1
|
Sollmann N, Fuderer M, Crameri F, Weingärtner S, Baeßler B, Gulani V, Keenan KE, Mandija S, Golay X, deSouza NM. Color Maps: Facilitating the Clinical Impact of Quantitative MRI. J Magn Reson Imaging 2024. [PMID: 39180202 DOI: 10.1002/jmri.29573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024] Open
Abstract
Presenting quantitative data using non-standardized color maps potentially results in unrecognized misinterpretation of data. Clinically meaningful color maps should intuitively and inclusively represent data without misleading interpretation. Uniformity of the color gradient for color maps is critically important. Maximal color and lightness contrast, readability for color vision-impaired individuals, and recognizability of the color scheme are highly desirable features. This article describes the use of color maps in five key quantitative MRI techniques: relaxometry, diffusion-weighted imaging (DWI), dynamic contrast-enhanced (DCE)-MRI, MR elastography (MRE), and water-fat MRI. Current display practice of color maps is reviewed and shortcomings against desirable features are highlighted. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Miha Fuderer
- Radiotherapy, Division Imaging and Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Sebastian Weingärtner
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Bettina Baeßler
- Department of Diagnostic and Interventional Radiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Vikas Gulani
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kathryn E Keenan
- Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado, USA
| | - Stefano Mandija
- Radiotherapy, Division Imaging and Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Xavier Golay
- Queen Square Institute of Neurology, University College London, London, UK
- Gold Standard Phantoms, Sheffield, UK
- Bioxydyn, Manchester, UK
| | - Nandita M deSouza
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| |
Collapse
|
2
|
Kram L, Schroeder A, Meyer B, Krieg SM, Ille S. Function-guided differences of arcuate fascicle and inferior fronto-occipital fascicle tractography as diagnostic indicators for surgical risk stratification. Brain Struct Funct 2024:10.1007/s00429-024-02787-3. [PMID: 38597941 DOI: 10.1007/s00429-024-02787-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/05/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Several patients with language-eloquent gliomas face language deterioration postoperatively. Persistent aphasia is frequently associated with damage to subcortical language pathways. Underlying mechanisms still need to be better understood, complicating preoperative risk assessment. This study compared qualitative and quantitative functionally relevant subcortical differences pre- and directly postoperatively in glioma patients with and without aphasia. METHODS Language-relevant cortical sites were defined using navigated transcranial magnetic stimulation (nTMS) language mapping in 74 patients between 07/2016 and 07/2019. Post-hoc nTMS-based diffusion tensor imaging tractography was used to compare a tract's pre- and postoperative visualization, volume and fractional anisotropy (FA), and the preoperative distance between tract and lesion and postoperative overlap with the resection cavity between the following groups: no aphasia (NoA), tumor- or previous resection induced aphasia persistent pre- and postoperatively (TIA_P), and surgery-induced transient or permanent aphasia (SIA_T or SIA_P). RESULTS Patients with NoA, TIA_P, SIA_T, and SIA_P showed distinct fasciculus arcuatus (AF) and inferior-fronto-occipital fasciculus (IFOF) properties. The AF was more frequently reconstructable, and the FA of IFOF was higher in NoA than TIA_P cases (all p ≤ 0.03). Simultaneously, SIA_T cases showed higher IFOF fractional anisotropy than TIA_P cases (p < 0.001) and the most considerable AF volume loss overall. While not statistically significant, the four SIA_P cases showed complete loss of ventral language streams postoperatively, the highest resection-cavity-AF-overlap, and the shortest AF to tumor distance. CONCLUSION Functionally relevant qualitative and quantitative differences in AF and IFOF provide a pre- and postoperative pathophysiological and clinically relevant diagnostic indicator that supports surgical risk stratification.
Collapse
Affiliation(s)
- Leonie Kram
- Department of Neurosurgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
- Department of Neurosurgery, Heidelberg University Hospital, Ruprecht-Karls-University, Heidelberg, Germany
| | - Axel Schroeder
- Department of Neurosurgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
- Department of Neurosurgery, Heidelberg University Hospital, Ruprecht-Karls-University, Heidelberg, Germany
| | - Sebastian Ille
- Department of Neurosurgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany.
- Department of Neurosurgery, Heidelberg University Hospital, Ruprecht-Karls-University, Heidelberg, Germany.
| |
Collapse
|
3
|
Boerner C, Schroeder A, Meyer B, Krieg SM, Ille S. Cortical Location of Language Function May Differ between Languages While White Matter Pathways Are Similar in Brain Lesion Patients. Brain Sci 2023; 13:1141. [PMID: 37626496 PMCID: PMC10452579 DOI: 10.3390/brainsci13081141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
The neural representation of language can be identified cortically using navigated repetitive transcranial magnetic stimulation and subcortically using the fiber tracking of diffusion tensor imaging. We investigated how cortical locations of language and language-eloquent white matter pathways differ in 40 brain lesion patients speaking various languages. Error rates related to stimulations at single sites in the frontal and parietal lobe differed significantly between Balto-Slavic and Indo-European languages. Error rates related to stimulations at single sites in the temporal lobe differed significantly between bilingual individuals. No differences were found in the white matter language pathway volumes between Balto-Slavic and Indo-European languages nor between bilingual patients. These original and exploratory data indicate that the underlying subcortical structure might be similar across languages, with initially observed differences in the cortical location of language depending on the semantic processing, but these could not be confirmed using detailed statistical analyses pointing at a similar cortical and subcortical network.
