1
|
Ferreira Felloni Borges Y, Cheyuo C, Lozano AM, Fasano A. Essential Tremor - Deep Brain Stimulation vs. Focused Ultrasound. Expert Rev Neurother 2023; 23:603-619. [PMID: 37288812 DOI: 10.1080/14737175.2023.2221789] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
INTRODUCTION Essential Tremor (ET) is one of the most common tremor syndromes typically presented as action tremor, affecting mainly the upper limbs. In at least 30-50% of patients, tremor interferes with quality of life, does not respond to first-line therapies and/or intolerable adverse effects may occur. Therefore, surgery may be considered. AREAS COVERED In this review, the authors discuss and compare unilateral ventral intermedius nucleus deep brain stimulation (VIM DBS) and bilateral DBS with Magnetic Resonance-guided Focused Ultrasound (MRgFUS) thalamotomy, which comprises focused acoustic energy generating ablation under real-time MRI guidance. Discussion includes their impact on tremor reduction and their potential complications. Finally, the authors provide their expert opinion. EXPERT OPINION DBS is adjustable, potentially reversible and allows bilateral treatments; however, it is invasive requires hardware implantation, and has higher surgical risks. Instead, MRgFUS is less invasive, less expensive, and requires no hardware maintenance. Beyond these technical differences, the decision should also involve the patient, family, and caregivers.
Collapse
Affiliation(s)
- Yuri Ferreira Felloni Borges
- Edmond J. Safra Program in Parkinson's Disease, Division of Neurology, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, University of Toronto, Toronto, ON, Canada
| | - Cletus Cheyuo
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Krembil Brain Institute, Toronto, ON, Canada
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Division of Neurology, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, University of Toronto, Toronto, ON, Canada
- Krembil Brain Institute, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
- Department of Parkinson's Disease & Movement Disorders Rehabilitation, Moriggia-Pelascini Hospital, Gravedona Ed Uniti, Como, Italy
| |
Collapse
|
2
|
Hodge JO, Cook P, Brandmeir NJ. Awake Deep Brain Stimulation Surgery Without Intraoperative Imaging Is Accurate and Effective: A Case Series. Oper Neurosurg (Hagerstown) 2022; 23:133-138. [PMID: 35486875 DOI: 10.1227/ons.0000000000000249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/09/2022] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The success of deep brain stimulation (DBS) surgery depends on the accuracy of electrode placement. Several factors can affect this such as brain shift, the quality of preoperative planning, and technical factors. It is crucial to determine whether techniques yield accurate lead placement and effective symptom relief. Many of the studies establishing the accuracy of frameless techniques used intraoperative imaging to further refine lead placement. OBJECTIVE To determine whether awake lead placement without intraoperative imaging can achieve similar minimal targeting error while preserving clinical results. METHODS Eighty-two trajectories in 47 patients who underwent awake, frameless DBS lead placement with the Fred Haer Corporation STarFix system for essential tremor or Parkinson's disease were analyzed. Neurological testing during lead placement was used to determine appropriate lead locations, and no intraoperative imaging was performed. Accuracy data were compared with previously performed studies. RESULTS The Euclidean error for the patient cohort was 1.79 ± 1.02 mm, and the Pythagorean error was 1.40 ± 0.95 mm. The percentage symptom improvement evaluated by the Unified Parkinson's Disease Rating Scale for Parkinson's disease or the Fahn-Tolosa-Marin scale for essential tremor was similar to reported values at 58% ± 17.2% and 67.4% ± 24.7%, respectively. The operative time was 95.0 ± 30.3 minutes for all study patients. CONCLUSION Awake, frameless DBS surgery with the Fred Haer Corporation STarFix system does not require intraoperative imaging for stereotactic accuracy or clinical effectiveness.
