1
|
Joshi R, Sharma A, Kulshreshtha R. Noncoding RNA landscape and their emerging roles as biomarkers and therapeutic targets in meningioma. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200782. [PMID: 38596289 PMCID: PMC10951709 DOI: 10.1016/j.omton.2024.200782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Meningiomas are among the most prevalent primary CNS tumors in adults, accounting for nearly 38% of all brain neoplasms. The World Health Organization (WHO) grade assigned to meningiomas guides medical care in patients and is primarily based on tumor histology and malignancy potential. Although often considered benign, meningiomas with complicated histology, limited accessibility for surgical resection, and/or higher malignancy potential (WHO grade 2 and WHO grade 3) are harder to combat, resulting in significant morbidity. With limited treatment options and no systemic therapies, it is imperative to understand meningioma tumorigenesis at the molecular level and identify novel therapeutic targets. The last decade witnessed considerable progress in understanding the noncoding RNA landscape of meningioma, with microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) emerging as molecular entities of interest. This review aims to highlight the commonly dysregulated miRNAs and lncRNAs in meningioma and their correlation with meningioma progression, malignancy, recurrence, and radioresistance. The role of "key" miRNAs as biomarkers and their therapeutic potential has also been reviewed in detail. Furthermore, current and emerging therapeutic modalities for meningioma have been discussed, with emphasis on the need to identify and subsequently employ clinically relevant miRNAs and lncRNAs as novel therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Ritanksha Joshi
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Anuja Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
2
|
Ma J, Li D, Hong Y, Zhang Y, Song L, Chen L, Chen Y, Zhang J, Wu Z, Zhang D, Wang L. Different clinical and cytogenetic features of primary skull base meningiomas and non-skull base meningiomas. J Neurooncol 2023:10.1007/s11060-023-04351-1. [PMID: 37266847 DOI: 10.1007/s11060-023-04351-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
PURPOSE To investigate the different clinical and cytogenetic features of skull base meningiomas (SBMs) and non-SBMs (NSBMs). METHODS We conducted a retrospective study on a series of 316 patients with primary intracranial meningiomas. The t-test and the Chi-square test were used to analyze the differences between 194 SBMs and 122 NSBMs. The Cox analysis was used to determine prognostic factors for tumor recurrence. RESULTS Compared with NSBMs, on average, the age of patients with SBMs was about 2.88 years younger (p = 0.024); the duration of operation of SBMs was 2.73 h longer (p < 0.001); the duration of hospital stays of patients with SBMs was about 6.76 days longer (p < 0.001); the tumor volume was 7.69 cm3 smaller (p = 0.025); the intraoperative blood loss was 147.61ml more (p = 0.039); the total cost of SBMs was 1.39 times more (p < 0.001); the preoperative KPS, postoperative KPS, and follow-up KPS of patients with SBMs were all respectively lower (p < 0.001); Gross total resection was less achieved (p < 0.001). SBMs (average of 20.80 per sample) had a smaller total number of copy number variations (CNVs) than NSBMs (29.98 per sample) (p = 0.009). Extremely large CNVs (> 5 Mb) were more likely to present in NSBMs (p < 0.001). Cox analysis showed that subtotal resection (p = 0.002) and the total number of CNVs (p = 0.015) were independent risk factors for tumor recurrence. CONCLUSIONS The clinical and cytogenetic features of SBMs were different from NSBMs. Moreover, the degree of resection and the total number of whole-genome CNVs were independent prognostic factors for tumor recurrence.