Collapse
Affiliation(s)
- Corinna Boerner
- Department of Neurosurgery, Klinikum rechts der Isar, School of Medicine, Technical University Munich, 81675 Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, School of Medicine, Technical University Munich, 81675 Munich, Germany
| | - Axel Schroeder
- Department of Neurosurgery, Klinikum rechts der Isar, School of Medicine, Technical University Munich, 81675 Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, School of Medicine, Technical University Munich, 81675 Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum rechts der Isar, School of Medicine, Technical University Munich, 81675 Munich, Germany
| | - Sandro M. Krieg
- Department of Neurosurgery, Klinikum rechts der Isar, School of Medicine, Technical University Munich, 81675 Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, School of Medicine, Technical University Munich, 81675 Munich, Germany
| | - Sebastian Ille
- Department of Neurosurgery, Klinikum rechts der Isar, School of Medicine, Technical University Munich, 81675 Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, School of Medicine, Technical University Munich, 81675 Munich, Germany
| |
Collapse
|
4
|
Soto JM, Nguyen AV, van Zyl JS, Huang JH. Outcomes After Supratentorial Craniotomy for Primary Malignant Brain Tumor Resection in Adult Patients: A National Surgical Quality Improvement Program Analysis. World Neurosurg 2023; 175:e780-e789. [PMID: 37061032 DOI: 10.1016/j.wneu.2023.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/17/2023]
Abstract
BACKGROUND The rate of complications remains significant after craniotomy for supratentorial primary malignant brain tumors despite recent advances. OBJECTIVE The goal of this study is to characterize factors associated with these complications. METHODS Data were extracted from the National Surgical Quality Improvement Program database from 2016 to 2019. Patients who underwent a craniotomy for resection of supratentorial primary malignant brain tumors were included. Covariates included demographics/comorbidities, preoperative laboratory values, American Society of Anesthesiologists (ASA) classification, operative time, and postoperative complications. Multivariable logistic regression with backward and forward selection was used to evaluate independent predictors of death, prolonged hospitalization, postoperative stroke with neurologic deficit (CVA), and unplanned readmission. Predictive fit of the model was evaluated using the area under the receiver operating curve (AUC). RESULTS Of 8965 included cases, the 30-day postoperative risks were 1.9% for CVA, 10.1% for unplanned readmission, 1.2% for prolonged hospitalization, and 2.4% for death. Age, ASA category, disseminated cancer, preoperative functional dependence, and postoperative respiratory complications were predictors of 30-day mortality (AUC, 0.83; P < 0.001). CVA was best predicted by increased operation time (P < 0.001), age, ASA category, and recent weight loss (AUC, 0.63; P = 0.009). Prolonged hospitalization was predicted by nonelective surgery status, time from admission to surgery, reintubation, and postoperative sepsis (AUC, 0.78; P < 0.001). Unplanned readmission was predicted by chronic steroid use, postoperative thrombotic complications after surgery, organ/space surgical site infection, deep vein thrombosis, postoperative systemic sepsis, and septic shock (AUC, 0.68; P < 0.001). CONCLUSIONS Our study identifies predictors of major 30-day complications after craniotomy for this subset of patients with brain tumor.
Collapse
Affiliation(s)
- Jose M Soto
- Department of Neurosurgery, Baylor Scott & White Health, Scott and White Medical Center, Temple, Texas, USA; Department of Surgery, Texas A&M University College of Medicine, Temple, Texas, USA
| | - Anthony V Nguyen
- Department of Neurosurgery, Baylor Scott & White Health, Scott and White Medical Center, Temple, Texas, USA; Department of Surgery, Texas A&M University College of Medicine, Temple, Texas, USA
| | - Johanna S van Zyl
- Baylor Scott & White Research Institute, Baylor Scott & White Health, Dallas, Texas, USA
| | - Jason H Huang
- Department of Neurosurgery, Baylor Scott & White Health, Scott and White Medical Center, Temple, Texas, USA; Department of Surgery, Texas A&M University College of Medicine, Temple, Texas, USA.
| |
Collapse
|
5
|
Ille S, Zhang H, Sogerer L, Schwendner M, Schöder A, Meyer B, Wiestler B, Krieg SM. Preoperative function-specific connectome analysis predicts surgery-related aphasia after glioma resection. Hum Brain Mapp 2022; 43:5408-5420. [PMID: 35851513 PMCID: PMC9704785 DOI: 10.1002/hbm.26014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/30/2022] [Accepted: 06/22/2022] [Indexed: 01/15/2023] Open
Abstract
Glioma resection within language-eloquent regions poses a high risk of surgery-related aphasia (SRA). Preoperative functional mapping by navigated transcranial magnetic stimulation (nTMS) combined with diffusion tensor imaging (DTI) is increasingly used to localize cortical and subcortical language-eloquent areas. This study enrolled 60 nonaphasic patients with left hemispheric perisylvian gliomas to investigate the prediction of SRA based on function-specific connectome network properties under different fractional anisotropy (FA) thresholds. Moreover, we applied a machine learning model for training and cross-validation to predict SRA based on preoperative connectome parameters. Preoperative connectome analysis helps predict SRA development with an accuracy of 73.3% and sensitivity of 78.3%. The current study provides a new perspective of combining nTMS and function-specific connectome analysis applied in a machine learning model to investigate language in neurooncological patients and promises to advance our understanding of the intricate networks.
