1
|
Cozzens JW, Lokaitis BC, Delfino K, Hoeft A, Moore BE, Fifer AS, Amin DV, Espinosa JA, Jones BA, Acakpo-Satchivi L. A Phase 2 Sensitivity and Selectivity Study of High-Dose 5-Aminolevulinic Acid in Adult Patients Undergoing Resection of a Newly Diagnosed or Recurrent Glioblastoma. Oper Neurosurg (Hagerstown) 2024:01787389-990000000-01394. [PMID: 39526779 DOI: 10.1227/ons.0000000000001417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND AND OBJECTIVES The utility of oral 5-aminolevulinic acid (5-ALA)/protoporphyrin fluorescence for the resection of high-grade gliomas is well documented, but the problem of false-negative observations remains. This study compares high-grade glioma visualization with low/standard dose 5-ALA (<30 mg/kg) to high-dose 5-ALA (>40 mg/kg) to see if by using this higher dose, it is possible to reduce the rate of false-negative observations without increasing the rate of false-positive (FP) observations and therefore increase the sensitivity. METHODS This is a prospective study of consecutive patients with radiological evidence of presumed high-grade glioma. We reviewed the data from patients who received preoperative low/standard doses and patients who received a preoperative high dose of 5-ALA. Adverse events, dose to observation time, intensity of tumor fluorescence, and results of biopsies in areas of tumor and tumor bed under deep blue light were recorded. RESULTS A total of 22 patients with high-grade glioma received a dose >40 mg/kg (high-dose) and 9 patients received <30 mg/kg (low/standard dose). There were no serious adverse events related to 5-ALA in any subject. There was a very high sensitivity and specificity of 5-ALA for the presence of tumor in both groups. There were no FP observations (fluorescence with no tumor) in either group. The specificity and the positive predictive value were 100% in both groups. The sensitivity and the negative predictive value were 53.3% and 30.0% in the low/standard dose group and 59.5% and 31.8% in the high-dose group, respectively. CONCLUSION High-dose oral 5-aminolevulinic/protoporphyrin fluorescence is a safe and effective aid to the intraoperative detection of high-grade gliomas with high sensitivity and specificity. False-negative observations with a high dose do not seem to be less than that with a low/standard dose. The rate of FP observations with both groups remains very low.
Collapse
Affiliation(s)
- Jeffrey W Cozzens
- Division of Neurosurgery, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Barbara C Lokaitis
- Center for Clinical Research, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Kristin Delfino
- Center for Clinical Research, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Ava Hoeft
- Division of Neurosurgery, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Brian E Moore
- Department of Pathology, Boston University Medical Center, Boston, Massachusetts, USA
| | - Amber S Fifer
- Center for Clinical Research, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Devin V Amin
- Division of Neurosurgery, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - José A Espinosa
- Division of Neurosurgery, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Breck A Jones
- Division of Neurosurgery, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Leslie Acakpo-Satchivi
- Division of Neurosurgery, Southern Illinois University School of Medicine, Springfield, Illinois, USA
- Springfield Clinic, Springfield, Illinois, USA
| |
Collapse
|
2
|
Rodgers LT, Villano JL, Hartz AMS, Bauer B. Glioblastoma Standard of Care: Effects on Tumor Evolution and Reverse Translation in Preclinical Models. Cancers (Basel) 2024; 16:2638. [PMID: 39123366 PMCID: PMC11311277 DOI: 10.3390/cancers16152638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Glioblastoma (GBM) presents a significant public health challenge as the deadliest and most common malignant brain tumor in adults. Despite standard-of-care treatment, which includes surgery, radiation, and chemotherapy, mortality rates are high, underscoring the critical need for advancing GBM therapy. Over the past two decades, numerous clinical trials have been performed, yet only a small fraction demonstrated a benefit, raising concerns about the predictability of current preclinical models. Traditionally, preclinical studies utilize treatment-naïve tumors, failing to model the clinical scenario where patients undergo standard-of-care treatment prior to recurrence. Recurrent GBM generally exhibits distinct molecular alterations influenced by treatment selection pressures. In this review, we discuss the impact of treatment-surgery, radiation, and chemotherapy-on GBM. We also provide a summary of treatments used in preclinical models, advocating for their integration to enhance the translation of novel strategies to improve therapeutic outcomes in GBM.
Collapse
Affiliation(s)
- Louis T. Rodgers
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - John L. Villano
- Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurosurgery, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Anika M. S. Hartz
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
3
|
Filip P, Lerner DK, Kominsky E, Schupper A, Liu K, Khan NM, Roof S, Hadjipanayis C, Genden E, Iloreta AMC. 5-Aminolevulinic Acid Fluorescence-Guided Surgery in Head and Neck Squamous Cell Carcinoma. Laryngoscope 2024; 134:741-748. [PMID: 37540051 DOI: 10.1002/lary.30910] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023]
Abstract
OBJECTIVES To determine the utility of 5-aminolevulinic acid (5-ALA) fluorescence for resection of head and neck carcinoma. METHODS In this prospective pilot trial, 5-ALA was administered as an oral suspension 3-5 h prior to induction of anesthesia for resection of head and neck squamous cell carcinoma (HNSCC). Following resection, 405 nm blue light was applied, and fluorescence of the tumor as well as the surgical bed was recorded. Specimen fluorescence intensity was graded categorically as none (score = 0), mild (1), moderate (2), or robust (3) by the operating surgeon intraoperatively and corroborated with final pathologic diagnosis. RESULTS Seven patients underwent resection with 5-ALA. Five (83%) were male with an age range of 33-82 years (mean = 60). Sites included nasal cavity (n = 3), oral cavity (n = 3), and the larynx (n = 1). All specimens demonstrated robust fluorescence when 5-ALA was administered 3-5 h preoperatively. 5-ALA fluorescence predicted the presence of perineural invasion, a positive margin, and metastatic lymphadenopathy. Two patients had acute photosensitivity reactions, and one patient had a temporary elevation of hepatic enzymes. CONCLUSIONS 5-ALA induces robust intraoperative fluorescence of HNSCC, capable of demonstrating a positive margin, perineural invasion, and metastatic nodal disease. Although no conclusions are there about the safety of this drug in the head and neck cancer population, our study parallels the extensive safety data in the neurosurgical literature. Future applications may include intraoperative assessment of margin status, diagnostic accuracy, and impacts on survival. LEVEL OF EVIDENCE 4 Laryngoscope, 134:741-748, 2024.
Collapse
Affiliation(s)
- Peter Filip
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York City, New York, U.S.A
| | - David K Lerner
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York City, New York, U.S.A
| | - Evan Kominsky
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York City, New York, U.S.A
| | - Alexander Schupper
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York City, New York, U.S.A
| | - Katherine Liu
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York City, New York, U.S.A
| | - Nazir Mohemmed Khan
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York City, New York, U.S.A
| | - Scott Roof
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York City, New York, U.S.A
| | | | - Eric Genden
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York City, New York, U.S.A
| | - Alfred M C Iloreta
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York City, New York, U.S.A
| |
Collapse
|
4
|
Bhattacharya S, Prajapati BG, Singh S, Anjum MM. Nanoparticles drug delivery for 5-aminolevulinic acid (5-ALA) in photodynamic therapy (PDT) for multiple cancer treatment: a critical review on biosynthesis, detection, and therapeutic applications. J Cancer Res Clin Oncol 2023; 149:17607-17634. [PMID: 37776358 DOI: 10.1007/s00432-023-05429-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023]
Abstract
Photodynamic therapy (PDT) is a promising cancer treatment that kills cancer cells selectively by stimulating reactive oxygen species generation with photosensitizers exposed to specific light wavelengths. 5-aminolevulinic acid (5-ALA) is a widely used photosensitizer. However, its limited tumour penetration and targeting reduce its therapeutic efficacy. Scholars have investigated nano-delivery techniques to improve 5-ALA administration and efficacy in PDT. This review summarises recent advances in biological host biosynthetic pathways and regulatory mechanisms for 5-ALA production. The review also highlights the potential therapeutic efficacy of various 5-ALA nano-delivery modalities, such as nanoparticles, liposomes, and gels, in treating various cancers. Although promising, 5-ALA nano-delivery methods face challenges that could impair targeting and efficacy. To determine their safety and biocompatibility, extensive preclinical and clinical studies are required. This study highlights the potential of 5-ALA-NDSs to improve PDT for cancer treatment, as well as the need for additional research to overcome barriers and improve medical outcomes.
Collapse
Affiliation(s)
- Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India.
| | - Bhuphendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Gujarat, Kherva, 384012, India.
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Md Meraj Anjum
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| |
Collapse
|
5
|
Bin-Alamer O, Abou-Al-Shaar H, Gersey ZC, Huq S, Kallos JA, McCarthy DJ, Head JR, Andrews E, Zhang X, Hadjipanayis CG. Intraoperative Imaging and Optical Visualization Techniques for Brain Tumor Resection: A Narrative Review. Cancers (Basel) 2023; 15:4890. [PMID: 37835584 PMCID: PMC10571802 DOI: 10.3390/cancers15194890] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Advancements in intraoperative visualization and imaging techniques are increasingly central to the success and safety of brain tumor surgery, leading to transformative improvements in patient outcomes. This comprehensive review intricately describes the evolution of conventional and emerging technologies for intraoperative imaging, encompassing the surgical microscope, exoscope, Raman spectroscopy, confocal microscopy, fluorescence-guided surgery, intraoperative ultrasound, magnetic resonance imaging, and computed tomography. We detail how each of these imaging modalities contributes uniquely to the precision, safety, and efficacy of neurosurgical procedures. Despite their substantial benefits, these technologies share common challenges, including difficulties in image interpretation and steep learning curves. Looking forward, innovations in this field are poised to incorporate artificial intelligence, integrated multimodal imaging approaches, and augmented and virtual reality technologies. This rapidly evolving landscape represents fertile ground for future research and technological development, aiming to further elevate surgical precision, safety, and, most critically, patient outcomes in the management of brain tumors.
Collapse
Affiliation(s)
- Othman Bin-Alamer
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Hussam Abou-Al-Shaar
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Zachary C. Gersey
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Sakibul Huq
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Justiss A. Kallos
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - David J. McCarthy
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Jeffery R. Head
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Edward Andrews
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Xiaoran Zhang
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Constantinos G. Hadjipanayis
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
6
|
Bianconi A, Bonada M, Zeppa P, Colonna S, Tartara F, Melcarne A, Garbossa D, Cofano F. How Reliable Is Fluorescence-Guided Surgery in Low-Grade Gliomas? A Systematic Review Concerning Different Fluorophores. Cancers (Basel) 2023; 15:4130. [PMID: 37627158 PMCID: PMC10452554 DOI: 10.3390/cancers15164130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Fluorescence-guided surgery has been increasingly used to support glioma surgery with the purpose of obtaining a maximal safe resection, in particular in high-grade gliomas, while its role is less definitely assessed in low-grade gliomas. METHODS A systematic review was conducted. 5-aminolevulinic acid, sodium fluorescein, indocyanine green and tozuleristide were taken into account. The main considered outcome was the fluorescence rate, defined as the number of patients in whom positive fluorescence was detected out of the total number of patients. Only low-grade gliomas were considered, and data were grouped according to single fluorophores. RESULTS 16 papers about 5-aminolevulinic acid, 4 about sodium fluorescein, 2 about indocyanine green and 1 about tozuleristide were included in the systematic review. Regarding 5-aminolevulinic acid, a total of 467 low-grade glioma patients were included, and fluorescence positivity was detected in 34 out of 451 Grade II tumors (7.3%); while in Grade I tumors, fluorescence positivity was detected in 9 out of 16 cases. In 16 sodium fluorescein patients, seven positive fluorescent cases were detected. As far as indocyanine is concerned, two studies accounting for six patients (three positive) were included, while for tozuleristide, a single clinical trial with eight patients (two positive) was retrieved. CONCLUSIONS The current evidence does not support the routine use of 5-aminolevulinic acid or sodium fluorescein with a standard operating microscope because of the low fluorescence rates. New molecules, including tozuleristide, and new techniques for fluorescence detection have shown promising results; however, their use still needs to be clinically validated on a large scale.
