized that DSC-PWI may reliably assess the evolution of CBF-related parameters after revascularization surgery, monitoring the outcome of surgical pediatric patients with Moyamoya vasculopathy. Thus, we aimed to evaluate differences in DSC-PWI parameters, including the hemodynamic stress distribution, in surgical and nonsurgical children with Moyamoya vasculopathy and to correlate them with long-term postoperative outcome. MATERIALS AND METHODS Pre- and postoperative DSC parameters of 28 patients (16 females; mean age, 5.5 ± 4.8 years) treated with indirect revascularization were compared with those obtained at 2 time points in 10 nonsurgical patients (6 females; mean age, 6.9 ± 4.7 years). We calculated 4 normalized CBF-related parameters and their percentage variance: mean normalized CBF of the MCA territory, mean normalized CBF of the proximal MCA territory, mean normalized CBF of cortical the MCA territory, and hemodynamic stress distribution. The relationship between perfusion parameters and postoperative outcomes (poor, fair, good, excellent) was explored using 1-way analysis of covariance (P < .05). RESULTS A significant decrease of the mean normalized CBF of the proximal MCA territory and hemodynamic stress distribution and an increase of the mean normalized CBF of the cortical MCA territory were observed after revascularization surgery (P < .001). No variations were observed in nonsurgical children. Postoperative hemodynamic stress distribution and its percentage change were significantly different in outcome groups (P < .001). CONCLUSIONS DSC-PWI indices show postoperative hemodynamic changes that correlate with clinical outcome after revascularization surgery in children with Moyamoya disease.
Collapse
Affiliation(s)
- D Tortora
- From the Neuroradiology (D.T., M.S., G.M., A.R.)
| | - M Severino
- From the Neuroradiology (D.T., M.S., G.M., A.R.)
| | - M Pacetti
- Neurosurgery (M.P., V.C., A.C., M.P.)
| | - G Morana
- From the Neuroradiology (D.T., M.S., G.M., A.R.)
| | - M M Mancardi
- Neuropsychiatry Units (M.M.M.), Istituto Giannina Gaslini, Genoa, Italy
| | - V Capra
- Neurosurgery (M.P., V.C., A.C., M.P.)
| | - A Cama
- Neurosurgery (M.P., V.C., A.C., M.P.)
| | | | - A Rossi
- From the Neuroradiology (D.T., M.S., G.M., A.R.)
| |
Collapse
|
16
|
Abstract
Over the last decades, the importance of inflammatory processes in pediatric stroke have become increasingly evident. Ischemia launches a cascade of events: activation and inhibition of inflammation by a large network of cytokines, adhesion and small molecules, protease, and chemokines. There are major differences in the neonatal brain compared to adult brain, but developmental trajectories of the process during childhood are not yet well known. In neonatal stroke ischemia is the leading pathophysiology, but infectious and inflammatory processes have a significant input into the course and degree of tissue damage. In childhood, beside inflammation lanced by ischemia itself, the event of ischemia might be provoked by an underlying inflammatory pathophysiology: transient focal arteriopathy, dissection, sickle cell anemia, Moyamoya and more generalized in meningitides, generalized vasculitis or genetic arteriopathies (as in ADA2). Focal inflammatory reactions tend to be located in the distal part of the carotid artery or the proximal medial arteries, but generalized processes rather tend to affect the small arteries.
Collapse
|