Collapse
Affiliation(s)
- Johnie O Hodge
- Department of Neurosurgery, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| | | | | |
Collapse
|
3
|
Techniques of Frameless Robot-Assisted Deep Brain Stimulation and Accuracy Compared with the Frame-Based Technique. Brain Sci 2022; 12:brainsci12070906. [PMID: 35884713 PMCID: PMC9313029 DOI: 10.3390/brainsci12070906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/30/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Frameless robot-assisted deep brain stimulation (DBS) is an innovative technique for leads implantation. This study aimed to evaluate the accuracy and precision of this technique using the Sinovation SR1 robot. Methods: 35 patients with Parkinson’s disease who accepted conventional frame-based DBS surgery (n = 18) and frameless robot-assisted DBS surgery (n = 17) by the same group of neurosurgeons were analyzed. The coordinate of the tip of the intended trajectory was recorded as xi, yi, and zi. The actual position of lead implantation was recorded as xa, ya, and za. The vector error was calculated by the formula of √(xi − xa)2 + (yi − ya)2 + (zi − za)2 to evaluate the accuracy. Results: The vector error was 1.52 ± 0.53 mm (range: 0.20–2.39 mm) in the robot-assisted group and was 1.77 ± 0.67 mm (0.59–2.98 mm) in the frame-based group with no significant difference between two groups (p = 0.1301). In 10.7% (n = 3) frameless robot-assisted implanted leads, the vector error was greater than 2.00 mm with a maximum offset of 2.39 mm, and in 35.5% (n = 11) frame-based implanted leads, the vector error was larger than 2.00 mm with a maximum offset of 2.98 mm. Leads were more posterior than planned trajectories in the robot-assisted group and more medial and posterior in the conventional frame-based group. Conclusions: Awake frameless robot-assisted DBS surgery was comparable to the conventional frame-based technique in the accuracy and precision for leads implantation.
Collapse
|
4
|
Zhang Y, Le S, Li H, Ji B, Wang MH, Tao J, Liang JQ, Zhang XY, Kang XY. MRI magnetic compatible electrical neural interface: From materials to application. Biosens Bioelectron 2021; 194:113592. [PMID: 34507098 DOI: 10.1016/j.bios.2021.113592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 08/24/2021] [Indexed: 01/07/2023]
Abstract
Neural electrical interfaces are important tools for local neural stimulation and recording, which potentially have wide application in the diagnosis and treatment of neural diseases, as well as in the transmission of neural activity for brain-computer interface (BCI) systems. At the same time, magnetic resonance imaging (MRI) is one of the effective and non-invasive techniques for recording whole-brain signals, providing details of brain structures and also activation pattern maps. Simultaneous recording of extracellular neural signals and MRI combines two expressions of the same neural activity and is believed to be of great importance for the understanding of brain function. However, this combination makes requests on the magnetic and electronic performance of neural interface devices. MRI-compatibility refers here to a technological approach to simultaneous MRI and electrode recording or stimulation without artifacts in imaging. Trade-offs between materials magnetic susceptibility selection and electrical function should be considered. Herein, prominent trends in selecting materials of suitable magnetic properties are analyzed and material design, function and application of neural interfaces are outlined together with the remaining challenge to fabricate MRI-compatible neural interface.
Collapse
Affiliation(s)
- Yuan Zhang
- Laboratory for Neural Interface and Brain Computer Interface, Institute of AI and Robotics, Academy for Engineering and Technology, FUDAN University, 220 Handan Rd., Yangpu District, Shanghai, 200433, China; Ji Hua Laboratory, 28 Island Ring South Rd., Foshan City, 528200, China; Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, Shanghai 200433, China; Research Center for Intelligent Sensing, Zhejiang Lab, Hangzhou, 311100, China; Yiwu Research Institute of Fudan University, Chengbei Road, Yiwu City, 322000, Zhejiang, China
| | - Song Le
- Laboratory for Neural Interface and Brain Computer Interface, Institute of AI and Robotics, Academy for Engineering and Technology, FUDAN University, 220 Handan Rd., Yangpu District, Shanghai, 200433, China; Ji Hua Laboratory, 28 Island Ring South Rd., Foshan City, 528200, China; Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, Shanghai 200433, China; Research Center for Intelligent Sensing, Zhejiang Lab, Hangzhou, 311100, China; Yiwu Research Institute of Fudan University, Chengbei Road, Yiwu City, 322000, Zhejiang, China
| | - Hui Li
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
| | - Bowen Ji
- Unmanned System Research Institute; Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ming-Hao Wang
- The MOE Engineering Research Center of Smart Microsensors and Microsystems, School of Electronics & Information, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Jin Tao
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China
| | - Jing-Qiu Liang
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China
| | - Xiao-Yong Zhang
- Institute of Science and Technology for Brain-inspired Intelligence, FUDAN University, Shanghai, 200433, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai 200433, China
| | - Xiao-Yang Kang
- Laboratory for Neural Interface and Brain Computer Interface, Institute of AI and Robotics, Academy for Engineering and Technology, FUDAN University, 220 Handan Rd., Yangpu District, Shanghai, 200433, China; Ji Hua Laboratory, 28 Island Ring South Rd., Foshan City, 528200, China; Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, Shanghai 200433, China; Research Center for Intelligent Sensing, Zhejiang Lab, Hangzhou, 311100, China; Yiwu Research Institute of Fudan University, Chengbei Road, Yiwu City, 322000, Zhejiang, China.