Collapse
Affiliation(s)
- Andrea Bianconi
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy; (M.B.); (P.Z.); (A.M.); (D.G.); (F.C.)
| | - Marta Bonada
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy; (M.B.); (P.Z.); (A.M.); (D.G.); (F.C.)
| | - Pietro Zeppa
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy; (M.B.); (P.Z.); (A.M.); (D.G.); (F.C.)
| | - Stefano Colonna
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy; (M.B.); (P.Z.); (A.M.); (D.G.); (F.C.)
| | - Fulvio Tartara
- Headache Science and Neurorehabilitation Center, IRCCS Mondino Foundation, Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy
| | - Antonio Melcarne
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy; (M.B.); (P.Z.); (A.M.); (D.G.); (F.C.)
| | - Diego Garbossa
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy; (M.B.); (P.Z.); (A.M.); (D.G.); (F.C.)
| | - Fabio Cofano
- Neurosurgery, Department of Neurosciences, University of Turin, 10126 Turin, Italy; (M.B.); (P.Z.); (A.M.); (D.G.); (F.C.)
- Humanitas Gradenigo, 10100 Turin, Italy
| |
Collapse
|
7
|
Teng G, Wang Q, Hao Q, Fan A, Yang H, Xu X, Chen G, Wei K, Zhao Z, Khan MN, Idrees BS, Bao M, Luo T, Zheng Y, Lu B. Full-Stokes polarization laser-induced breakdown spectroscopy detection of infiltrative glioma boundary tissue. BIOMEDICAL OPTICS EXPRESS 2023; 14:3469-3490. [PMID: 37497487 PMCID: PMC10368052 DOI: 10.1364/boe.492983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 07/28/2023]
Abstract
The glioma boundary is difficult to identify during surgery due to the infiltrative characteristics of tumor cells. In order to ensure a full resection rate and increase the postoperative survival of patients, it is often necessary to make an expansion range resection, which may have harmful effects on the quality of the patient's survival. A full-Stokes laser-induced breakdown spectroscopy (FSLIBS) theory with a corresponding system is proposed to combine the elemental composition information and polarization information for glioma boundary detection. To verify the elemental content of brain tissues and provide an analytical basis, inductively coupled plasma mass spectrometry (ICP-MS) and LIBS are also applied to analyze the healthy, boundary, and glioma tissues. Totally, 42 fresh tissue samples are analyzed, and the Ca, Na, K elemental lines and CN, C2 molecular fragmental bands are proved to take an important role in the different tissue identification. The FSLIBS provides complete polarization information and elemental information than conventional LIBS elemental analysis. The Stokes parameter spectra can significantly reduce the under-fitting phenomenon of artificial intelligence identification models. Meanwhile, the FSLIBS spectral features within glioma samples are relatively more stable than boundary and healthy tissues. Other tissues may be affected obviously by individual differences in lesion positions and patients. In the future, the FSLIBS may be used for the precise identification of glioma boundaries based on polarization and elemental characterizing ability.
Collapse
Affiliation(s)
- Geer Teng
- School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, OX3 7LD, United Kingdom
| | - Qianqian Wang
- School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
- Key Laboratory of Photonic Information Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing, 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314033, China
| | - Qun Hao
- School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314033, China
| | - Axin Fan
- School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
| | - Haifeng Yang
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Xiangjun Xu
- School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
- Key Laboratory of Photonic Information Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing, 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314033, China
| | - Guoyan Chen
- School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
- Key Laboratory of Photonic Information Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Kai Wei
- School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
- Key Laboratory of Photonic Information Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhifang Zhao
- School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
- Key Laboratory of Photonic Information Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - M Nouman Khan
- School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
- Key Laboratory of Photonic Information Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Bushra Sana Idrees
- School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
- Key Laboratory of Photonic Information Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Mengyu Bao
- School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
- Key Laboratory of Photonic Information Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Tianzhong Luo
- School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
- Key Laboratory of Photonic Information Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing, 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314033, China
| | - Yongyue Zheng
- School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
- Key Laboratory of Photonic Information Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Bingheng Lu
- School of Optics and Photonics, Beijing Institute of Technology, Beijing, 100081, China
- Key Laboratory of Photonic Information Technology, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
8
|
Belykh E, Bardonova L, Abramov I, Byvaltsev VA, Kerymbayev T, Yu K, Healey DR, Luna-Melendez E, Deneen B, Mehta S, Liu JK, Preul MC. 5-aminolevulinic acid, fluorescein sodium, and indocyanine green for glioma margin detection: analysis of operating wide-field and confocal microscopy in glioma models of various grades. Front Oncol 2023; 13:1156812. [PMID: 37287908 PMCID: PMC10242067 DOI: 10.3389/fonc.2023.1156812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/28/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction Surgical resection remains the first-line treatment for gliomas. Several fluorescent dyes are currently in use to augment intraoperative tumor visualization, but information on their comparative effectiveness is lacking. We performed systematic assessment of fluorescein sodium (FNa), 5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX (PpIX), and indocyanine green (ICG) fluorescence in various glioma models using advanced fluorescence imaging techniques. Methods Four glioma models were used: GL261 (high-grade model), GB3 (low-grade model), and an in utero electroporation model with and without red fluorescence protein (IUE +RFP and IUE -RFP, respectively) (intermediate-to-low-grade model). Animals underwent 5-ALA, FNa, and ICG injections and craniectomy. Brain tissue samples underwent fluorescent imaging using a wide-field operative microscope and a benchtop confocal microscope and were submitted for histologic analysis. Results Our systematic analysis showed that wide-field imaging of highly malignant gliomas is equally efficient with 5-ALA, FNa, and ICG, although FNa is associated with more false-positive staining of the normal brain. In low-grade gliomas, wide-field imaging cannot detect ICG staining, can detect FNa in only 50% of specimens, and is not sensitive enough for PpIX detection. With confocal imaging of low-intermediate grade glioma models, PpIX outperformed FNa. Discussion Overall, compared to wide-field imaging, confocal microscopy significantly improved diagnostic accuracy and was better at detecting low concentrations of PpIX and FNa, resulting in improved tumor delineation. Neither PpIX, FNa, nor ICG delineated all tumor boundaries in studied tumor models, which emphasizes the need for novel visualization technologies and molecular probes to guide glioma resection. Simultaneous administration of 5-ALA and FNa with use of cellular-resolution imaging modalities may provide additional information for margin detection and may facilitate maximal glioma resection.
Collapse
Affiliation(s)
- Evgenii Belykh
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
- Department of Neurosurgery, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Liudmila Bardonova
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Irakliy Abramov
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Vadim A. Byvaltsev
- Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
| | - Talgat Kerymbayev
- Department of Neurosurgery, JSC “National Scientific Center of Neurosurgery”, Nur-Sultan, Kazakhstan
| | - Kwanha Yu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
| | - Debbie R. Healey
- Department of Research Imaging, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | | | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
| | - Shwetal Mehta
- Ivy Brain Tumor Research Center, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - James K. Liu
- Department of Neurosurgery, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Mark C. Preul
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| |
Collapse
|
9
|
He L, Wen Z, Wang B, Li X, Wu D. Structural Design and Experimental Studies of Resonant Fiber Optic Scanner Driven by Co-Fired Multilayer Piezoelectric Ceramics. MICROMACHINES 2023; 14:517. [PMID: 36984924 PMCID: PMC10055889 DOI: 10.3390/mi14030517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Piezo-driven resonant fiber optic scanners are gaining more and more attention due to their simple structure, weak electromagnetic radiation, and non-friction loss. Conventional piezo-driven resonant fiber optic scanners typically use quadrature piezoelectric tubes (piezo tubes) operating in 31-mode with high drive voltage and low excitation efficiency. In order to solve the abovementioned problem, a resonant fiber scanner driven by co-fired multilayer piezoelectric ceramics (CMPCs) is proposed in which four CMPCs drive a cantilevered fiber optic in the first-order bending mode to achieve efficient and fast space-filling scanning. In this paper, the cantilever beam vibration model with base displacement excitation was derived to provide a theoretical basis for the design of the fiber optic scanner. The finite element method was used to guide the dynamic design of the scanner. Finally, the dynamics characteristics and scanning trajectory of the prepared scanner prototype were tested and compared with the theoretical and simulation calculation results. Experimental results showed that the scanner can achieve three types of space-filling scanning: spiral, Lissajous, and propeller. Compared with the structure using piezo tubes, the designed scanner achieved the same scanning range with smaller axial dimensions, lower drive voltage, and higher efficiency. The scanner can achieve a free end displacement of 10 mm in both horizontal and vertical directions under a sinusoidal excitation signal of 50 Vp-p and 200 Hz. The theoretical, simulation and experimental results validate the feasibility of the proposed scanner structure and provide new ideas for the design of resonant fiber optic scanners.
Collapse
|
10
|
Optimization of novel exoscopic blue light filter during fluorescence-guided resection of Glioblastoma. J Neurooncol 2023; 161:617-623. [PMID: 36745272 DOI: 10.1007/s11060-022-04231-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/29/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE Operative guidelines and use optimization for new surgical exoscopes are not well described in the literature. In this study, we evaluated use of the ORBEYE (Olympus) surgical exoscope system during 5-ALA fluorescence-guided resection of GBMs to optimize workflow and exoscope settings. METHODS The ORBEYE exoscope system was fitted with a blue light filter for 5-ALA mediated fluorescence-guided surgery (FGS). Intraoperative images were obtained during 5-ALA FGS in 9 patients with primary or recurrent GBM. The exoscope was set up at constant, increasing focal distances from the target tissue, and light source intensity varied. High-resolution 4 K images were captured and analyzed. Comparisons of fluorescence to background were then generated for use optimization. RESULTS Light intensity did not significantly influence tumor fluorescence (P = 0.878). However, focal distance significantly impacted relative fluorescent intensity (P = 0.007). Maximum average fluorescence was seen consistently at a focal length of 220 mm and a light intensity of approximately 75% maximum. Decreasing focal distance from 400 mm to 220 mm significantly increased visualized fluorescence (P = 0.0038). CONCLUSIONS The ORBEYE surgical exoscope system with blue light filter is a powerful imaging tool for 5-ALA FGS in GBM. The ORBEYE blue filter performs optimally at shorter focal distance with moderate light intensity. Similar to microscope systems, decreasing focal distance significantly influences visualized fluorescence.
Collapse
|
11
|
McCracken DJ, Schupper AJ, Lakomkin N, Malcolm J, Painton Bray D, Hadjipanayis CG. Turning on the light for brain tumor surgery: A 5-aminolevulinic acid story. Neuro Oncol 2022; 24:S52-S61. [PMID: 36322101 PMCID: PMC9629477 DOI: 10.1093/neuonc/noac191] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To aid surgeons in more complete and safe resection of brain tumors, adjuvant technologies have been developed to improve visualization of target tissue. Fluorescence-guided surgery relies on the use of fluorophores and specific light wavelengths to better delineate tumor tissue, inflammation, and areas of blood-brain barrier breakdown. 5-aminolevulinic acid (5-ALA), the first fluorophore developed specifically for brain tumors, accumulates within tumor cells, improving visualization of tumors both at the core, and infiltrative margin. Here, we describe the background of how 5-ALA integrated into the modern neurosurgery practice, clinical evidence for the current use of 5-ALA, and future directions for its role in neurosurgical oncology. Maximal safe resection remains the standard of care for most brain tumors. Gross total resection of high-grade gliomas (HGGs) is associated with greater overall survival and progression-free survival (PFS) in comparison to subtotal resection or adjuvant treatment therapies alone.1-3 A major challenge neurosurgeons encounter when resecting infiltrative gliomas is identification of the glioma tumor margin to perform a radical resection while avoiding and preserving eloquent regions of the brain. 5-aminolevulinic acid (5-ALA) remains the only optical-imaging agent approved by the FDA for use in glioma surgery and identification of tumor tissue.4 A multicenter randomized, controlled trial revealed that 5-ALA fluorescence-guided surgery (FGS) almost doubled the extent of tumor resection and also improved 6-month PFS.5 In this review, we will highlight the current evidence for use of 5-ALA FGS in brain tumor surgery, as well as discuss the future directions for its use.