Collapse
Affiliation(s)
- Sebastian Ille
- Department of NeurosurgeryKlinikum rechts der Isar, School of Medicine, Technical University of MunichMunichGermany,TUM‐Neuroimaging CenterTechnical University of MunichMunichGermany
| | - Haosu Zhang
- Department of NeurosurgeryKlinikum rechts der Isar, School of Medicine, Technical University of MunichMunichGermany
| | - Lisa Sogerer
- Department of NeurosurgeryKlinikum rechts der Isar, School of Medicine, Technical University of MunichMunichGermany
| | - Maximilian Schwendner
- Department of NeurosurgeryKlinikum rechts der Isar, School of Medicine, Technical University of MunichMunichGermany
| | - Axel Schöder
- Department of NeurosurgeryKlinikum rechts der Isar, School of Medicine, Technical University of MunichMunichGermany
| | - Bernhard Meyer
- Department of NeurosurgeryKlinikum rechts der Isar, School of Medicine, Technical University of MunichMunichGermany
| | - Benedikt Wiestler
- Department of Diagnostic and Interventional NeuroradiologyKlinikum rechts der Isar, School of Medicine, Technical University of MunichMunichGermany
| | - Sandro M. Krieg
- Department of NeurosurgeryKlinikum rechts der Isar, School of Medicine, Technical University of MunichMunichGermany,TUM‐Neuroimaging CenterTechnical University of MunichMunichGermany
| |
Collapse
|
6
|
Cognitive deficits in adult patients with high-grade glioma: A systematic review. Clin Neurol Neurosurg 2022; 219:107296. [DOI: 10.1016/j.clineuro.2022.107296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/04/2022] [Accepted: 05/13/2022] [Indexed: 11/15/2022]
|
7
|
Ohlerth AK, Bastiaanse R, Negwer C, Sollmann N, Schramm S, Schröder A, Krieg SM. Benefit of Action Naming Over Object Naming for Visualization of Subcortical Language Pathways in Navigated Transcranial Magnetic Stimulation-Based Diffusion Tensor Imaging-Fiber Tracking. Front Hum Neurosci 2021; 15:748274. [PMID: 34803634 PMCID: PMC8603927 DOI: 10.3389/fnhum.2021.748274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Visualization of functionally significant subcortical white matter fibers is needed in neurosurgical procedures in order to avoid damage to the language network during resection. In an effort to achieve this, positive cortical points revealed during preoperative language mapping with navigated transcranial magnetic stimulation (nTMS) can be employed as regions of interest (ROIs) for diffusion tensor imaging (DTI) fiber tracking. However, the effect that the use of different language tasks has on nTMS mapping and subsequent DTI-fiber tracking remains unexplored. The visualization of ventral stream tracts with an assumed lexico-semantic role may especially benefit from ROIs delivered by the lexico-semantically demanding verb task, Action Naming. In a first step, bihemispheric nTMS language mapping was administered in 18 healthy participants using the standard task Object Naming and the novel task Action Naming to trigger verbs in a small sentence context. Cortical areas in which nTMS induced language errors were identified as language-positive cortical sites. In a second step, nTMS-based DTI-fiber tracking was conducted using solely these language-positive points as ROIs. The ability of the two tasks’ ROIs to visualize the dorsal tracts Arcuate Fascicle and Superior Longitudinal Fascicle, the ventral tracts Inferior Longitudinal Fascicle, Uncinate Fascicle, and Inferior Fronto-Occipital Fascicle, the speech-articulatory Cortico-Nuclear Tract, and interhemispheric commissural fibers was compared in both hemispheres. In the left hemisphere, ROIs of Action Naming led to a significantly higher fraction of overall visualized tracts, specifically in the ventral stream’s Inferior Fronto-Occipital and Inferior Longitudinal Fascicle. No difference was found between tracking with Action Naming vs. Object Naming seeds for dorsal stream tracts, neither for the speech-articulatory tract nor the inter-hemispheric connections. While the two tasks appeared equally demanding for phonological-articulatory processes, ROI seeding through the task Action Naming seemed to better visualize lexico-semantic tracts in the ventral stream. This distinction was not evident in the right hemisphere. However, the distribution of tracts exposed was, overall, mirrored relative to those in the left hemisphere network. In presurgical practice, mapping and tracking of language pathways may profit from these findings and should consider inclusion of the Action Naming task, particularly for lesions in ventral subcortical regions.
Collapse
Affiliation(s)
- Ann-Katrin Ohlerth
- Center for Language and Cognition Groningen, University of Groningen, Groningen, Netherlands.,International Doctorate for Experimental Approaches to Language and Brain (IDEALAB), University of Groningen, Groningen, Netherlands
| | - Roelien Bastiaanse
- Center for Language and Brain, National Research University Higher School of Economics, Moscow, Russia
| | - Chiara Negwer
- Department of Neurosurgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.,TUM-Neuroimaging Center, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| | - Severin Schramm
- Department of Neurosurgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Axel Schröder
- Department of Neurosurgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.,TUM-Neuroimaging Center, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
8
|
Diaschisis: a mechanism for subcortical aphasia? J Neurol 2021; 269:2219-2221. [PMID: 34689219 DOI: 10.1007/s00415-021-10861-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 10/20/2022]
|
9
|
Morales H. Current and Future Challenges of Functional MRI and Diffusion Tractography in the Surgical Setting: From Eloquent Brain Mapping to Neural Plasticity. Semin Ultrasound CT MR 2021; 42:474-489. [PMID: 34537116 DOI: 10.1053/j.sult.2021.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Decades ago, Spetzler (1986) and Sawaya (1998) provided a rough brain segmentation of the eloquent areas of the brain, aimed to help surgical decisions in cases of vascular malformations and tumors, respectively. Currently in clinical use, their criteria are in need of revision. Defining functions (eg, sensorimotor, language and visual) that should be preserved during surgery seems a straightforward task. In practice, locating the specific areas that could cause a permanent vs transient deficit is not an easy task. This is particularly true for the associative cortex and cognitive domains such as language. The old model, with Broca's and Wernicke's areas at the forefront, has been superseded by a dual-stream model of parallel language processing; named ventral and dorsal pathways. This complicated network of cortical hubs and subcortical white matter pathways needing preservation during surgery is a work in progress. Preserving not only cortical regions but most importantly preserving the connections, or white matter fiber bundles, of core regions in the brain is the new paradigm. For instance, the arcuate fascicululs and inferior fronto-occipital fasciculus are key components of the dorsal and ventral language pathways, respectively; and their damage result in permanent language deficits. Interestedly, the damage of the temporal portions of these bundles -where there is a crossroad with other multiple bundles-, appears to be more important (permanent) than the damage of the frontal portions - where plasticity and contralateral activation could help. Although intraoperative direct cortical and subcortical stimulation have contributed largely, advanced MR techniques such as functional MRI (fMRI) and diffusion tractography (DT), are at the epi-center of our current understanding. Nevertheless, these techniques posse important challenges: such as neurovascular uncoupling or venous bias on fMRI; and appropriate anatomical validation or accurate representation of crossing fibers on DT. These limitations should be well understood and taken into account in clinical practice. Unifying multidisciplinary research and clinical efforts is desirable, so these techniques could contribute more efficiently not only to locate eloquent areas but to improve outcomes and our understanding of neural plasticity. Finally, although there are constant anatomical and functional regions at the individual level, there is a known variability at the inter-individual level. This concept should strengthen the importance of a personalized approach when evaluating these regions on fMRI and DT. It should strengthen the importance of personalized treatments as well, aimed to meet tailored needs and expectations.