Collapse
Affiliation(s)
- Junpeng Ma
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Da Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yaqiang Hong
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lairong Song
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Liangpeng Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yujia Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Junting Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhen Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dake Zhang
- Key Laboratory of Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Ministry of Education, Beihang University, Beijing, China
| | - Liang Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- , No.119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
3
|
Paths of Evolution of Progressive Anaplastic Meningiomas: A Clinical and Molecular Pathology Study. J Pers Med 2023; 13:jpm13020206. [PMID: 36836440 PMCID: PMC9965923 DOI: 10.3390/jpm13020206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023] Open
Abstract
Grade 3 meningiomas are rare malignant tumors that can originate de novo or from the progression of lower grade meningiomas. The molecular bases of anaplasia and progression are poorly known. We aimed to report an institutional series of grade 3 anaplastic meningiomas and to investigate the evolution of molecular profile in progressive cases. Clinical data and pathologic samples were retrospectively collected. VEGF, EGFR, EGFRvIII, PD-L1; and Sox2 expression; MGMT methylation status; and TERT promoter mutation were assessed in paired meningioma samples collected from the same patient before and after progression using immunohistochemistry and PCR. Young age, de novo cases, origin from grade 2 in progressive cases, good clinical status, and unilateral side, were associated with more favorable outcomes. In ten progressive meningiomas, by comparing molecular profile before and after progression, we identified two subgroups of patients, one defined by Sox2 increase, suggesting a stem-like, mesenchymal phenotype, and another defined by EGFRvIII gain, suggesting a committed progenitor, epithelial phenotype. Interestingly, cases with Sox2 increase had a significantly shortened survival compared to those with EGFRvIII gain. PD-L1 increase at progression was also associated with worse prognosis, portending immune escape. We thus identified the key drivers of meningioma progression, which can be exploited for personalized treatments.
Collapse
|
4
|
Meningioma-Brain Crosstalk: A Scoping Review. Cancers (Basel) 2021; 13:cancers13174267. [PMID: 34503077 PMCID: PMC8428351 DOI: 10.3390/cancers13174267] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Background: In recent years, it has become evident that the tumoral microenvironment (TME) plays a key role in the pathogenesis of various cancers. In meningiomas, however, the TME is poorly understood, and it is unknown if glia cells contribute to meningioma growth and behaviour. Objective: This scoping review investigates if the literature describes and substantiates tumour-brain crosstalk in meningiomas and summarises the current evidence regarding the role of the brain parenchyma in the pathogenesis of meningiomas. Methods: We identified studies through the electronic database PubMed. Articles describing glia cells and cytokines/chemokines in meningiomas were selected and reviewed. Results: Monocytes were detected as the most abundant infiltrating immune cells in meningiomas. Only brain-invasive meningiomas elicited a monocytic response at the tumour-brain interface. The expression of cytokines/chemokines in meningiomas has been studied to some extent, and some of them form autocrine loops in the tumour cells. Paracrine interactions between tumour cells and glia cells have not been explored. Conclusion: It is unknown to what extent meningiomas elicit an immune response in the brain parenchyma. We speculate that tumour-brain crosstalk might only be relevant in cases of invasive meningiomas that disrupt the pial-glial basement membrane.
Collapse
|
5
|
Kim TH, Lee HS, Oh SJ, Hwang CW, Jung WK. Phlorotannins ameliorate extracellular matrix production in human vocal fold fibroblasts and prevent vocal fold fibrosis via aerosol inhalation in a laser-induced fibrosis model. J Tissue Eng Regen Med 2020; 14:1918-1928. [PMID: 33049121 DOI: 10.1002/term.3140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/18/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022]
Abstract
Vocal fold fibrosis is an abnormal condition characterized by unfavorable changes in the organization of the extracellular matrix in vocal fold lamina propria. To prevent and treat vocal fold fibrosis, a number of synthetic drugs, such as mitomycin C and the glucocorticoid family, are used after surgery, but these are known to have some side effects. Therefore, using both in vitro and in vivo studies, this study investigated whether phlorotannins extracted from Ecklonia cava have the potential to prevent vocal fold fibrosis with minimal side effects. The results show that phlorotannins suppressed both the expression of the fibrotic phenotypic marker and cell migration by inhibiting the activation of the mitogen-activated protein kinase (MAPK) and Smad2/3 signaling pathways in human vocal fold fibroblasts stimulated by transforming growth factor-β. Additionally, phlorotannins exhibited antifibrotic efficacy without an excessive inflammatory response in a laser-induced fibrosis rabbit model when delivered as an aerosol via inhalation. Based on these results, phlorotannins should be considered a promising candidate for use in the prevention of vocal fold fibrosis.