Collapse
Affiliation(s)
- David J McCracken
- Department of Neurosurgery, Piedmont Healthcare, Atlanta, Georgia, USA
| | - Alexander J Schupper
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, New York, USA
| | - Nikita Lakomkin
- Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota, USA
| | - James Malcolm
- Department of Neurosurgery, Emory University, Atlanta, Georgia, USA
| | | | - Constantinos G Hadjipanayis
- Corresponding Author: Constantinos G. Hadjipanayis, MD, PhD, Mount Sinai Union Square, 10 Union Square East, Suite 5E, New York, NY 10003, USA ()
| |
Collapse
|
12
|
Xu Y, Abramov I, Belykh E, Mignucci-Jiménez G, Park MT, Eschbacher JM, Preul MC. Characterization of ex vivo and in vivo intraoperative neurosurgical confocal laser endomicroscopy imaging. Front Oncol 2022; 12:979748. [PMID: 36091140 PMCID: PMC9451600 DOI: 10.3389/fonc.2022.979748] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Background The new US Food and Drug Administration-cleared fluorescein sodium (FNa)-based confocal laser endomicroscopy (CLE) imaging system allows for intraoperative on-the-fly cellular level imaging. Two feasibility studies have been completed with intraoperative use of this CLE system in ex vivo and in vivo modalities. This study quantitatively compares the image quality and diagnostic performance of ex vivo and in vivo CLE imaging. Methods Images acquired from two prospective CLE clinical studies, one ex vivo and one in vivo, were analyzed quantitatively. Two image quality parameters – brightness and contrast – were measured using Fiji software and compared between ex vivo and in vivo images for imaging timing from FNa dose and in glioma, meningioma, and intracranial metastatic tumor cases. The diagnostic performance of the two studies was compared. Results Overall, the in vivo images have higher brightness and contrast than the ex vivo images (p < 0.001). A weak negative correlation exists between image quality and timing of imaging after FNa dose for the ex vivo images, but not the in vivo images. In vivo images have higher image quality than ex vivo images (p < 0.001) in glioma, meningioma, and intracranial metastatic tumor cases. In vivo imaging yielded higher sensitivity and negative predictive value than ex vivo imaging. Conclusions In our setting, in vivo CLE optical biopsy outperforms ex vivo CLE by producing higher quality images and less image deterioration, leading to better diagnostic performance. These results support the in vivo modality as the modality of choice for intraoperative CLE imaging.
Collapse
Affiliation(s)
- Yuan Xu
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Irakliy Abramov
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Evgenii Belykh
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Giancarlo Mignucci-Jiménez
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Marian T. Park
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Jennifer M. Eschbacher
- Department of Neuropathology, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
| | - Mark C. Preul
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ, United States
- *Correspondence: Mark C. Preul,
| |
Collapse
|
13
|
He L, Wang B, Wen Z, Li X, Wu D. 3-D High Frequency Ultrasound Imaging by Piezo-Driving a Single-Element Transducer. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1932-1942. [PMID: 35050853 DOI: 10.1109/tuffc.2022.3145162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electronic scanning of two-dimensional (2-D) arrays and mechanical or freehand scanning of one-dimensional (1-D) arrays have been mostly utilized for conventional three-dimensional (3-D) ultrasound (US) imaging. However, the development of 2-D arrays and the hardware systems are complicated and expensive, while freehand systems with positioning sensors and mechanical systems are mostly bulky. This article represents a novel scanning strategy for achieving high-quality 3-D US imaging with a high-frequency single-element transducer. A 42-MHz US transducer with a compact structure was designed and fabricated, which was excited in the 2-D vibration by a tubular piezoelectric actuator. A dedicated imaging system was set up and both B-mode and 3-D US imaging of a custom wire phantom have been carried out to evaluate the performance of the proposed transducer. Compared to the results obtained with the motorized linear translation stage, the reconstructed images obtained by the proposed resonance scanning method are accurate, demonstrating the feasibility of 3-D US imaging with a vibrating single-element US transducer.
Collapse
|
14
|
Kim Y, Cho M, Paulson B, Kim SH, Kim JK. Minimizing Motion Artifacts in Intravital Microscopy Using the Sedative Effect of Dexmedetomidine. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-8. [PMID: 35599594 DOI: 10.1017/s1431927622000708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Among intravital imaging instruments, the intravital two-photon fluorescence excitation microscope has the advantage of enabling real-time 3D fluorescence imaging deep into cells and tissues, with reduced photobleaching and photodamage compared with conventional intravital confocal microscopes. However, excessive motion of organs due to involuntary movement such as breathing may result in out-of-focus images and severe fluorescence intensity fluctuations, which hinder meaningful imaging and analysis. The clinically approved alpha-2 adrenergic receptor agonist dexmedetomidine was administered to mice during two-photon fluorescence intravital imaging to alleviate this problem. As dexmedetomidine blocks the release of the neurotransmitter norepinephrine, pain is suppressed, blood pressure is reduced, and a sedation effect is observed. By tracking the quality of focus and stability of detected fluorescence in two-photon fluorescence images of fluorescein isothiocyanate-sensitized liver vasculature in vivo, we demonstrated that intravascular dexmedetomidine can reduce fluorescence fluctuations caused by respiration on a timescale of minutes in mice, improving image quality and resolution. The results indicate that short-term dexmedetomidine treatment is suitable for reducing involuntary motion in preclinical intravital imaging studies. This method may be applicable to other animal models.
Collapse
Affiliation(s)
- Youngkyu Kim
- Biomedical Engineering Research Center, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Minju Cho
- Biomedical Engineering Research Center, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Bjorn Paulson
- Biomedical Engineering Research Center, Asan Medical Center, Seoul 05505, Republic of Korea
| | - Sung-Hoon Kim
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-Gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Jun Ki Kim
- Biomedical Engineering Research Center, Asan Medical Center, Seoul 05505, Republic of Korea
- Department of Convergence Medicine, University of Ulsan, College of Medicine, 88, Olympic-ro 43-Gil, Seoul 05505, Republic of Korea
| |
Collapse
|
15
|
Sloan AE. Commentary: A Novel 5-Aminolevulinic Acid-Enabled Surgical Loupe System—A Consecutive Brain Tumor Series of 11 Cases. Oper Neurosurg (Hagerstown) 2022; 22:e287-e288. [PMID: 35867099 PMCID: PMC9514739 DOI: 10.1227/ons.0000000000000192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Andrew E Sloan
- University Hospitals-Cleveland Medical Center & Seidman Cancer Center, Department of Neurosurgery, Cleveland, Ohio, USA; and Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
16
|
Reichert D, Erkkilae MT, Gesperger J, Wadiura LI, Lang A, Roetzer T, Woehrer A, Andreana M, Unterhuber A, Wilzbach M, Hauger C, Drexler W, Kiesel B, Widhalm G, Leitgeb RA. Fluorescence Lifetime Imaging and Spectroscopic Co-Validation for Protoporphyrin IX-Guided Tumor Visualization in Neurosurgery. Front Oncol 2021; 11:741303. [PMID: 34595120 PMCID: PMC8476921 DOI: 10.3389/fonc.2021.741303] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022] Open
Abstract
Maximal safe resection is a key strategy for improving patient prognosis in the management of brain tumors. Intraoperative fluorescence guidance has emerged as a standard in the surgery of high-grade gliomas. The administration of 5-aminolevulinic acid prior to surgery induces tumor-specific accumulation of protoporphyrin IX, which emits red fluorescence under blue-light illumination. The technology, however, is substantially limited for low-grade gliomas and weakly tumor-infiltrated brain, where low protoporphyrin IX concentrations are outweighed by tissue autofluorescence. In this context, fluorescence lifetime imaging has shown promise to distinguish spectrally overlapping fluorophores. We integrated frequency-domain fluorescence lifetime imaging in a surgical microscope and combined it with spatially registered fluorescence spectroscopy, which can be considered a research benchmark for sensitive protoporphyrin IX detection. Fluorescence lifetime maps and spectra were acquired for a representative set of fresh ex-vivo brain tumor specimens (low-grade gliomas n = 15, high-grade gliomas n = 80, meningiomas n = 41, and metastases n = 35). Combining the fluorescence lifetime with fluorescence spectra unveiled how weak protoporphyrin IX accumulations increased the lifetime respective to tissue autofluorescence. Infiltration zones (4.1ns ± 1.8ns, p = 0.017) and core tumor areas (4.8ns ± 1.3ns, p = 0.040) of low-grade gliomas were significantly distinguishable from non-pathologic tissue (1.6ns ± 0.5ns). Similarly, fluorescence lifetimes for infiltrated and reactive tissue as well as necrotic and core tumor areas were increased for high-grade gliomas and metastasis. Meningioma tumor specimens showed strongly increased lifetimes (12.2ns ± 2.5ns, p = 0.005). Our results emphasize the potential of fluorescence lifetime imaging to optimize maximal safe resection in brain tumors in future and highlight its potential toward clinical translation.
Collapse
Affiliation(s)
- David Reichert
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory OPTRAMED, Medical University of Vienna, Vienna, Austria
| | - Mikael T Erkkilae
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Johanna Gesperger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Lisa I Wadiura
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Alexandra Lang
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Roetzer
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Adelheid Woehrer
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Marco Andreana
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Angelika Unterhuber
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Marco Wilzbach
- Advanced Development Microsurgery, Carl Zeiss Meditec AG, Oberkochen, Germany
| | - Christoph Hauger
- Advanced Development Microsurgery, Carl Zeiss Meditec AG, Oberkochen, Germany
| | - Wolfgang Drexler
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Barbara Kiesel
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Rainer A Leitgeb
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory OPTRAMED, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Micko A, Rapoport BI, Youngerman BE, Fong RP, Kosty J, Brunswick A, Shahrestani S, Zada G, Schwartz TH. Limited utility of 5-ALA optical fluorescence in endoscopic endonasal skull base surgery: a multicenter retrospective study. J Neurosurg 2021; 135:535-541. [PMID: 33126212 DOI: 10.3171/2020.5.jns201171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/18/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Incomplete resection of skull base pathology may result in local tumor recurrence. This study investigates the utility of 5-aminolevulinic acid (5-ALA) fluorescence during endoscopic endonasal approaches (EEAs) to increase visibility of pathologic tissue. METHODS This retrospective multicenter series comprises patients with planned resection of an anterior skull base lesion who received preoperative 5-ALA at two tertiary care centers. Diagnostic use of a blue light endoscope was performed during EEA for all cases. Demographic and tumor characteristics as well as fluorescence status, quality, and homogeneity were assessed for each skull base pathology. RESULTS Twenty-eight skull base pathologies underwent blue-light EEA with preoperative 5-ALA, including 15 pituitary adenomas (54%), 4 meningiomas (14%), 3 craniopharyngiomas (11%), 2 Rathke's cleft cysts (7%), as well as plasmacytoma, esthesioneuroblastoma, and sinonasal squamous cell carcinoma. Of these, 6 (21%) of 28 showed invasive growth into surrounding structures such as dura, bone, or compartments of the cavernous sinus. Tumor fluorescence was detected in 2 cases (7%), with strong fluorescence in 1 tuberculum sellae meningioma and vague fluorescence in 1 pituicytoma. In all other cases fluorescence was absent. Faint fluorescence of the normal pituitary gland was seen in 1 (7%) of 15 cases. A comparison between the particular tumor entities as well as a correlation between invasiveness, WHO grade, Ki-67, and positive fluorescence did not show any significant association. CONCLUSIONS With the possible exception of meningiomas, 5-ALA fluorescence has limited utility in the majority of endonasal skull base surgeries, although other pathology may be worth investigating.