Collapse
Affiliation(s)
- Humberto Morales
- Section of Neuroradiology, University of Cincinnati Medical Center, Cincinnati, OH.
| |
Collapse
|
10
|
Silva LL, Tuncer MS, Vajkoczy P, Picht T, Rosenstock T. Distinct approaches to language pathway tractography: comparison of anatomy-based, repetitive navigated transcranial magnetic stimulation (rTMS)-based, and rTMS-enhanced diffusion tensor imaging-fiber tracking. J Neurosurg 2021; 136:589-600. [PMID: 34330091 DOI: 10.3171/2020.12.jns204028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/21/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Visualization of subcortical language pathways by means of diffusion tensor imaging-fiber tracking (DTI-FT) is evolving as an important tool for surgical planning and decision making in patients with language-suspect brain tumors. Repetitive navigated transcranial magnetic stimulation (rTMS) cortical language mapping noninvasively provides additional functional information. Efforts to incorporate rTMS data into DTI-FT are promising, but the lack of established protocols makes it hard to assess clinical utility. The authors performed DTI-FT of important language pathways by using five distinct approaches in an effort to evaluate the respective clinical usefulness of each approach. METHODS Thirty patients with left-hemispheric perisylvian lesions underwent preoperative rTMS language mapping and DTI. FT of the principal language tracts was conducted according to different strategies: Ia, anatomical landmark based; Ib, lesion-focused landmark based; IIa, rTMS based; IIb, rTMS based with postprocessing; and III, rTMS enhanced (based on a combination of structural and functional data). The authors analyzed the respective success of each method in revealing streamlines and conducted a multinational survey with expert clinicians to evaluate aspects of clinical utility. RESULTS The authors observed high usefulness and accuracy ratings for anatomy-based approaches (Ia and Ib). Postprocessing of rTMS-based tractograms (IIb) led to more balanced perceived information content but did not improve the usefulness for surgical planning and risk assessment. Landmark-based tractography (Ia and Ib) was most successful in delineating major language tracts (98% success), whereas rTMS-based tractography (IIa and IIb) frequently failed to reveal streamlines and provided less complete tractograms than the landmark-based approach (p < 0.001). The lesion-focused landmark-based (Ib) and the rTMS-enhanced (III) approaches were the most preferred methods. CONCLUSIONS The lesion-focused landmark-based approach (Ib) achieved the best ratings and enabled visualization of the principal language tracts in almost all cases. The rTMS-enhanced approach (III) was positively evaluated by the experts because it can reveal cortico-subcortical connections, but the functional relevance of these connections is still unclear. The use of regions of interest derived solely from cortical rTMS mapping (IIa and IIb) leads to cluttered images that are of limited use in clinical practice.
Collapse
Affiliation(s)
- Luca L Silva
- Departments of1Neurosurgery and.,2Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin
| | | | | | - Thomas Picht
- Departments of1Neurosurgery and.,3Cluster of Excellence: "Matters of Activity. Image Space Material"-Humboldt University, Berlin; and
| | - Tizian Rosenstock
- Departments of1Neurosurgery and.,4Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Germany
| |
Collapse
|
11
|
Krishna S, Kakaizada S, Almeida N, Brang D, Hervey-Jumper S. Central Nervous System Plasticity Influences Language and Cognitive Recovery in Adult Glioma. Neurosurgery 2021; 89:539-548. [PMID: 33476391 DOI: 10.1093/neuros/nyaa456] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 08/05/2020] [Indexed: 01/01/2023] Open
Abstract
Gliomas exist within the framework of complex neuronal circuitry in which network dynamics influence both tumor biology and cognition. The generalized impairment of cognition or loss of language function is a common occurrence for glioma patients. The interface between intrinsic brain tumors such as gliomas and functional cognitive networks are poorly understood. The ability to communicate effectively is critically important for receiving oncological therapies and maintaining a high quality of life. Although the propensity of gliomas to infiltrate cortical and subcortical structures and disrupt key anatomic language pathways is well documented, there is new evidence offering insight into the network and cellular mechanisms underpinning glioma-related aphasia and aphasia recovery. In this review, we will outline the current understanding of the mechanisms of cognitive dysfunction and recovery, using aphasia as an illustrative model.