Collapse
Affiliation(s)
- Tae-Hee Kim
- Department of Biomedical Engineering and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, Republic of Korea
| | - Hyoung Shin Lee
- Department of Otolaryngology-Head and Neck Surgery, Kosin University College of Medicine, Busan, Republic of Korea
| | - Sun-Ju Oh
- Department of Pathology, Kosin University College of Medicine, Busan, Republic of Korea
| | - Chi-Woo Hwang
- Department of Otolaryngology-Head and Neck Surgery, Kosin University College of Medicine, Busan, Republic of Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
6
|
Zhang X, Zhang G, Huang H, Li H, Lin S, Wang Y. Differentially Expressed MicroRNAs in Radioresistant and Radiosensitive Atypical Meningioma: A Clinical Study in Chinese Patients. Front Oncol 2020; 10:501. [PMID: 32426270 PMCID: PMC7203448 DOI: 10.3389/fonc.2020.00501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 03/19/2020] [Indexed: 12/12/2022] Open
Abstract
Background: For atypical meningiomas (AMs), the combination of gross total resection (GTR) and adjuvant radiotherapy (ART) is still a controversial therapeutic strategy to improve prognosis. This study analyzed the factors influencing the prognosis on AM patients treated with GTR + ART by investigating both clinical characteristics and the change in microRNA (miRNA) expression. Materials and Methods: Adult AM patients who were admitted to the Tiantan hospital from 2008 to 2015 and underwent GTR + ART were included. Patients who suffered recurrence within 3 years after operation were considered radioresistant, while the others were considered radiosensitive. Clinical characterizations were compared between these two groups. The microRNA (miRNA) expression was detected via miRNA microarray in 10 patients, five from the radiosensitive group and from the radioresistant group. Results: A total of 55 cases were included in this study. No significant difference was found in the clinical characteristics (gender, age, tumor location, tumor size, peritumoral brain edema, and Ki-67 index) between radiosensitive and radioresistant patients. We found seven significantly upregulated miRNAs (miR-4286, miR-4695-5p, miR-6732-5p, miR-6855-5p, miR-7977, miR-6765-3p, miR-6787-5p) and seven significantly downregulated miRNAs (miR-1275, miR-30c-1-3p, miR-4449, miR-4539, miR-4684-3p, miR-6129, miR-6891-5p) in patients resistant to radiotherapy. The differentially expressed miRNAs were enriched mostly in the fatty acid metabolic pathways (hsa00061, hsa01212) and transforming growth factor beta signaling pathway (hsa04350). Conclusion: For AM patients treated with GTR + ART, the changes in miRNA expression discovered in this study may be a potential predictor of individual sensitivity to adjuvant radiotherapy. Further research is needed regarding the predictive power and mechanism by which these miRNAs influence prognosis.
Collapse
Affiliation(s)
- Xiaokang Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guobin Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huawei Huang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Haoyi Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Song Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yonggang Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Innate and Adaptive Immunity Linked to Recognition of Antigens Shared by Neural Crest-Derived Tumors. Cancers (Basel) 2020; 12:cancers12040840. [PMID: 32244473 PMCID: PMC7226441 DOI: 10.3390/cancers12040840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/21/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022] Open
Abstract
In the adult, many embryologic processes can be co-opted by during cancer progression. The mechanisms of divisions, migration, and the ability to escape immunity recognition linked to specific embryo antigens are also expressed by malignant cells. In particular, cells derived from neural crests (NC) contribute to the development of multiple cell types including melanocytes, craniofacial cartilage, glia, neurons, peripheral and enteric nervous systems, and the adrenal medulla. This plastic performance is due to an accurate program of gene expression orchestrated with cellular/extracellular signals finalized to regulate long-distance migration, proliferation, differentiation, apoptosis, and survival. During neurulation, prior to initiating their migration, NC cells must undergo an epithelial–mesenchymal transition (EMT) in which they alter their actin cytoskeleton, lose their cell–cell junctions, apicobasal polarity, and acquire a motile phenotype. Similarly, during the development of the tumors derived from neural crests, comprising a heterogeneous group of neoplasms (Neural crest-derived tumors (NCDTs)), a group of genes responsible for the EMT pathway is activated. Here, retracing the molecular pathways performed by pluripotent cells at the boundary between neural and non-neural ectoderm in relation to the natural history of NCDT, points of contact or interposition are highlighted to better explain the intricate interplay between cancer cells and the innate and adaptive immune response.