Collapse
Affiliation(s)
- Alexander Micko
- 1Department of Neurosurgery, Medical University of Vienna, Austria
- 2Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - Benjamin I Rapoport
- 3Department of Neurological Surgery, NewYork-Presbyterian Hospital/Weill Cornell Medicine, New York, New York
| | - Brett E Youngerman
- 3Department of Neurological Surgery, NewYork-Presbyterian Hospital/Weill Cornell Medicine, New York, New York
| | - Reginald P Fong
- 3Department of Neurological Surgery, NewYork-Presbyterian Hospital/Weill Cornell Medicine, New York, New York
| | - Jennifer Kosty
- 3Department of Neurological Surgery, NewYork-Presbyterian Hospital/Weill Cornell Medicine, New York, New York
| | - Andrew Brunswick
- 2Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - Shane Shahrestani
- 2Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - Gabriel Zada
- 2Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - Theodore H Schwartz
- 3Department of Neurological Surgery, NewYork-Presbyterian Hospital/Weill Cornell Medicine, New York, New York
| |
Collapse
|
18
|
Belykh E, Jubran JH, George LL, Bardonova L, Healey DR, Georges JF, Quarles CC, Eschbacher JM, Mehta S, Scheck AC, Nakaji P, Preul MC. Molecular Imaging of Glucose Metabolism for Intraoperative Fluorescence Guidance During Glioma Surgery. Mol Imaging Biol 2021; 23:586-596. [PMID: 33544308 DOI: 10.1007/s11307-021-01579-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/01/2020] [Accepted: 01/05/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE This study evaluated the use of molecular imaging of fluorescent glucose analog 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG) as a discriminatory marker for intraoperative tumor border identification in a murine glioma model. PROCEDURES 2-NBDG was assessed in GL261 and U251 orthotopic tumor-bearing mice. Intraoperative fluorescence of topical and intravenous 2-NBDG in normal and tumor regions was assessed with an operating microscope, handheld confocal laser scanning endomicroscope (CLE), and benchtop confocal laser scanning microscope (LSM). Additionally, 2-NBDG fluorescence in tumors was compared with 5-aminolevulinic acid-induced protoporphyrin IX fluorescence. RESULTS Intravenously administered 2-NBDG was detectable in brain tumor and absent in contralateral normal brain parenchyma on wide-field operating microscope imaging. Intraoperative and benchtop CLE showed preferential 2-NBDG accumulation in the cytoplasm of glioma cells (mean [SD] tumor-to-background ratio of 2.76 [0.43]). Topically administered 2-NBDG did not create sufficient tumor-background contrast for wide-field operating microscope imaging or under benchtop LSM (mean [SD] tumor-to-background ratio 1.42 [0.72]). However, topical 2-NBDG did create sufficient contrast to evaluate cellular tissue architecture and differentiate tumor cells from normal brain parenchyma. Protoporphyrin IX imaging resulted in a more specific delineation of gross tumor margins than intravenous or topical 2-NBDG and a significantly higher tumor-to-normal-brain fluorescence intensity ratio. CONCLUSION After intravenous administration, 2-NBDG selectively accumulated in the experimental brain tumors and provided bright contrast under wide-field fluorescence imaging with a clinical-grade operating microscope. Topical 2-NBDG was able to create a sufficient contrast to differentiate tumor from normal brain cells on the basis of visualization of cellular architecture with CLE. 5-Aminolevulinic acid demonstrated superior specificity in outlining tumor margins and significantly higher tumor background contrast. Given the nontoxicity of 2-NBDG, its use as a topical molecular marker for noninvasive in vivo intraoperative microscopy is encouraging and warrants further clinical evaluation.
Collapse
Affiliation(s)
- Evgenii Belykh
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Jubran H Jubran
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Laeth L George
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Liudmila Bardonova
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Deborah R Healey
- Department of Neuro-Oncology Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Joseph F Georges
- Department of Neurosurgery, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Chad C Quarles
- Department of Neuro-Oncology Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Jennifer M Eschbacher
- Department of Neuropathology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Shwetal Mehta
- Ivy Brain Tumor Center, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Adrienne C Scheck
- Department of Neuro-Oncology Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Peter Nakaji
- Department of Neurosurgery, Banner Health-University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Mark C Preul
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA.
| |
Collapse
|
19
|
Schupper AJ, Yong RL, Hadjipanayis CG. The Neurosurgeon's Armamentarium for Gliomas: An Update on Intraoperative Technologies to Improve Extent of Resection. J Clin Med 2021; 10:jcm10020236. [PMID: 33440712 PMCID: PMC7826675 DOI: 10.3390/jcm10020236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/18/2022] Open
Abstract
Maximal safe resection is the standard of care in the neurosurgical treatment of high-grade gliomas. To aid surgeons in the operating room, adjuvant techniques and technologies centered around improving intraoperative visualization of tumor tissue have been developed. In this review, we will discuss the most advanced technologies, specifically fluorescence-guided surgery, intraoperative imaging, neuromonitoring modalities, and microscopic imaging techniques. The goal of these technologies is to improve detection of tumor tissue beyond what conventional microsurgery has permitted. We describe the various advances, the current state of the literature that have tested the utility of the different adjuvants in clinical practice, and future directions for improving intraoperative technologies.
Collapse
|
20
|
Mazurek M, Kulesza B, Stoma F, Osuchowski J, Mańdziuk S, Rola R. Characteristics of Fluorescent Intraoperative Dyes Helpful in Gross Total Resection of High-Grade Gliomas-A Systematic Review. Diagnostics (Basel) 2020; 10:E1100. [PMID: 33339439 PMCID: PMC7766001 DOI: 10.3390/diagnostics10121100] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Background: A very important aspect in the treatment of high-grade glioma is gross total resection to reduce the risk of tumor recurrence. One of the methods to facilitate this task is intraoperative fluorescence navigation. The aim of the study was to compare the dyes used in this technique fluorescent intraoperative navigation in terms of the mechanism of action and influence on the treatment of patients. Methods: The review was carried out on the basis of articles found in PubMed, Google Scholar, and BMC search engines, as well as those identified by searched bibliographies and suggested by experts during the preparation of the article. The database analysis was performed for the following phrases: "glioma", "glioblastoma", "ALA", "5ALA", "5-ALA", "aminolevulinic acid", "levulinic acid", "fluorescein", "ICG", "indocyanine green", and "fluorescence navigation". Results: After analyzing 913 citations identified on the basis of the search criteria, we included 36 studies in the review. On the basis of the analyzed articles, we found that 5-aminolevulinic acid and fluorescein are highly effective in improving the percentage of gross total resection achieved in high-grade glioma surgery. At the same time, the limitations resulting from the use of these methods are marked-higher costs of the procedure and the need to have neurosurgical microscope in combination with a special light filter in the case of 5-aminolevulinic acid (5-ALA), and low specificity for neoplastic cells and the dependence on the degree of damage to the blood-brain barrier in the intensity of fluorescence in the case of fluorescein. The use of indocyanine green in the visualization of glioma cells is relatively unknown, but some researchers have suggested its utility and the benefits of using it simultaneously with other dyes. Conclusion: The use of intraoperative fluorescence navigation with the use of 5-aminolevulinic acid and fluorescein allows the range of high-grade glioma resection to be increased.
Collapse
Affiliation(s)
- Marek Mazurek
- Chair and Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (F.S.); (J.O.); (R.R.)
| | - Bartłomiej Kulesza
- Chair and Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (F.S.); (J.O.); (R.R.)
| | - Filip Stoma
- Chair and Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (F.S.); (J.O.); (R.R.)
| | - Jacek Osuchowski
- Chair and Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (F.S.); (J.O.); (R.R.)
| | - Sławomir Mańdziuk
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Radosław Rola
- Chair and Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (F.S.); (J.O.); (R.R.)
| |
Collapse
|
21
|
Abstract
Fluorescence-guided surgery provides surgeons with improved visualization of tumor tissue in the operating room to allow for maximal safe resection of brain tumors. Multiple fluorescent agents have been studied for fluorescence-guided surgery. Both nontargeted and targeted fluorescent agents are currently being used for glioblastoma multiforme visualization and resection. Fluorescence detection in the visible light or near infrared spectrum is possible. Visualization device advancements have permitted greater detection of fluorescence down to the cellular level, which may provide even greater ability for the neurosurgeon to resect tumors.
Collapse
Affiliation(s)
- Alexander J Schupper
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY, USA
| | - Constantinos Hadjipanayis
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, NY, USA; Department of Neurosurgery, Mount Sinai Beth Israel, New York, NY, USA.
| |
Collapse
|
22
|
Belykh E, Nelson LY, Seibel EJ, Preul MC. Letter to the Editor: Factors that Influence Quantification of Fluorescent Signal During the 5-ALA-Guided Surgery. World Neurosurg 2020; 139:700-702. [PMID: 32689689 DOI: 10.1016/j.wneu.2020.04.078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Evgenii Belykh
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona
| | - Leonard Y Nelson
- Human Photonics Lab, University of Washington, Human Photonics Lab, Seattle, Washington
| | - Eric J Seibel
- Human Photonics Lab, University of Washington, Human Photonics Lab, Seattle, Washington
| | - Mark C Preul
- The Loyal and Edith Davis Neurosurgical Research Laboratory, Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona.
| |
Collapse
|
23
|
Belykh E, Shaffer KV, Lin C, Byvaltsev VA, Preul MC, Chen L. Blood-Brain Barrier, Blood-Brain Tumor Barrier, and Fluorescence-Guided Neurosurgical Oncology: Delivering Optical Labels to Brain Tumors. Front Oncol 2020; 10:739. [PMID: 32582530 PMCID: PMC7290051 DOI: 10.3389/fonc.2020.00739] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/17/2020] [Indexed: 12/17/2022] Open
Abstract
Recent advances in maximum safe glioma resection have included the introduction of a host of visualization techniques to complement intraoperative white-light imaging of tumors. However, barriers to the effective use of these techniques within the central nervous system remain. In the healthy brain, the blood-brain barrier ensures the stability of the sensitive internal environment of the brain by protecting the active functions of the central nervous system and preventing the invasion of microorganisms and toxins. Brain tumors, however, often cause degradation and dysfunction of this barrier, resulting in a heterogeneous increase in vascular permeability throughout the tumor mass and outside it. Thus, the characteristics of both the blood-brain and blood-brain tumor barriers hinder the vascular delivery of a variety of therapeutic substances to brain tumors. Recent developments in fluorescent visualization of brain tumors offer improvements in the extent of maximal safe resection, but many of these fluorescent agents must reach the tumor via the vasculature. As a result, these fluorescence-guided resection techniques are often limited by the extent of vascular permeability in tumor regions and by the failure to stain the full volume of tumor tissue. In this review, we describe the structure and function of both the blood-brain and blood-brain tumor barriers in the context of the current state of fluorescence-guided imaging of brain tumors. We discuss features of currently used techniques for fluorescence-guided brain tumor resection, with an emphasis on their interactions with the blood-brain and blood-tumor barriers. Finally, we discuss a selection of novel preclinical techniques that have the potential to enhance the delivery of therapeutics to brain tumors in spite of the barrier properties of the brain.
Collapse
Affiliation(s)
- Evgenii Belykh
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Kurt V. Shaffer
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Chaoqun Lin
- Department of Neurosurgery, School of Medicine, Southeast University, Nanjing, China
| | - Vadim A. Byvaltsev
- Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
| | - Mark C. Preul
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Lukui Chen
- Department of Neurosurgery, Neuroscience Center, Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
24
|
Piffaretti D, Burgio F, Thelen M, Kaelin-Lang A, Paganetti P, Reinert M, D'Angelo ML. Corrigendum to "Protoporphyrin IX tracer fluorescence modulation for improved brain tumor cell lines visualization". JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 205:111828. [PMID: 32163836 DOI: 10.1016/j.jphotobiol.2020.111828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Fluorescence image guided surgical resection (FIGR) of high grade gliomas (HGGs) takes advantage of the accumulation of the tracer protoporphyrin IX (PpIX) in glioma cells following administration of 5-aminolevulinic acid (5-ALA). Occasionally, PpIX fluorescence intensity may be insufficient, thus compromising the efficacy and precision of the surgical intervention. The cause for the signal variation is unclear and strategies to improve the intensity of PpIX fluorescence are considered necessary. We have previously shown that differential expression of the epidermal growth factor receptor in glioblastoma cells affects PpIX fluorescence. Herein, we investigated other factors impairing PpIX accumulation and pharmacological treatments able to enhance PpIX fluorescence in glioblastoma cells displaying lower signal. In the present study we demonstrate that presence of serum in cell culture medium and differences in cellular confluence can negatively influence PpIX accumulation in U87 cell lines. We hypothesized that PpIX fluorescence intensity results from the interplay between the metabolic clearance of PpIX mediated by ferrochelatase (FECH) and heme oxygenase-1 (HO-1) and the cellular efflux of PpIX through the ATP-binding cassette subfamily G member 2 (ABCG2). Based on the availability of compounds targeting these proteins and inhibiting them, in this study we used modulators such as genistein, an isoflavone able to inhibit ABCG2; deferoxamine, which chelate iron ions impairing FECH activity and tin protoporphyrin IX (SnPP), the specific HO-1 inhibitor. Finally, we showed the efficacy of a precisely tuned pharmacological treatment in increasing PpIX accumulation and consequently fluorescence in glioblastoma cells. This strategy may translate in more sensitive tracing of tumor cells in-vivo and improved FIGR of HGGs and possibly low grade gliomas (LGGs).