Collapse
Affiliation(s)
- Saritha Krishna
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Sofia Kakaizada
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - Nyle Almeida
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| | - David Brang
- Department of Psychology, University of Michigan, Ann Arbor, Michigan
| | - Shawn Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California
| |
Collapse
|
12
|
Tuncer MS, Salvati LF, Grittner U, Hardt J, Schilling R, Bährend I, Silva LL, Fekonja LS, Faust K, Vajkoczy P, Rosenstock T, Picht T. Towards a tractography-based risk stratification model for language area associated gliomas. NEUROIMAGE-CLINICAL 2020; 29:102541. [PMID: 33401138 PMCID: PMC7785953 DOI: 10.1016/j.nicl.2020.102541] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/04/2020] [Accepted: 12/20/2020] [Indexed: 12/26/2022]
Abstract
Injury to major white matter pathways during language-area associated glioma surgery often results in permanent aphasia. DTI-based tractography of language pathways allows to correlate individual tract injury profiles with functional outcome. Infiltration of the AF is particularly associated with functional deterioration. The temporo-parieto-occipital junction and the temporal stem were confirmed as pivotal functional nodes. Standardized DTI-based tractography can help to determine the individual aphasia risk profile before surgery.
Objectives Injury to major white matter pathways during language-area associated glioma surgery often leads to permanent loss of neurological function. The aim was to establish standardized tractography of language pathways as a predictor of language outcome in clinical neurosurgery. Methods We prospectively analyzed 50 surgical cases of patients with left perisylvian, diffuse gliomas. Standardized preoperative Diffusion-Tensor-Imaging (DTI)-based tractography of the 5 main language tracts (Arcuate Fasciculus [AF], Frontal Aslant Tract [FAT], Inferior Fronto-Occipital Fasciculus [IFOF], Inferior Longitudinal Fasciculus [ILF], Uncinate Fasciculus [UF]) and spatial analysis of tumor and tracts was performed. Postoperative imaging and the resulting resection map were analyzed for potential surgical injury of tracts. The language status was assessed preoperatively, postoperatively and after 3 months using the Aachen Aphasia Test and Berlin Aphasia Score. Correlation analyses, two-step cluster analysis and binary logistic regression were used to analyze associations of tractography results with language outcome after surgery. Results In 14 out of 50 patients (28%), new aphasic symptoms were detected 3 months after surgery. The preoperative infiltration of the AF was associated with functional worsening (cc = 0.314; p = 0.019). Cluster analysis of tract injury profiles revealed two areas particularly related to aphasia: the temporo-parieto-occipital junction (TPO; temporo-parietal AF, middle IFOF, middle ILF) and the temporal stem/peri-insular white matter (middle IFOF, anterior ILF, temporal UF, temporal AF). Injury to these areas (TPO: OR: 23.04; CI: 4.11 – 129.06; temporal stem: OR: 21.96; CI: 2.93 – 164.41) was associated with a higher-risk of persisting aphasia. Conclusions Tractography of language pathways can help to determine the individual aphasia risk profile pre-surgically. The TPO and temporal stem/peri-insular white matter were confirmed as functional nodes particularly sensitive to surgical injuries.
Collapse
Affiliation(s)
- Mehmet Salih Tuncer
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | | | - Ulrike Grittner
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178 Berlin, Germany
| | - Juliane Hardt
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178 Berlin, Germany; Hochschule Hannover - University of Applied Sciences and Arts, Fakultät III, Department Information and Communication, Medical Information Management, Hannover, Germany
| | - Ralph Schilling
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178 Berlin, Germany
| | - Ina Bährend
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Department of Neurosurgery, Vivantes-Klinikum Neukölln, Berlin, Germany
| | - Luca Leandro Silva
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Department of Anaesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lucius S Fekonja
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Cluster of Excellence: "Matters of Activity. Image Space Material", Humboldt University, Berlin, Germany
| | - Katharina Faust
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Tizian Rosenstock
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178 Berlin, Germany.
| | - Thomas Picht
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Cluster of Excellence: "Matters of Activity. Image Space Material", Humboldt University, Berlin, Germany
| |
Collapse
|
13
|
Function-Based Tractography of the Language Network Correlates with Aphasia in Patients with Language-Eloquent Glioblastoma. Brain Sci 2020; 10:brainsci10070412. [PMID: 32630166 PMCID: PMC7408085 DOI: 10.3390/brainsci10070412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 01/26/2023] Open
Abstract
To date, the structural characteristics that distinguish language-involved from non-involved cortical areas are largely unclear. Particularly in patients suffering from language-eloquent brain tumors, reliable mapping of the cortico-subcortical language network is of high clinical importance to prepare and guide safe tumor resection. To investigate differences in structural characteristics between language-positive and language-negative areas, 20 patients (mean age: 63.2 ± 12.9 years, 16 males) diagnosed with language-eloquent left-hemispheric glioblastoma multiforme (GBM) underwent preoperative language mapping by navigated transcranial magnetic stimulation (nTMS) and nTMS-based diffusion tensor imaging fiber tracking (DTI FT). The number of language-positive and language-negative points as well as the gray matter intensity (GMI), normalized volumes of U-fibers, interhemispheric fibers, and fibers projecting to the cerebellum were assessed and compared between language-positive and language-negative nTMS mappings and set in correlation with aphasia grades. We found significantly lower GMI for language-positive nTMS points (5.7 ± 1.7 versus 7.1 ± 1.6, p = 0.0121). Furthermore, language-positive nTMS points were characterized by an enhanced connectivity profile, i.e., these points showed a significantly higher ratio in volumes for U-fibers (p ≤ 0.0056), interhemispheric fibers (p = 0.0494), and fibers projecting to the cerebellum (p = 0.0094). The number of language-positive nTMS points (R ≥ 0.4854, p ≤ 0.0300) as well as the ratio in volumes for U-fibers (R ≤ -0.4899, p ≤ 0.0283) were significantly associated with aphasia grades, as assessed pre- or postoperatively and during follow-up examinations. In conclusion, this study provides evidence for structural differences on cortical and subcortical levels between language-positive and language-negative areas, as detected by nTMS language mapping. The results may further increase confidence in the technique of nTMS language mapping and nTMS-based tractography in the direct clinical setting. Future studies may confirm our results in larger cohorts and may expand the findings to patients with other tumor entities than GBM.