Collapse
|
8
|
Low Expression of Phosphatase and Tensin Homolog and High Expression of Ki-67 as Risk Factors of Prognosis in Cranial Meningiomas. World Neurosurg 2019; 136:e196-e203. [PMID: 31887465 DOI: 10.1016/j.wneu.2019.12.108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To investigate the expression characteristics, correlations with clinical factors, and prognostic values of phosphatase and tensin homolog (PTEN) and Ki-67 in cranial meningiomas. METHODS The expression of PTEN and Ki-67 at the mRNA level was analyzed in 34 frozen meningiomas. Clinical data collection, follow-up, correlations, and survival analyses were performed. RESULTS Twenty-two men and 12 women were included in the study, with a median age of 52.72 ± 11.72 years on admission. The average expression levels of PTEN and Ki-67 were 2.71 ± 1.73 and 0.50 ± 0.57, respectively. The World Health Organization grade III meningiomas exhibited significantly lower levels of PTEN (P = 0.037), whereas grade I meningiomas expressed significantly lower levels of Ki-67 (P = 0.001). For recurrent lesions, the mean Ki-67 expression level was 0.97 ± 0.76, which was significantly greater than that of primary meningiomas with a mean value of 0.25 ± 0.13 (P < 0.001). The Ki-67 expression level was positively correlated with the tumor volume (P < 0.01) and negatively correlated with preoperative Karnofsky Performance Status scale (KPS, P < 0.01), postoperative KPS (P < 0.05), and follow-up KPS (P < 0.01). However, the PTEN expression level did not correlate with these variables. Based on the multivariate Cox analysis, Ki-67 expression level (P < 0.001, hazard ratio [HR] 8.16, 95% confidence interval [CI] 2.86-23.29), and PTEN expression level (P = 0.018, HR 0.47, 95% CI 0.25-0.88) were independent prognostic factors for tumor recurrence. Ki-67 (P = 0.001, HR 19.73, 95% CI 3.65-106.61) and PTEN expression levels (P = 0.024, HR 0.36, 95% CI 0.15-0.88) were also independent prognostic factors for mortality. CONCLUSIONS A low PTEN expression and a high Ki-67 expression could predict malignancy in cranial meningiomas.
Collapse
|
9
|
Linear Accelerator-Based Radiosurgery of Grade I Intracranial Meningiomas. World Neurosurg X 2019; 3:100027. [PMID: 31225520 PMCID: PMC6584458 DOI: 10.1016/j.wnsx.2019.100027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/18/2019] [Indexed: 11/20/2022] Open
Abstract
Objective To determine the local control rate and complication rate in the treatment of grade I intracranial meningiomas. Methods A retrospective study was performed of patients with grade I meningioma who received radiosurgery with a dedicated linear accelerator from January 2002 to August 2012 with a minimum follow-up of 2 years. We performed descriptive statistics, logistic regression, and progression-free survival analysis through a Kaplan-Meier curve. Results Seventy-five patients with 78 grade I meningiomas received radiosurgery, 39 underwent surgery plus adjuvant radiosurgery, and 36 only radiosurgery. The follow-up median time was 68 months (range, 35–120 months). The tumor control rate was 93%, the 5-year progression-free survival was 92% (95% confidence interval, 77%–98%). Acute toxicity was 2.6%, and grade 1–2 late toxicity was 26.6%. Postradiosurgery edema was the main late morbidity. Age >55 years was the only significant factor for attaining a response >75%. The background of surgery before radiosurgery was the only significant prognostic factor for showing edema (odds ratio 5.78 [95% confidence interval, 2.14–15.64]). Conclusions The local control rate attained in our series is similar to that reported in other series worldwide; the acute toxicity rate was low and late toxicity was moderate.