Collapse
Affiliation(s)
- Deborah Piffaretti
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Cantonale Ospedaliero, Torricella-Taverne, Switzerland; Faculty of Medicine, Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Floriana Burgio
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Cantonale Ospedaliero, Torricella-Taverne, Switzerland; Fachhochschule Nordwestschweiz (FHNW), Muttenz, Basel, Switzerland
| | - Marcus Thelen
- Institute for Research in Biomedicine (IRB), Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Alain Kaelin-Lang
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Cantonale Ospedaliero, Torricella-Taverne, Switzerland; Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Faculty of Biomedical Neurosciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Paolo Paganetti
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Cantonale Ospedaliero, Torricella-Taverne, Switzerland
| | - Michael Reinert
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Cantonale Ospedaliero, Torricella-Taverne, Switzerland; Department of Neurosurgery, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland; Department of Neurosurgery, Inselspital Bern, University of Bern, Bern, Switzerland.
| | - Maria Luisa D'Angelo
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Cantonale Ospedaliero, Torricella-Taverne, Switzerland
| |
Collapse
|
25
|
Potapov AA, Chobulov SA, Nikitin PV, Okhlopkov VA, Goryaynov SA, Kosyr'kova AV, Maryakhin AD, Chelushkin DM, Ryzhova MV, Zakharova NE, Batalov AI, Pronin IN, Danilov GV, Savel'eva TA, Loshchenov VB, Yashin KS, Chekhonin VP. [Intraoperative vascular fluorescence in cerebral glioblastomas and vascular histological features]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2020; 83:21-34. [PMID: 32031165 DOI: 10.17116/neiro20198306121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
5-ALA intraoperative fluorescence is widely used in surgery of brain tumors for intraoperative demarcation of boundaries and more total resection because 5-ALA metabolites are not accumulated in the intact brain and vascular tissues. Given this fact, it was hypothesized that fluorescence of vessels in the immediate vicinity of a brain tumor may indicate their infiltration by tumor cells as a potential pathway for their dissemination and as a factor for continued tumor growth after surgery and adjuvant therapy. PURPOSE Identification of fluorescent vessels located near cerebral gliomas, with a histological description of their structure, relationships with the tumor, and potential invasion of the walls by tumor cells. MATERIAL AND METHODS A prospective cohort study included 14 patients with malignant supratentorial gliomas, aged 20 to 78 years. Five patients were operated on due to continued tumor growth. Two hours before surgery, all patients received 5-ALA orally. During surgery, a microscope (Carl Zeiss OPMI Pentero, Germany) with a fluorescent module (BLUE-400) was used. In all cases, molecular-genetic and immunohistochemical examinations of the tumor material were performed. During surgery, fluorescent vessels, after evaluating their functional significance, were also resected for histological examination. RESULTS Glioblastoma and anaplastic astrocytoma were verified in 10 and 4 patients, respectively. In 4 out of 10 glioblastoma cases, vessels with homogeneous or fragmentary fluorescent walls were detected in the tumor bed after resection of most of the tumor; in patients with anaplastic astrocytomas, vascular fluorescence was not observed. In the four vascular samples with intraoperatively detected wall fluorescence, tumor invasion into the vascular layers was revealed in all cases. These patients underwent an immunohistochemical examination with monoclonal antibodies to the glial GFAP marker, which clearly identified areas of ingrowth of tumor cells into the vascular wall. CONCLUSION 5-ALA intraoperative fluorescence is a fundamentally new approach in the rapid diagnosis of tumor-infiltrated blood vessels. Invasion of tumor cells to intact vessels may be a mechanism of tumor progression and dissemination. Additional resection of fluorescent vessels may affect the radicalness of surgical treatment, but requires a mandatory assessment of their functional significance.
Collapse
Affiliation(s)
- A A Potapov
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | - P V Nikitin
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | | | | | | | | | - M V Ryzhova
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | - A I Batalov
- Burdenko Neurosurgical Center, Moscow, Russia
| | - I N Pronin
- Burdenko Neurosurgical Center, Moscow, Russia
| | - G V Danilov
- Burdenko Neurosurgical Center, Moscow, Russia
| | - T A Savel'eva
- Prokhorov Institute of General Physics, Moscow, Russia; MEPhI National Research Nuclear University, Moscow, Russia
| | - V B Loshchenov
- Prokhorov Institute of General Physics, Moscow, Russia; MEPhI National Research Nuclear University, Moscow, Russia
| | - K S Yashin
- Volga Federal Medical Research Center, Nizhniy Novgorod, Russia
| | - V P Chekhonin
- Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| |
Collapse
|
26
|
Yang X, Lin Y. Surgical resection of glioma involving eloquent brain areas: Tumor boundary, functional boundary, and plasticity consideration. GLIOMA 2020. [DOI: 10.4103/glioma.glioma_16_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
27
|
Almekkawi AK, El Ahmadieh TY, Wu EM, Abunimer AM, Abi-Aad KR, Aoun SG, Plitt AR, El Tecle NE, Patel T, Stummer W, Bendok BR. The Use of 5-Aminolevulinic Acid in Low-Grade Glioma Resection: A Systematic Review. Oper Neurosurg (Hagerstown) 2019; 19:1-8. [DOI: 10.1093/ons/opz336] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 08/24/2019] [Indexed: 11/13/2022] Open
Abstract
Abstract
BACKGROUND
For optimizing high-grade glioma resection, 5-aminolevulinic acid is a reliable tool. However, its efficacy in low-grade glioma resection remains unclear.
OBJECTIVE
To study the role of 5-aminolevulinic acid in low-grade glioma resection and assess positive fluorescence rates and the effect on the extent of resection.
METHODS
A systematic review of PubMed, Google Scholar, and Cochrane was performed from the date of inception to February 1, 2019. Studies that correlated 5-aminolevulinic acid fluorescence with low-grade glioma in the setting of operative resection were selected. Studies with biopsy only were excluded. Positive fluorescence rates were calculated. The quality index of the selected papers was provided. No patient information was used, so Institutional Review Board approval and patient consent were not required.
RESULTS
A total of 12 articles met the selection criteria with 244 histologically confirmed low-grade glioma patients who underwent microsurgical resection. All patients received 20 mg/kg body weight of 5-aminolevulinic acid. Only 60 patients (n = 60/244; 24.5%) demonstrated visual intraoperative 5-aminolevulinic acid fluorescence. The extent of resection was reported in 4 studies; however, the data combined low- and high-grade tumors. Only 2 studies reported on tumor location. Only 3 studies reported on clinical outcomes. The Zeiss OPMI Pentero microscope was most commonly used across all studies. The average quality index was 14.58 (range: 10-17), which correlated with an overall good quality.
CONCLUSION
There is an overall low correlation between 5-aminolevulinic acid fluorescence and low-grade glioma. Advances in visualization technology and using standardized fluorescence quantification methods may further improve the visualization and reliability of 5-aminolevulinic acid fluorescence in low-grade glioma resection.
Collapse
Affiliation(s)
- Ahmad Kareem Almekkawi
- Department of Neurological Surgery, Brigham and Women's Hospital, Harvard Medical School, University of Harvard, Boston, Massachusetts
| | - Tarek Y El Ahmadieh
- Department of Neurological Surgery, Zale Lipshy Hospital, The University of Texas Southwestern, Dallas, Texas
| | - Eva M Wu
- Department of Neurological Surgery, Zale Lipshy Hospital, The University of Texas Southwestern, Dallas, Texas
| | - Abdullah M Abunimer
- Department of Neurological Surgery, Brigham and Women's Hospital, Harvard Medical School, University of Harvard, Boston, Massachusetts
| | - Karl R Abi-Aad
- Department of Neurological Surgery, Mayo Clinic, Phoenix, Arizona
| | - Salah G Aoun
- Department of Neurological Surgery, Zale Lipshy Hospital, The University of Texas Southwestern, Dallas, Texas
| | - Aaron R Plitt
- Department of Neurological Surgery, Zale Lipshy Hospital, The University of Texas Southwestern, Dallas, Texas
| | - Najib E El Tecle
- Department of Neurological Surgery, Saint Louis University Hospital, Saint Louis, Missouri
| | - Toral Patel
- Department of Neurological Surgery, Zale Lipshy Hospital, The University of Texas Southwestern, Dallas, Texas
| | - Walter Stummer
- Department of Neurosurgery, University Hospital Münster, Münster, Germany
| | - Bernard R Bendok
- Department of Neurological Surgery, Mayo Clinic, Phoenix, Arizona
| |
Collapse
|
28
|
Piffaretti D, Burgio F, Thelen M, Kaelin-Lang A, Paganetti P, Reinert M, D'Angelo ML. Protoporphyrin IX tracer fluorescence modulation for improved brain tumor cell lines visualization. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 201:111640. [PMID: 31734545 DOI: 10.1016/j.jphotobiol.2019.111640] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/02/2019] [Accepted: 09/24/2019] [Indexed: 01/31/2023]
Abstract
Fluorescence image guided surgical resection (FIGR) of high grade gliomas (HGGs) takes advantage of the accumulation of the tracer protoporphyrin IX (PpIX) in glioma cells following administration of 5-aminolevulinic acid (5-ALA). Occasionally, PpIX fluorescence intensity may be insufficient, thus compromising the efficacy and precision of the surgical intervention. The cause for the signal variation is unclear and strategies to improve the intensity of PpIX fluorescence are considered necessary. We have previously shown that differential expression of the epidermal growth factor receptor in glioblastoma cells affects PpIX fluorescence. Herein, we investigated other factors impairing PpIX accumulation and pharmacological treatments able to enhance PpIX fluorescence in glioblastoma cells displaying lower signal. In the present study we demonstrate that presence of serum in cell culture medium and differences in cellular confluence can negatively influence PpIX accumulation in U87 cell lines. We hypothesized that PpIX fluorescence intensity results from the interplay between the metabolic clearance of PpIX mediated by ferrochelatase and heme oxygenase-1 and the cellular efflux of PpIX through the ATP-binding cassette subfamily G member 2 (ABCG2). Based on the availability of compounds targeting these proteins and inhibiting them, in this study we used modulators such as genistein, an isoflavone able to inhibit ABCG2; deferoxamine, which chelate iron ions impairing FECH activity and tin protoporphyrin IX (SnPP), the specific HO-1 inhibitor. Finally, we showed the efficacy of a precisely tuned pharmacological treatment in increasing PpIX accumulation and consequently fluorescence in glioblastoma cells. This strategy may translate in more sensitive tracing of tumor cells in-vivo and improved FIGR of HGGs and possibly low grade gliomas (LGGs).