Collapse
|
14
|
Sollmann N, Fratini A, Zhang H, Zimmer C, Meyer B, Krieg SM. Associations between clinical outcome and tractography based on navigated transcranial magnetic stimulation in patients with language-eloquent brain lesions. J Neurosurg 2020; 132:1033-1042. [PMID: 30875686 DOI: 10.3171/2018.12.jns182988] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/06/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Navigated transcranial magnetic stimulation (nTMS) in combination with diffusion tensor imaging fiber tracking (DTI FT) is increasingly used to locate subcortical language-related pathways. The aim of this study was to establish nTMS-based DTI FT for preoperative risk stratification by evaluating associations between lesion-to-tract distances (LTDs) and aphasia and by determining a cut-off LTD value to prevent surgery-related permanent aphasia. METHODS Fifty patients with left-hemispheric, language-eloquent brain tumors underwent preoperative nTMS language mapping and nTMS-based DTI FT, followed by tumor resection. nTMS-based DTI FT was performed with a predefined fractional anisotropy (FA) of 0.10, 0.15, 50% of the individual FA threshold (FAT), and 75% FAT (minimum fiber length [FL]: 100 mm). The arcuate fascicle (AF), superior longitudinal fascicle (SLF), inferior longitudinal fascicle (ILF), uncinate fascicle (UC), and frontooccipital fascicle (FoF) were identified in nTMS-based tractography, and minimum LTDs were measured between the lesion and the AF and between the lesion and the closest other subcortical language-related pathway (SLF, ILF, UC, or FoF). LTDs were then associated with the level of aphasia (no/transient or permanent surgery-related aphasia, according to follow-up examinations). RESULTS A significant difference in LTDs was observed between patients with no or only surgery-related transient impairment and those who developed surgery-related permanent aphasia with regard to the AF (FA = 0.10, p = 0.0321; FA = 0.15, p = 0.0143; FA = 50% FAT, p = 0.0106) as well as the closest other subcortical language-related pathway (FA = 0.10, p = 0.0182; FA = 0.15, p = 0.0200; FA = 50% FAT, p = 0.0077). Patients with surgery-related permanent aphasia showed the lowest LTDs in relation to these tracts. Thus, LTDs of ≥ 8 mm (AF) and ≥ 11 mm (SLF, ILF, UC, or FoF) were determined as cut-off values for surgery-related permanent aphasia. CONCLUSIONS nTMS-based DTI FT of subcortical language-related pathways seems suitable for risk stratification and prediction in patients suffering from language-eloquent brain tumors. Thus, the current role of nTMS-based DTI FT might be expanded, going beyond the level of being a mere tool for surgical planning and resection guidance.
Collapse
Affiliation(s)
- Nico Sollmann
- Departments of1Diagnostic and Interventional Neuroradiology and
- 2Neurosurgery and
- 3TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | | | | | - Claus Zimmer
- Departments of1Diagnostic and Interventional Neuroradiology and
- 3TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | | | - Sandro M Krieg
- 2Neurosurgery and
- 3TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
15
|
Wende T, Hoffmann KT, Meixensberger J. Tractography in Neurosurgery: A Systematic Review of Current Applications. J Neurol Surg A Cent Eur Neurosurg 2020; 81:442-455. [PMID: 32176926 DOI: 10.1055/s-0039-1691823] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ability to visualize the brain's fiber connections noninvasively in vivo is relatively young compared with other possibilities of functional magnetic resonance imaging. Although many studies showed tractography to be of promising value for neurosurgical care, the implications remain inconclusive. An overview of current applications is presented in this systematic review. A search was conducted for (("tractography" or "fiber tracking" or "fibre tracking") and "neurosurgery") that produced 751 results. We identified 260 relevant articles and added 20 more from other sources. Most publications concerned surgical planning for resection of tumors (n = 193) and vascular lesions (n = 15). Preoperative use of transcranial magnetic stimulation was discussed in 22 of these articles. Tractography in skull base surgery presents a special challenge (n = 29). Fewer publications evaluated traumatic brain injury (TBI) (n = 25) and spontaneous intracranial bleeding (n = 22). Twenty-three articles focused on tractography in pediatric neurosurgery. Most authors found tractography to be a valuable addition in neurosurgical care. The accuracy of the technique has increased over time. There are articles suggesting that tractography improves patient outcome after tumor resection. However, no reliable biomarkers have yet been described. The better rehabilitation potential after TBI and spontaneous intracranial bleeding compared with brain tumors offers an insight into the process of neurorehabilitation. Tractography and diffusion measurements in some studies showed a correlation with patient outcome that might help uncover the neuroanatomical principles of rehabilitation itself. Alternative corticofugal and cortico-cortical networks have been implicated in motor recovery after ischemic stroke, suggesting more complex mechanisms in neurorehabilitation that go beyond current models. Hence tractography may potentially be able to predict clinical deficits and rehabilitation potential, as well as finding possible explanations for neurologic disorders in retrospect. However, large variations of the results indicate a lack of data to establish robust diagnostical concepts at this point. Therefore, in vivo tractography should still be interpreted with caution and by experienced surgeons.
