1
|
Asken BM. Author response: Concussion Biomarkers Assessed in Collegiate Student-Athletes (BASICS) I: Normative study. Neurology 2019; 93:565. [DOI: 10.1212/wnl.0000000000008144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
2
|
Satyarthee GD. Reader response: Concussion Biomarkers Assessed in Collegiate Student-Athletes (BASICS) I: Normative study. Neurology 2019; 93:564-565. [DOI: 10.1212/wnl.0000000000008145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
3
|
Ganau M, Syrmos N, Paris M, Ganau L, Ligarotti GKI, Moghaddamjou A, Chibbaro S, Soddu A, Ambu R, Prisco L. Current and Future Applications of Biomedical Engineering for Proteomic Profiling: Predictive Biomarkers in Neuro-Traumatology. MEDICINES 2018; 5:medicines5010019. [PMID: 29401743 PMCID: PMC5874584 DOI: 10.3390/medicines5010019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 12/18/2022]
Abstract
This systematic review aims to summarize the impact of nanotechnology and biomedical engineering in defining clinically meaningful predictive biomarkers in patients with traumatic brain injury (TBI), a critical worldwide health problem with an estimated 10 billion people affected annually worldwide. Data were collected through a review of the existing English literature performed on Scopus, MEDLINE, MEDLINE in Process, EMBASE, and/or Cochrane Central Register of Controlled Trials. Only experimental articles revolving around the management of TBI, in which the role of new devices based on innovative discoveries coming from the field of nanotechnology and biomedical engineering were highlighted, have been included and analyzed in this study. Based on theresults gathered from this research on innovative methods for genomics, epigenomics, and proteomics, their future application in this field seems promising. Despite the outstanding technical challenges of identifying reliable biosignatures for TBI and the mixed nature of studies herein described (single cells proteomics, biofilms, sensors, etc.), the clinical implementation of those discoveries will allow us to gain confidence in the use of advanced neuromonitoring modalities with a potential dramatic improvement in the management of those patients.
Collapse
Affiliation(s)
- Mario Ganau
- Department of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, ON M5T 2S8, Canada.
- School of Medicine, University of Cagliari, 09124 Cagliari, Italy.
| | - Nikolaos Syrmos
- School of Medicine, Aristotle University of Thessaloniki, 54623 Thessaloniki, Greece.
| | - Marco Paris
- National Hospital for Neurology and Neurosurgery, University College London, London WC1N 3BG, UK.
| | - Laura Ganau
- School of Medicine, University of Cagliari, 09124 Cagliari, Italy.
| | | | - Ali Moghaddamjou
- Department of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, ON M5T 2S8, Canada.
| | - Salvatore Chibbaro
- Division of Neurosurgery, University of Strasbourg, 67000 Strasbourg, France.
| | - Andrea Soddu
- Brain and Mind Institute, Physics & Astronomy Department, Western University, London, ON N6A 3K7, Canada.
| | - Rossano Ambu
- School of Medicine, University of Cagliari, 09124 Cagliari, Italy.
| | - Lara Prisco
- John Radcliffe Hospital, Oxford University, Oxford OX3 9DU, UK.
| |
Collapse
|