Collapse
Affiliation(s)
- Deborah Piffaretti
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Cantonale Ospedaliero, Torricella-Taverne, Switzerland; Faculty of Medicine, Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Floriana Burgio
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Cantonale Ospedaliero, Torricella-Taverne, Switzerland; Fachhochschule Nordwestschweiz (FHNW), Muttenz, Basel, Switzerland
| | - Marcus Thelen
- Institute for Research in Biomedicine (IRB), Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Alain Kaelin-Lang
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Cantonale Ospedaliero, Torricella-Taverne, Switzerland; Department of Neurology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland; Faculty of Biomedical Neurosciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Paolo Paganetti
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Cantonale Ospedaliero, Torricella-Taverne, Switzerland
| | - Michael Reinert
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Cantonale Ospedaliero, Torricella-Taverne, Switzerland; Department of Neurosurgery, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland; Department of Neurosurgery, Inselspital Bern, University of Bern, Bern, Switzerland.
| | - Maria Luisa D'Angelo
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Cantonale Ospedaliero, Torricella-Taverne, Switzerland
| |
Collapse
|
29
|
Byvaltsev VA, Bardonova LA, Onaka NR, Polkin RA, Ochkal SV, Shepelev VV, Aliyev MA, Potapov AA. Acridine Orange: A Review of Novel Applications for Surgical Cancer Imaging and Therapy. Front Oncol 2019; 9:925. [PMID: 31612102 PMCID: PMC6769070 DOI: 10.3389/fonc.2019.00925] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/04/2019] [Indexed: 01/10/2023] Open
Abstract
Introduction: Acridine orange (AO) was first extracted from coal tar in the late nineteenth century and was used as a fluorescent dye. In this paper, we review emergent research about novel applications of AO for fluorescence surgery and cancer therapy. Materials and methods: We performed a systematic search in the MEDLINE, PubMed, Cochrane library, Google Scholar, Embase, Web of Science, and Scopus database using combinations of the term "acridine orange" with the following: "surgical oncology," "neuropathology," "microsurgery," "intraoperative fluorescence," "confocal microscopy," "pathology," "endomicroscopy," "guidance," "fluorescence guidance," "oncology," "surgery," "neurooncology," and "photodynamic therapy." Peer-reviewed articles published in English were included in this review. We have also scanned references for relevant articles. Results: We have reviewed studies on the various application of AO in microscopy, endomicroscopy, intraoperative fluorescence guidance, photodynamic therapy, sonodynamic therapy, radiodynamic therapy. Conclusion: Although the number of studies on the clinical use of AO is limited, pilot studies have demonstrated the safety and feasibility of its application as an intraoperative fluorescent dye and as a novel photo- and radio-sensitizator. Further clinical studies are necessary to more definitively assess the clinical benefit AO-based fluorescence guidance, therapy for sarcomas, and to establish feasibility of this new approach for the treatment of other tumor types.
Collapse
Affiliation(s)
- Vadim A. Byvaltsev
- Neurosurgery and Innovative Medicine Department, Irkutsk State Medical University, Irkutsk, Russia
- Irkutsk Scientific Center of Surgery and Traumatology, Irkutsk, Russia
| | - Liudmila A. Bardonova
- Neurosurgery and Innovative Medicine Department, Irkutsk State Medical University, Irkutsk, Russia
| | - Naomi R. Onaka
- University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Roman A. Polkin
- Neurosurgery and Innovative Medicine Department, Irkutsk State Medical University, Irkutsk, Russia
| | - Sergey V. Ochkal
- Neurosurgery and Innovative Medicine Department, Irkutsk State Medical University, Irkutsk, Russia
| | - Valerij V. Shepelev
- Neurosurgery and Innovative Medicine Department, Irkutsk State Medical University, Irkutsk, Russia
| | - Marat A. Aliyev
- Neurosurgery and Innovative Medicine Department, Irkutsk State Medical University, Irkutsk, Russia
| | - Alexander A. Potapov
- Federal State Autonomous Institution “N. N. Burdenko National Scientific and Practical Center for Neurosurgery” of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| |
Collapse
|
30
|
Goryaynov SA, Okhlopkov VA, Golbin DA, Chernyshov KA, Svistov DV, Martynov BV, Kim AV, Byvaltsev VA, Pavlova GV, Batalov A, Konovalov NA, Zelenkov PV, Loschenov VB, Potapov AA. Fluorescence Diagnosis in Neurooncology: Retrospective Analysis of 653 Cases. Front Oncol 2019; 9:830. [PMID: 31552168 PMCID: PMC6747044 DOI: 10.3389/fonc.2019.00830] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022] Open
Abstract
Objective: This study is to analyze fluorescence sensitivity in the diagnosis of brain and spinal cord tumors. Material and methods: The authors conducted a multicenter retrospective analysis of data on 653 cases in 641 patients: 553 of them had brain tumors and 88 spinal cord tumors. Brain tumor resection was performed in 523 patients, of whom 484 were adults and 39 children. The analyzed series was presented by 320 gliomas, 101 meningiomas, and 72 metastases. A stereotactic biopsy was performed in 20 patients and endoscopic surgery in 10 patients. In all cases, 20 mg/kg of 5-Aminolaevulinic acid was administered orally 2-h before surgery. All surgical interventions were performed with a microscope BLUE 400 to visualize fluorescence, while endoscopic surgery-with an endoscope equipped with a fluorescent module. Fluorescence spectroscopy was conducted in 20 cases of stereotactic biopsies and in 88 cases of spinal cord tumors. Results: Among adult brain tumors operated by microsurgical techniques, meningiomas showed the highest 5-ALA fluorescence sensitivity 94% (n = 95/101), brain metastases 84.7% (n = 61/72), low-grade gliomas 46.4% (n = 26/56), and high-grade gliomas 90.2% (n = 238/264). In children the highest 5-ALA visible fluorescence was observed in anaplastic astrocytomas 100% (n = 4/4) and in anaplastic ependymomas 100% (n = 4/4); in low-grade gliomas it made up 31.8% (n = 7/22). As for the spinal cord tumors in adults, the highest sensitivity was demonstrated by glioblastomas 100% (n = 4/4) and by meningiomas 100% (n = 4/4); Fluorescence was not found in gemangioblastomas (n = 0/6) and neurinomas (n = 0/4). Fluorescence intensity reached 60% (n = 6/10) in endoscopic surgery and 90% (n = 18/20) in stereotactic biopsy. Conclusion: 5-ALA fluorescence diagnosis proved to be most sensitive in surgery of HGG and meningioma (90.2 and 94.1%, respectively). Sensitivity in surgery of intracranial metastases and spinal cord tumors was slightly lower (84.7 and 63.6%, correspondingly). The lowest fluorescence sensitivity was marked in pediatric tumors and LGG (50 and 46.4%, correspondingly). Fluorescence diagnosis can also be used in transnasal endoscopic surgery of skull base tumors and in stereotactic biopsy.
Collapse
Affiliation(s)
- Sergey A. Goryaynov
- N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladimir A. Okhlopkov
- N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Denis A. Golbin
- N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Konstantin A. Chernyshov
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Dmitrij V. Svistov
- S. M. Kirov Military Medical Academy of the Ministry of Defense of the Russian Federation, St-Petersburg, Russia
| | - Boris V. Martynov
- S. M. Kirov Military Medical Academy of the Ministry of Defense of the Russian Federation, St-Petersburg, Russia
| | - Alexandr V. Kim
- V. A. Almazov Federal North-West Medical Research Centre of the Ministry of Health of the Russian Federation, St-Petersburg, Russia
| | - Vadim A. Byvaltsev
- Laboratory of Neurosurgery, Irkutsk Scientific Center of Surgery and Traumatology, Irkutsk, Russia
- Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
| | - Galina V. Pavlova
- Institute of Gene Biology, Russian Academy of Science, Moscow, Russia
| | - Artem Batalov
- N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Nikolay A. Konovalov
- N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Petr V. Zelenkov
- N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Victor B. Loschenov
- Prokhorov General Physics Institute of the Russian Academy of Science, Moscow, Russia
- National Research Nuclear University MEPhI, Moscow, Russia
| | - Alexandr A. Potapov
- N. N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
31
|
McNicholas K, MacGregor MN, Gleadle JM. In order for the light to shine so brightly, the darkness must be present-why do cancers fluoresce with 5-aminolaevulinic acid? Br J Cancer 2019; 121:631-639. [PMID: 31406300 PMCID: PMC6889380 DOI: 10.1038/s41416-019-0516-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 05/23/2019] [Accepted: 06/14/2019] [Indexed: 02/07/2023] Open
Abstract
Photodynamic diagnosis and therapy have emerged as a promising tool in oncology. Using the visible fluorescence from photosensitisers excited by light, clinicians can both identify and treat tumour cells in situ. Protoporphyrin IX, produced in the penultimate step of the haem synthesis pathway, is a naturally occurring photosensitiser that visibly fluoresces when exposed to light. This fluorescence is enhanced considerably by the exogenous administration of the substrate 5-aminolaevulinic acid (5-ALA). Significantly, 5-ALA-induced protoporphyrin IX accumulates preferentially in cancer cells, and this enhanced fluorescence has been harnessed for the detection and photodynamic treatment of brain, skin and bladder tumours. However, surprisingly little is known about the mechanistic basis for this phenomenon. This review focuses on alterations in the haem pathway in cancer and considers the unique features of the cancer environment, such as altered glucose metabolism, oncogenic mutations and hypoxia, and their potential effects on the protoporphyrin IX phenomenon. A better understanding of why cancer cells fluoresce with 5-ALA would improve its use in cancer diagnostics and therapies.
Collapse
Affiliation(s)
- Kym McNicholas
- Department of Renal Medicine, Flinders Medical Centre, Flinders University, Bedford Park, SA, 5042, Australia. .,College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia.
| | - Melanie N MacGregor
- Future Industries Institute, School of Engineering, University of South Australia, Adelaide, SA, 5095, Australia
| | - Jonathan M Gleadle
- Department of Renal Medicine, Flinders Medical Centre, Flinders University, Bedford Park, SA, 5042, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia
| |
Collapse
|
32
|
Boschi A, Della Puppa A. 5-ALA fluorescence on tumors different from malignant gliomas. Review of the literature and our experience. J Neurosurg Sci 2019; 63:661-669. [PMID: 31355622 DOI: 10.23736/s0390-5616.19.04766-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Fluorescence guided surgery with 5-aminolevulinic acid (5-ALA) is a well-established technique for improving resection of malignant cerebral glioma. In recent years, this technique is being increasingly applied off label to other brain tumor entities such as Low-grade glioma, meningioma, metastases, lymphoma and other central nervous system tumors. In this paper We collected all the data of 5-ALA guided surgery in "not malignant glioma" in literature compared to our experience. EVIDENCE ACQUISITION We searched the PubMed/Medline database all clinical series reporting 5-ALA guided-surgery in not malignant glioma. We reviewed all data also showing our experience. EVIDENCE SYNTHESIS Fluorescence guided surgery with 5-ALA might be helpful not only in high-grade glioma but also in other brain tumor especially in Low grade glioma with a suspect of anaplastic spot, meningioma with bone invasion or parenchymal infiltration, ependymoma, lymphoma and pediatric tumors. CONCLUSIONS Due to the relatively few number or clinical studies, prospective clinical trials are needed to increase the overall level of evidence concerning the usage of 5-ALA in CNS tumors different from high-grade glioma. Furthermore, a greater us of new tools such as, spectroscopy or confocal microscope or the use of combination of other fluorescence could make more effective this technique.
Collapse
Affiliation(s)
- Andrea Boschi
- Department of Neurosurgery, Careggi Hospital, University of Florence, Florence, Italy
| | | |
Collapse
|
33
|
Gandhi S, Tayebi Meybodi A, Belykh E, Cavallo C, Zhao X, Syed MP, Borba Moreira L, Lawton MT, Nakaji P, Preul MC. Survival Outcomes Among Patients With High-Grade Glioma Treated With 5-Aminolevulinic Acid-Guided Surgery: A Systematic Review and Meta-Analysis. Front Oncol 2019; 9:620. [PMID: 31380272 PMCID: PMC6652805 DOI: 10.3389/fonc.2019.00620] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/24/2019] [Indexed: 01/08/2023] Open
Abstract
Background: High-grade glioma (HGG) is associated with a dismal prognosis despite significant advances in adjuvant therapies, including chemotherapy, immunotherapy, and radiotherapy. Extent of resection continues to be the most important independent prognosticator of survival. This underlines the significance of increasing gross total resection (GTR) rates by using adjunctive intraoperative modalities to maximize resection with minimal neurological morbidity. 5-aminolevulinic acid (5-ALA) is the only US Food and Drug Administration–approved intraoperative optical agent used for fluorescence-guided surgical resection of gliomas. Despite several studies on the impact of intra-operative 5-ALA use on the extent of HGG resection, a clear picture of how such usage affects patient survival is still unavailable. Methods: A systematic review was conducted of all relevant studies assessing the GTR rate and survival outcomes [overall survival (OS) and progression-free survival (PFS)] in HGG. A meta-analysis of eligible studies was performed to assess the influence of 5-ALA-guided resection on improving GTR, OS, and PFS. GTR was defined as >95% resection. Results: Of 23 eligible studies, 19 reporting GTR rates were included in the meta-analysis. The pooled cohort had 998 patients with HGG, including 796 with newly diagnosed cases. The pooled GTR rate among patients with 5-ALA–guided resection was 76.8% (95% confidence interval, 69.1–82.9%). A comparative subgroup analysis of 5-ALA–guided vs. conventional surgery (controlling for within-study covariates) showed a 26% higher GTR rate in the 5-ALA subgroup (odds ratio, 3.8; P < 0.001). There were 11 studies eligible for survival outcome analysis, 4 of which reported PFS. The pooled mean difference in OS and PFS was 3 and 1 months, respectively, favoring 5-ALA vs. control (P < 0.001). Conclusions: This meta-analysis shows a significant increase in GTR rate with 5-ALA–guided surgical resection, with a higher weighted GTR rate (~76%) than the pivotal phase III study (~65%). Pooled analysis showed a small yet significant increase in survival measures associated with the use of 5-ALA. Despite the statistically significant results, the low level of evidence and heterogeneity across these studies make it difficult to conclusively report an independent association between 5-ALA use and survival outcomes in HGG. Additional randomized control studies are required to delineate the role of 5-ALA in survival outcomes in HGG.