Collapse
Affiliation(s)
- Tim Wende
- Department of Neurosurgery, University Hospital Leipzig, Leipzig, Germany
| | | | | |
Collapse
|
16
|
Wang J, Wang Y, Huang H, Jia Y, Zheng S, Zhong S, Chen G, Huang L, Huang R. Abnormal dynamic functional network connectivity in unmedicated bipolar and major depressive disorders based on the triple-network model. Psychol Med 2020; 50:465-474. [PMID: 30868989 DOI: 10.1017/s003329171900028x] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Previous studies have analyzed brain functional connectivity to reveal the neural physiopathology of bipolar disorder (BD) and major depressive disorder (MDD) based on the triple-network model [involving the salience network, default mode network (DMN), and central executive network (CEN)]. However, most studies assumed that the brain intrinsic fluctuations throughout the entire scan are static. Thus, we aimed to reveal the dynamic functional network connectivity (dFNC) in the triple networks of BD and MDD. METHODS We collected resting state fMRI data from 51 unmedicated depressed BD II patients, 51 unmedicated depressed MDD patients, and 52 healthy controls. We analyzed the dFNC by using an independent component analysis, sliding window correlation and k-means clustering, and used the parameters of dFNC state properties and dFNC variability for group comparisons. RESULTS The dFNC within the triple networks could be clustered into four configuration states, three of them showing dense connections (States 1, 2, and 4) and the other one showing sparse connections (State 3). Both BD and MDD patients spent more time in State 3 and showed decreased dFNC variability between posterior DMN and right CEN (rCEN) compared with controls. The MDD patients showed specific decreased dFNC variability between anterior DMN and rCEN compared with controls. CONCLUSIONS This study revealed more common but less specific dFNC alterations within the triple networks in unmedicated depressed BD II and MDD patients, which indicated their decreased information processing and communication ability and may help us to understand their abnormal affective and cognitive functions clinically.
Collapse
Affiliation(s)
- Junjing Wang
- Department of Applied Psychology, Guangdong University of Foreign Studies, Guangzhou510006, China
- School of Psychology, Institute of Brain Research and Rehabilitation (IBRR), Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, South China Normal University, Guangzhou510631, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou510630, China
| | - Huiyuan Huang
- School of Psychology, Institute of Brain Research and Rehabilitation (IBRR), Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, South China Normal University, Guangzhou510631, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou510630, China
| | - Senning Zheng
- School of Psychology, Institute of Brain Research and Rehabilitation (IBRR), Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, South China Normal University, Guangzhou510631, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou510630, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou510630, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou510630, China
| | - Ruiwang Huang
- School of Psychology, Institute of Brain Research and Rehabilitation (IBRR), Center for the Study of Applied Psychology & MRI Center, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, South China Normal University, Guangzhou510631, China
| |
Collapse
|
17
|
Yang X, Zhang K. Navigated transcranial magnetic stimulation brain mapping: Achievements, opportunities, and prospects. GLIOMA 2020. [DOI: 10.4103/glioma.glioma_13_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
18
|
Gerhardt J, Sollmann N, Hiepe P, Kirschke JS, Meyer B, Krieg SM, Ringel F. Retrospective distortion correction of diffusion tensor imaging data by semi-elastic image fusion – Evaluation by means of anatomical landmarks. Clin Neurol Neurosurg 2019; 183:105387. [DOI: 10.1016/j.clineuro.2019.105387] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 10/26/2022]
|
19
|
Liang J, Zhao S, Di L, Wang J, Sun P, Chai X, Li H. Eddy-current-induced distortion correction using maximum reconciled mutual information in diffusion MR imaging. Int J Comput Assist Radiol Surg 2019; 14:463-472. [PMID: 30684107 DOI: 10.1007/s11548-018-01901-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 12/14/2018] [Indexed: 11/30/2022]
Abstract
PURPOSE In diffusion tensor imaging, a large number of diffusion-weighted (DW) images with different diffusion gradient directions are attained during scanning. However, subjects' involuntary head movements and eddy current effect related to large diffusion-sensitizing gradients will cause distortions of DW images. Therefore, for tracking accurately white matter structures and tractography, the distortions have to be realigned before model fitting. Currently, traditional methods use maximum mutual information (MMI) or normalized mutual information (NMI) as similarity measure for DW images registration. These information measures are defined by Shannon entropy. The image entropy is able to embody the global information complexity but ignore the local information complexity caused by heterogeneous intensity contrasts in DW images, making registration algorithm early converge. METHOD To overcome the above problem, we present maximum reconciled mutual information (MRMI) combining both global information and local information as the similarity measure of the registration algorithm framework. RESULT (i) In comparison with traditional methods, under our proposed MRMI method, the border of DW image is more anastomotic with the b0 image, and the fitted fractional anisotropy (FA) map after registration is closer to the true brain boundary. (ii) By quantitative analysis of registration results, our method has a significant advantage over others in terms of NMI between b0 image and the aligned DW images. CONCLUSION The results suggest that there is a high-level matching in space between the b0 image and the DW images aligned by the MRMI method, raising the registration robustness and accuracy compared to the traditional DW registration methods. It may provide a better option for the existing diffusion image registration tools (e.g., FMRIB Software Library) and commonly multimodal medical image registration.