Collapse
|
10
|
Ma J, Li D, Chen Y, Zhang Y, Song L, Tian K, Yang Y, Chen L, Weng J, Cao X, Hao S, Wang L, Wu Z, Zhang J. Low Transforming Growth Factor–β3 Expression Predicts Tumor Malignancy in Meningiomas. World Neurosurg 2019; 125:e353-e360. [DOI: 10.1016/j.wneu.2019.01.077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 10/27/2022]
|
11
|
Viaene AN, Zhang B, Martinez-Lage M, Xiang C, Tosi U, Thawani JP, Gungor B, Zhu Y, Roccograndi L, Zhang L, Bailey RL, Storm PB, O’Rourke DM, Resnick AC, Grady MS, Dahmane N. Transcriptome signatures associated with meningioma progression. Acta Neuropathol Commun 2019; 7:67. [PMID: 31039818 PMCID: PMC6489307 DOI: 10.1186/s40478-019-0690-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 12/12/2022] Open
Abstract
Meningiomas are the most common primary brain tumor of adults. The majority are benign (WHO grade I), with a mostly indolent course; 20% of them (WHO grade II and III) are, however, considered aggressive and require a more complex management. WHO grade II and III tumors are heterogeneous and, in some cases, can develop from a prior lower grade meningioma, although most arise de novo. Mechanisms leading to progression or implicated in de novo grade II and III tumorigenesis are poorly understood. RNA-seq was used to profile the transcriptome of grade I, II, and III meningiomas and to identify genes that may be involved in progression. Bioinformatic analyses showed that grade I meningiomas that progress to a higher grade are molecularly different from those that do not. As such, we identify GREM2, a regulator of the BMP pathway, and the snoRNAs SNORA46 and SNORA48, as being significantly reduced in meningioma progression. Additionally, our study has identified several novel fusion transcripts that are differentially present in meningiomas, with grade I tumors that did not progress presenting more fusion transcripts than all other tumors. Interestingly, our study also points to a difference in the tumor immune microenvironment that correlates with histopathological grade.
Collapse
|
12
|
Ullah I, Sun W, Tang L, Feng J. Roles of Smads Family and Alternative Splicing Variants of Smad4 in Different Cancers. J Cancer 2018; 9:4018-4028. [PMID: 30410607 PMCID: PMC6218760 DOI: 10.7150/jca.20906] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 08/20/2018] [Indexed: 12/15/2022] Open
Abstract
Transforming Growth Factor β (TGF-β) is one of the most common secretory proteins which are recognized by membrane receptors joined to transcription regulatory factor. TGF-β signals are transduced by the Smads family that regulate differentiation, proliferation, early growth, apoptosis, homeostasis, and tumor development. Functional study of TGF-β signaling pathway and Smads role is vital for certain diseases such as cancer. Alternative splicing produces a diverse range of protein isoforms with unique function and the ability to react differently with various pharmaceutical products. This review organizes to describe the general study of Smads family, the process of alternative splicing, the general aspect of alternative splicing of Smad4 in cancer and the possible use of spliceoforms for the diagnosis and therapeutic purpose. The main aim and objective of this article are to highlight some particular mechanisms involving in alternatives splicing of cancer and also to demonstrate new evidence about alternative splicing in different steps given cancer initiation and progression.
Collapse
Affiliation(s)
- Irfan Ullah
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Weichao Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|