Collapse
Affiliation(s)
- Sirin Gandhi
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Ali Tayebi Meybodi
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Evgenii Belykh
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States.,Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
| | - Claudio Cavallo
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Xiaochun Zhao
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Masood Pasha Syed
- Department of Medicine, Saint Vincent Hospital, Worcester, MA, United States
| | - Leandro Borba Moreira
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Michael T Lawton
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Peter Nakaji
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Mark C Preul
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| |
Collapse
|
34
|
Reinert M, Piffaretti D, Wilzbach M, Hauger C, Guckler R, Marchi F, D'Angelo ML. Quantitative Modulation of PpIX Fluorescence and Improved Glioma Visualization. Front Surg 2019; 6:41. [PMID: 31380388 PMCID: PMC6646670 DOI: 10.3389/fsurg.2019.00041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/21/2019] [Indexed: 11/13/2022] Open
Abstract
5-Aminolevulinic acid (5-ALA) induced fluorescence to augment surgical resection for high grade glioma has become a standard of care. Protoporphyrin IX (PpIX) visibility is however subject to the variability of the single tumor expression and to the interobserver interpretation. We therefore hypothesized that in different glioma cell lines with variable 5-ALA induced fluorescence, the signal can be pharmacologically increased. We therefore analyzed in three different GBM cell lines, with different expression of epidermal growth factor receptor (EGFR), the variability of 5-ALA induced PpIX fluorescence after the pharmacological blockade at different steps of PpIX breakdown and influencing the outbound transport of PpIX. Using flow cytometry, fluorescence microplate reader, and confocal microscopy the PpIX fluorescence was analyzed after exposure to tin protoporphyrin IX (SnPP), deferoxamine (DFO), and genistein. We furthermore constructed a microscope (Qp9-microscope) being able to measure quantitatively the concentration of PpIX. These values were compared with the extraction of PpIX in tumor biopsy taken during the GBM surgery. Although all three cell lines showed an increase to 5-ALA induced fluorescence their baseline activity was different. Treatment with either SnPP, DFO and genistein was able to increase 5-ALA induced fluorescence. Qp9-microscopy of tumor sample produced a color coded PpIX concentration map which was overlaid on the tumor image. The PpIX extraction from tumor sample analyzed using the plate reader gave lower values of the concentration, as compared to the expected values of the Qp9-microscope, however still in the same decimal range of μg/mL. This may be due to homogenization of the values during extraction and cell disaggregation. In conclusion pharmacological augmentation in GBM cell lines of PpIX signal is possible. A quantitative PpIX map for surgery is feasible and may help refine surgical excision. Further correlations of tumor tissue samples and Qp9-microscopy is needed, prior to develop an intraoperative surgical adjunct to the already existing 5-ALA induced surgery.
Collapse
Affiliation(s)
- Michael Reinert
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Torricella-Taverne, Switzerland.,Department of Neurosurgery, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland.,Faculty of Biomedical Neurosciences, Università Della Svizzera Italiana, Lugano, Switzerland.,Medical Faculty, University of Bern, Bern, Switzerland
| | - Deborah Piffaretti
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Torricella-Taverne, Switzerland.,Faculty of Medicine, Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | | | | | | | - Francesco Marchi
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Torricella-Taverne, Switzerland.,Department of Neurosurgery, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Maria Luisa D'Angelo
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero Cantonale, Torricella-Taverne, Switzerland
| |
Collapse
|
35
|
Belykh E, Miller EJ, Carotenuto A, Patel AA, Cavallo C, Martirosyan NL, Healey DR, Byvaltsev VA, Scheck AC, Lawton MT, Eschbacher JM, Nakaji P, Preul MC. Progress in Confocal Laser Endomicroscopy for Neurosurgery and Technical Nuances for Brain Tumor Imaging With Fluorescein. Front Oncol 2019; 9:554. [PMID: 31334106 PMCID: PMC6616132 DOI: 10.3389/fonc.2019.00554] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/06/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Previous studies showed that confocal laser endomicroscopy (CLE) images of brain tumors acquired by a first-generation (Gen1) CLE system using fluorescein sodium (FNa) contrast yielded a diagnostic accuracy similar to frozen surgical sections and histologic analysis. We investigated performance improvements of a second-generation (Gen2) CLE system designed specifically for neurosurgical use. Methods: Rodent glioma models were used for in vivo and rapid ex vivo CLE imaging. FNa and 5-aminolevulinic acid were used as contrast agents. Gen1 and Gen2 CLE images were compared to distinguish cytoarchitectural features of tumor mass and margin and surrounding and normal brain regions. We assessed imaging parameters (gain, laser power, brightness, scanning speed, imaging depth, and Z-stack [3D image acquisition]) and evaluated optimal values for better neurosurgical imaging performance with Gen2. Results: Efficacy of Gen1 and Gen2 was similar in identifying normal brain tissue, vasculature, and tumor cells in masses or at margins. Gen2 had smaller field of view, but higher image resolution, and sharper, clearer images. Other advantages of the Gen2 were auto-brightness correction, user interface, image metadata handling, and image transfer. CLE imaging with FNa allowed identification of nuclear and cytoplasmic contours in tumor cells. Injection of higher dosages of FNa (20 and 40 mg/kg vs. 0.1–8 mg/kg) resulted in better image clarity and structural identification. When used with 5-aminolevulinic acid, CLE was not able to detect individual glioma cells labeled with protoporphyrin IX, but overall fluorescence intensity was higher (p < 0.01) than in the normal hemisphere. Gen2 Z-stack imaging allowed a unique 3D image volume presentation through the focal depth. Conclusion: Compared with Gen1, advantages of Gen2 CLE included a more responsive and intuitive user interface, collection of metadata with each image, automatic Z-stack imaging, sharper images, and a sterile sheath. Shortcomings of Gen2 were a slightly slower maximal imaging speed and smaller field of view. Optimal Gen2 imaging parameters to visualize brain tumor cytoarchitecture with FNa as a fluorescent contrast were defined to aid further neurosurgical clinical in vivo and rapid ex vivo use. Further validation of the Gen2 CLE for microscopic visualization and diagnosis of brain tumors is ongoing.
Collapse
Affiliation(s)
- Evgenii Belykh
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States.,Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
| | - Eric J Miller
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Alessandro Carotenuto
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Arpan A Patel
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Claudio Cavallo
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Nikolay L Martirosyan
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Debbie R Healey
- Department of Neuro-Oncology Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Vadim A Byvaltsev
- Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
| | - Adrienne C Scheck
- Department of Neuro-Oncology Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Michael T Lawton
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Jennifer M Eschbacher
- Department of Neuropathology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Peter Nakaji
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Mark C Preul
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| |
Collapse
|
36
|
Wei L, Fujita Y, Sanai N, Liu JTC. Toward Quantitative Neurosurgical Guidance With High-Resolution Microscopy of 5-Aminolevulinic Acid-Induced Protoporphyrin IX. Front Oncol 2019; 9:592. [PMID: 31334117 PMCID: PMC6616084 DOI: 10.3389/fonc.2019.00592] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/17/2019] [Indexed: 12/13/2022] Open
Abstract
Low-power fluorescence microscopy of 5-ALA-induced PpIX has emerged as a valuable intraoperative imaging technology for improving the resection of malignant gliomas. However, current fluorescence imaging tools are not highly sensitive nor quantitative, which limits their effectiveness for optimizing operative decisions near the surgical margins of gliomas, in particular non-enhancing low-grade gliomas. Intraoperative high-resolution optical-sectioning microscopy can potentially serve as a valuable complement to low-power fluorescence microscopy by providing reproducible quantification of tumor parameters at the infiltrative margins of diffuse gliomas. In this forward-looking perspective article, we provide a brief discussion of recent technical advancements, pilot clinical studies, and our vision of the future adoption of handheld optical-sectioning microscopy at the final stages of glioma surgeries to enhance the extent of resection. We list a number of challenges for clinical acceptance, as well as potential strategies to overcome such obstacles for the surgical implementation of these in vivo microscopy techniques.
Collapse
Affiliation(s)
- Linpeng Wei
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States
| | - Yoko Fujita
- Department of Neurological Surgery, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Nader Sanai
- Department of Neurological Surgery, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Jonathan T C Liu
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States.,Department of Pathology, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
37
|
Jiang Y, Girard EJ, Pakiam F, Seibel EJ. Calibration of fluorescence imaging for tumor surgical margin delineation: multistep registration of fluorescence and histological images. J Med Imaging (Bellingham) 2019; 6:025005. [PMID: 31093519 DOI: 10.1117/1.jmi.6.2.025005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/15/2019] [Indexed: 02/02/2023] Open
Abstract
Although a greater extent of tumor resection is important for patients' survival, complete tumor removal, especially tumor margins, remains challenging due to the lack of sensitivity and specificity of current surgical guidance techniques at the margins. Intraoperative fluorescence imaging with targeted fluorophores is promising for tumor margin delineation. To verify the tumor margins detected by the fluorescence images, it is necessary to register fluorescence with histological images, which provide the ground truth for tumor regions. However, current registration methods compare fluorescence images to a single-layer histological slide, which is selected subjectively and represents a single plane of the three-dimensional tumor. A multistep pipeline is established to correlate fluorescence images to stacked histological images, including fluorescence calibration and multistep registration. Multiple histological slices are integrated as a two-dimensional (2-D) tumor map using optical attenuation model and average intensity projection. A BLZ-100-labeled medulloblastoma mouse model is used to test the whole framework. On average, the synthesized 2-D tumor map outperforms the selected best slide as ground truth [Dice similarity coefficient (DSC): 0.582 versus 0.398, with significant differences; mean area under the curve (AUC) of the receiver operating characteristic curve: 88% versus 85.5%] and the randomly selected slide as ground truth (DSC: 0.582 versus 0.396 with significant differences; mean AUC: 88% versus 84.1% with significant differences), which indicates our pipeline is reliable and can be applied to investigate targeted fluorescence probes in tumor margin detection. Following this proposed pipeline, BLZ-100 shows enhancement in both tumor cores and tumor margins (mean target-to-background ratio: 8.64 ± 5.76 and 4.82 ± 2.79 , respectively).
Collapse
Affiliation(s)
- Yang Jiang
- University of Washington, Human Photonics Lab, Seattle, Washington, United States
| | - Emily J Girard
- Fred Hutchinson Cancer Research Center, Olson Lab, Seattle, Washington, United States
| | - Fiona Pakiam
- Fred Hutchinson Cancer Research Center, Olson Lab, Seattle, Washington, United States
| | - Eric J Seibel
- University of Washington, Human Photonics Lab, Seattle, Washington, United States
| |
Collapse
|
38
|
Wei L, Roberts DW, Sanai N, Liu JTC. Visualization technologies for 5-ALA-based fluorescence-guided surgeries. J Neurooncol 2018; 141:495-505. [PMID: 30554344 DOI: 10.1007/s11060-018-03077-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/10/2018] [Indexed: 01/27/2023]
Abstract
INTRODUCTION 5-ALA-based fluorescence-guided surgery has been shown to be a safe and effective method to improve intraoperative visualization and resection of malignant gliomas. However, it remains ineffective in guiding the resection of lower-grade, non-enhancing, and deep-seated tumors, mainly because these tumors do not produce detectable fluorescence with conventional visualization technologies, namely, wide-field (WF) surgical microscopy. METHODS We describe some of the main factors that limit the sensitivity and accuracy of conventional WF surgical microscopy, and then provide a survey of commercial and research prototypes being developed to address these challenges, along with their principles, advantages and disadvantages, as well as the current status of clinical translation for each technology. We also provide a neurosurgical perspective on how these visualization technologies might best be implemented for guiding glioma surgeries in the future. RESULTS Detection of PpIX expression in low-grade gliomas and at the infiltrative margins of all gliomas has been achieved with high-sensitivity probe-based visualization techniques. Deep-tissue PpIX imaging of up to 5 mm has also been achieved using red-light illumination techniques. Spectroscopic approaches have enabled more accurate quantification of PpIX expression. CONCLUSION Advancements in visualization technologies have extended the sensitivity and accuracy of conventional WF surgical microscopy. These technologies will continue to be refined to further improve the extent of resection in glioma patients using 5-ALA-induced fluorescence.