Collapse
Affiliation(s)
- Junling Liang
- College of Physical Engineering, Zhengzhou University, Zhengzhou, 450001, China.,School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shujun Zhao
- College of Physical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Liqing Di
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jingjuan Wang
- Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Pengcheng Sun
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinyu Chai
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Heng Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
20
|
Ille S, Engel L, Kelm A, Meyer B, Krieg SM. Language-Eloquent White Matter Pathway Tractography and the Course of Language Function in Glioma Patients. Front Oncol 2018; 8:572. [PMID: 30574455 PMCID: PMC6291459 DOI: 10.3389/fonc.2018.00572] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/15/2018] [Indexed: 11/13/2022] Open
Abstract
Object: As various recent studies show, damage to white matter pathways leads to permanent functional deficits in a high percentage of patients. Particularly the subcortical language network is complex, and its visualization has a tremendous relevance for neurosurgeons. This pilot study aims to correlate language-eloquent white matter pathways with the course of language function after the resection of left-sided perisylvian gliomas. Methods: We included 10 patients who underwent resection of highly language-eloquent high- (9 pts) and low-grade gliomas (1 pts). We performed navigated repetitive transcranial magnetic stimulation (nrTMS)-based tractography via diffusion tensor imaging fiber trackings (DTI FT) preoperatively (PRE-1), postoperatively (POST-1), and at long-term follow up or tumor recurrence (PRE-2). We separately tracked the inferior fronto-occipital fascicle (IFOF), the frontal aslant tract (FAT), and the superior longitudinal (SLF), and arcuate fascicle (AF), and correlated the amount of visualized fibers to the patients' language function at each date. Results: The changes of nrTMS-based DTI FTs of single white matter pathways correlated with the according status of language function for any of the pathways in 80% of patients and in 19 of 30 (63%) single pathway comparisons between PRE-1 and POST-1. Between POST-1 and PRE-2 the nrTMS-based DTI FTs correlated with the status of language function for any of the pathways in all patients and in 24 of 30 (80%) single pathway comparisons. Single FT results correlated with the according status of language function at POST-1 in 60, 70, and 60% of cases, and with the according status of language function at PRE-2 in 60, 90, and 90% of cases for the tracking of the IFOF, FAT, and SLF/AF, respectively. Conclusion: By the present results we were able to show that nrTMS-based DTI FT of the IFOF, FAT, and SLF/AF mainly correlates with the according status of language function preoperatively, postoperatively, and at long-term follow up after the resection of left-sided perisylvian gliomas.
Collapse
Affiliation(s)
- Sebastian Ille
- Department of Neurosurgery, Klinikum Rechts der Isar, Technische Universität München, Münich, Germany.,TUM-Neuroimaging Center, Klinikum Rechts der Isar, Technische Universität München, Münich, Germany
| | - Lara Engel
- Department of Neurosurgery, Klinikum Rechts der Isar, Technische Universität München, Münich, Germany.,TUM-Neuroimaging Center, Klinikum Rechts der Isar, Technische Universität München, Münich, Germany
| | - Anna Kelm
- Department of Neurosurgery, Klinikum Rechts der Isar, Technische Universität München, Münich, Germany.,TUM-Neuroimaging Center, Klinikum Rechts der Isar, Technische Universität München, Münich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum Rechts der Isar, Technische Universität München, Münich, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, Klinikum Rechts der Isar, Technische Universität München, Münich, Germany.,TUM-Neuroimaging Center, Klinikum Rechts der Isar, Technische Universität München, Münich, Germany
| |
Collapse
|
21
|
Sollmann N, Zhang H, Schramm S, Ille S, Negwer C, Kreiser K, Meyer B, Krieg SM. Function-specific Tractography of Language Pathways Based on nTMS Mapping in Patients with Supratentorial Lesions. Clin Neuroradiol 2018; 30:123-135. [PMID: 30519814 DOI: 10.1007/s00062-018-0749-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/22/2018] [Indexed: 10/27/2022]
Abstract
PURPOSE In patients with supratentorial lesions diffusion tensor imaging fiber tracking (DTI-FT) is increasingly used to visualize subcortical fiber courses. Navigated transcranial magnetic stimulation (nTMS) was applied in this study to reveal specific cortical functions by investigating the particular language errors elicited by stimulation. To make DTI-FT more function-specific, the identified language-positive nTMS spots were used as regions of interest (ROIs). METHODS In this study 40 patients (mean age 53.8 ± 16.0 years) harboring language-eloquent left hemispheric lesions underwent preoperative nTMS language mapping. All induced error categories were separately defined as a ROI and used for function-specific nTMS-based DTI-FT. The fractions of patients showing various subcortical language-related pathways and the fibers-per-tract ratio (number of visualized fibers divided by the number of visualized tracts) were evaluated and compared for tractography with the single error types against less specific tractography including all identified cortical language sites (all errors except hesitations). RESULTS The nTMS-based DTI-FT using all errors except hesitations led to high fractions of visualized tracts (81.1% of patients), with a fibers-per-tract ratio of 538.4 ± 340.5. When only using performance errors, a predominant visualization of the superior longitudinal fascicle (SLF) occurred, which is known to be involved in articulatory processes. Fibers-per-tract ratios were comparatively stable for all single error categories when compared to all errors except hesitations (p > 0.05). CONCLUSION This is one of the first studies aiming on function-specific tractography. The results demonstrated that when using different error categories as ROIs, more detailed nTMS-based DTI-FT and, therefore, potentially superior intraoperative guidance becomes possible.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.,Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Haosu Zhang
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Severin Schramm
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Sebastian Ille
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Chiara Negwer
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Kornelia Kreiser
- Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany. .,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
| |
Collapse
|
22
|
Functional brain mapping: overview of techniques and their application to neurosurgery. Neurosurg Rev 2018; 42:639-647. [DOI: 10.1007/s10143-018-1007-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/25/2018] [Accepted: 07/06/2018] [Indexed: 10/28/2022]
|