Collapse
Affiliation(s)
- Linpeng Wei
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA.
| | - David W Roberts
- Section of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03756, USA
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03756, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
- Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Nader Sanai
- Department of Neurological Surgery, Barrow Neurological Institute, Phoenix, AZ, 85013, USA
| | - Jonathan T C Liu
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
- Department of Pathology, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
39
|
Hendricks BK, Sanai N, Stummer W. Fluorescence-guided surgery with aminolevulinic acid for low-grade gliomas. J Neurooncol 2018; 141:13-18. [PMID: 30367383 DOI: 10.1007/s11060-018-03026-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/04/2018] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Fluorescence guided surgery has developed over the last 2 decades as a formidable augmentation strategy to promote maximal safe resection and diagnostic accuracy within gliomas. The majority of the literature evidence supporting this modality utilizes 5-aminolevulinic acid in the setting of high-grade gliomas. The role for fluorescence guided surgery in low-grade gliomas is less well defined. RESULTS This review describes the existing literature discussing the utilization of 5-aminolevulinic acid for fluorescence guided surgery in low-grade gliomas, including its pertinence in identification of anaplastic foci and potential role in guiding resection following combination with augmentation strategies for detection. CONCLUSION The advance in operative technology and growth of research analyzing 5-aminolevulinic acid will continue to enhance the role of fluorescence guided surgery within the standard of surgical management for low-grade gliomas.
Collapse
Affiliation(s)
| | - Nader Sanai
- Barrow Neurological Institute, Phoenix, AZ, USA
| | - Walter Stummer
- Department of Neurosurgery, University of Münster, Münster, Germany.
| |
Collapse
|
40
|
Kröger S, Niehoff AC, Jeibmann A, Sperling M, Paulus W, Stummer W, Karst U. Complementary Molecular and Elemental Mass-Spectrometric Imaging of Human Brain Tumors Resected by Fluorescence-Guided Surgery. Anal Chem 2018; 90:12253-12260. [PMID: 30215510 DOI: 10.1021/acs.analchem.8b03516] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fluorescence-guided surgery (FGS) has been established as a powerful technique for glioblastoma resection. After oral application of the prodrug 5-aminolevulinic acid (5-ALA), protoporphyrin IX (PpIX) is formed as an intermediate of the heme-biosynthesis cascade and accumulates within the tumor. By intraoperative fluorescence microscopy, the specific PpIX fluorescence can be used to differentiate the tumor from healthy brain tissue. To investigate possible limitations of fluorescence diagnosis, the complementary use of molecular and elemental mass-spectrometry imaging (MSI) is presented. Matrix-assisted laser-desorption-ionization mass spectrometry (MALDI-MS) is used to examine the distribution of PpIX and heme b in human brain tumors. MALDI-MS/MS imaging is performed to validate MS data and improve the signal-to-noise ratio (S/N). Comparing the imaging results with histological evaluation, increased PpIX accumulation in areas of high tumor-cell density is observed. Heme b accumulation are only found in areas of blood vessels and hemorrhage, confirming the hampered transformation from PpIX to heme b in glioblastoma tissue. Investigation of non-neoplastic brain tissue and glioblastoma resected without external 5-ALA administration as control samples with true-negative fluorescence verified the absence of PpIX accumulation. Analysis of necrotic tumor tissue and gliosarcoma, one rare type of glioma appearing nonfluorescent during FGS, as case examples with false-negative-fluorescence diagnosis, revealed the absence of significant amounts of PpIX, indicating an impairment of PpIX formation. Molecular analysis is complemented by quantitative laser ablation-inductively coupled plasma (LA-ICP) MSI correlating heme b and Fe distribution. Mathematical pixel-by-pixel correlation of molecular and elemental data revealed a positive correlation with heteroscedasticity for the spatially resolved heme b signal intensities and Fe concentrations.
Collapse
Affiliation(s)
- Sabrina Kröger
- Institute of Inorganic and Analytical Chemistry , University of Münster , Corrensstraße 30 , 48149 Münster , Germany
| | - Ann-Christin Niehoff
- Institute of Inorganic and Analytical Chemistry , University of Münster , Corrensstraße 30 , 48149 Münster , Germany
| | - Astrid Jeibmann
- Institute of Neuropathology , University Hospital Münster , Pottkamp 2 , 48149 Münster , Germany
| | - Michael Sperling
- Institute of Inorganic and Analytical Chemistry , University of Münster , Corrensstraße 30 , 48149 Münster , Germany.,European Virtual Institute for Speciation Analysis (EVISA) , Mendelstraße 11 , 48149 Münster , Germany
| | - Werner Paulus
- Institute of Neuropathology , University Hospital Münster , Pottkamp 2 , 48149 Münster , Germany
| | - Walter Stummer
- Department of Neurosurgery , University Hospital Münster , Albert-Schweitzer-Campus 1 , 48149 Münster , Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry , University of Münster , Corrensstraße 30 , 48149 Münster , Germany
| |
Collapse
|
41
|
Belykh E, Patel AA, Miller EJ, Bozkurt B, Yağmurlu K, Woolf EC, Scheck AC, Eschbacher JM, Nakaji P, Preul MC. Probe-based three-dimensional confocal laser endomicroscopy of brain tumors: technical note. Cancer Manag Res 2018; 10:3109-3123. [PMID: 30214304 PMCID: PMC6124793 DOI: 10.2147/cmar.s165980] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Confocal laser endomicroscopy (CLE) is used during fluorescence-guided brain tumor surgery for intraoperative microscopy of tumor tissue with cellular resolution. CLE could augment and expedite intraoperative decision-making and potentially aid in diagnosis and removal of tumor tissue. Objective To describe an extension of CLE imaging modality that produces Z-stack images and three-dimensional (3D) pseudocolored volumetric images. Materials and methods Hand-held probe-based CLE was used to collect images from GL261-luc2 gliomas in C57BL/6 mice and from human brain tumor biopsies. The mice were injected with fluorescein sodium (FNa) before imaging. Patients received FNa intraoperatively, and biopsies were imaged immediately in the operating room. Some specimens were counterstained with acridine orange, acriflavine, or Hoechst and imaged on a benchtop confocal microscope. CLE images at various depths were acquired automatically, compiled, rendered into 3D volumes using Fiji software and reviewed by a neuropathologist and neurosurgeons. Results CLE imaging, Z-stack acquisition, and 3D image rendering were performed using 19 mouse gliomas and 31 human tumors, including meningiomas, gliomas, and pituitary adenomas. Volumetric images and Z-stacks provided additional information about fluorescence signal distribution, cytoarchitecture, and the course of abnormal vasculature. Conclusion 3D and Z-stack CLE imaging is a unique new option for live intraoperative endomicroscopy of brain tumors. The 3D images afford an increased spatial understanding of tumor cellular architecture and visualization of related structures compared with two-dimensional images. Future application of specific fluorescent probes could benefit from this rapid in vivo imaging technology for interrogation of brain tumor tissue.
Collapse
Affiliation(s)
- Evgenii Belykh
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA,
| | - Arpan A Patel
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA,
| | - Eric J Miller
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA,
| | - Baran Bozkurt
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA,
| | - Kaan Yağmurlu
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA,
| | - Eric C Woolf
- Neuro-Oncology Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Adrienne C Scheck
- Neuro-Oncology Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Jennifer M Eschbacher
- Department of Neuropathology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Peter Nakaji
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA,
| | - Mark C Preul
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA,
| |
Collapse
|
42
|
Belykh E, Cavallo C, Gandhi S, Zhao X, Veljanoski D, Izady Yazdanabadi M, Martirosyan NL, Byvaltsev VA, Eschbacher J, Preul MC, Nakaji P. Utilization of intraoperative confocal laser endomicroscopy in brain tumor surgery. J Neurosurg Sci 2018; 62:704-717. [PMID: 30160080 DOI: 10.23736/s0390-5616.18.04553-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Precise identification of tumor margins is of the utmost importance in neuro-oncology. Confocal microscopy is capable of rapid imaging of fresh tissues at cellular resolution and has been miniaturized into handheld probe-based systems suitable for use in the operating room. We aimed to perform a literature review to provide an update on the current status of confocal laser endomicroscopy (CLE) technology for brain tumor surgery. Aside from benchtop confocal microscopes used in ex vivo fashion, there are four CLE systems that have been investigated for potential application in the workflow of brain tumor surgery. Preclinical studies on animal tumor models and clinical studies on human brain tumors have assessed in vivo and ex vivo imaging approaches, suggesting that confocal microscopy holds promise for rapid identification of the characteristic (diagnostic) histological features of tumor and normal brain tissues. However, there are few studies assessing diagnostic accuracy sufficient to provide a definitive determination of the clinical and economical value of CLE in brain tumor surgery. Intraoperative real-time, high-resolution tissue imaging has significant clinical potential in the field of neuro-oncology. CLE is an emerging imaging technology that shows promise for improving brain tumor surgery workflow in in vivo and ex vivo studies. Future clinical studies are necessary to demonstrate clinical and economic benefit of CLE.
Collapse
Affiliation(s)
- Evgenii Belykh
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA.,Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
| | - Claudio Cavallo
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Sirin Gandhi
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Xiaochun Zhao
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Damjan Veljanoski
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | | | - Nikolay L Martirosyan
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Vadim A Byvaltsev
- Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
| | - Jennifer Eschbacher
- Department of Neuropathology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Mark C Preul
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Peter Nakaji
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA -
| |
Collapse
|
43
|
Optical Characterization of Neurosurgical Operating Microscopes: Quantitative Fluorescence and Assessment of PpIX Photobleaching. Sci Rep 2018; 8:12543. [PMID: 30135440 PMCID: PMC6105612 DOI: 10.1038/s41598-018-30247-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 07/25/2018] [Indexed: 01/01/2023] Open
Abstract
Protoporphyrin IX (PpIX) induced by 5-aminolevulinic acid (5-ALA) is increasingly used as a fluorescent marker for fluorescence-guided resection of malignant gliomas. Understanding how the properties of the excitation light source and PpIX fluorescence interact with the surgical microscope is critical for effective use of the fluorescence-guided tumor resection technique. In this study, we performed a detailed assessment of the intensity of the emitted blue light and white light and the light beam profile of clinical grade operating microscopes used for PpIX visualization. These measurements revealed both recognized fluorescence photobleaching limitations and unrecognized limitations that may alter quantitative observations of PpIX fluorescence obtained with the operating microscope with potential impact on research and clinical uses. We also evaluated the optical properties of a photostable fluorescent standard with an excitation-emission profile similar to PpIX. In addition, we measured the time-dependent dynamics of 5-ALA-induced PpIX fluorescence in an animal glioma model. Finally, we developed a ratiometric method for quantification of the PpIX fluorescence that uses the photostable fluorescent standard to normalize PpIX fluorescence intensity. This method increases accuracy and allows reproducible and direct comparability of the measurements from multiple samples.
Collapse
|
44
|
Ma R, Plaha P. Reaching the Edge of Diffuse Gliomas: Are We There Yet? World Neurosurg 2018; 114:142-143. [PMID: 29548965 DOI: 10.1016/j.wneu.2018.03.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 03/06/2018] [Indexed: 11/18/2022]
Affiliation(s)
- Ruichong Ma
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Puneet Plaha
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Nuffield Department of Surgery, University of Oxford, Oxford, UK.
| |
Collapse
|