| |
Collapse
|
5
|
Asriyants SV, Tomskiy AA, Gamaleya AA, Pronin IN. [Deep brain stimulation of the subthalamic nucleus for parkinson's disease: awake vs asleep]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2021; 85:117-121. [PMID: 34714012 DOI: 10.17116/neiro202185051117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is known to be an effective and safe neurosurgical procedure for Parkinson's disease (PD). Traditionally, awake implantation of stimulation system is carried out using microelectrode registration and intraoperative stimulation. Development of neuroimaging technologies enables direct STN imaging. Therefore, asleep surgery without additional intraoperative verification is possible. This approach reduces surgery time and can potentially decrease the incidence of hemorrhagic and infectious complications. The advantages of one method or another are being discussed. OBJECTIVE To assess the benefits and limitations of various methods for DBS system implantation for bilateral STN stimulation, to study the issues of stereotaxic accuracy, efficiency and safety of asleep and awake electrode implantation into STN. MATERIAL AND METHODS We reviewed the articles published in the PubMed database. Searching algorithm included the following keywords: «asleep DBS», «Parkinson's disease», «subthalamic nucleus», «3T MRI», «SWI», «SWAN». RESULTS There were 31 articles devoted to asleep DBS of STN including 4 meta-analyses, 3 prospective controlled studies, 13 retrospective controlled studies and 11 studies without a control group. CONCLUSION Asleep implantation of electrodes for DBS of STN can be performed only after a clear imaging of STN boundaries with high-quality MRI.
Collapse
Affiliation(s)
| | - A A Tomskiy
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | - I N Pronin
- Burdenko Neurosurgical Center, Moscow, Russia
| |
Collapse
|
6
|
Limpo H, Díez R, Albisua J, Tejada S. Intraoperative high-field resonance: How to optimize its use in our healthcare system. ACTA ACUST UNITED AC 2021; 33:261-268. [PMID: 34625382 DOI: 10.1016/j.neucie.2021.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/18/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND AIMS Intraoperative MRI (ioMRI) consists of performing a MRI during brain or spinal surgery. Although it is a safe and useful technique, it is available in a few hospitals. This means some aspects are not perfectly defined or standardized, forcing each center to develop its own solutions. Our goal is to describe the technique, evaluate the changes made to optimize its use and thus be able to facilitate the intraoperative resonance implementation in other neurosurgery departments. METHODS A prospective analysis of patients consecutively operated using high-field ioMRI guidance was carried out, describing the type of tumor, clinical data, time and sequences of ioMR, use of intraoperative neurophysiology, preoperative tumor volume, after ioMR, and postoperative, as well as complications. RESULTS ioMR was performed in 38 patients selected from among 425 brain tumors (9%) operated on in this interval. The tumor types were: 11 glioblastomas, 8 anaplastic astrocytomas, 5 diffuse astrocytomas, 4 meningiomas, 3 oligodendrogliomas, 2 metastases, 2 epidermoid cysts, 1 astroblastoma, 1 arachnoid cyst and 1 pituitary adenoma. The mean age was 45 years. The mean preoperative tumor volume was 45.22cc, after the ioMR 5.08cc and postoperative 1.28cc. Resection was extended after ioMR in 76%. Gross total resection was achieved in 15 patients and residual tumor of less than 1cc was observed in 8. An intentional tumor tissue was left in an eloquent brain region (mean volume 7cc) in 13 patients. Bleeding and ischemia complications were detected early on ioMR in 5%. MRI length was 47 min on average. CONCLUSIONS Intraoperative MRI was a useful and safe technique, and no associated complications were registered.
Collapse
Affiliation(s)
- Hiria Limpo
- Departamento de Neurocirugía, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain.
| | - Ricardo Díez
- Departamento de Neurocirugía, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Julio Albisua
- Departamento de Neurocirugía, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Sonia Tejada
- Departamento de Neurocirugía, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| |
Collapse
|
7
|
Resonancia intraoperatoria de alto campo: cómo optimizar su uso en nuestro modelo sanitario. Neurocirugia (Astur) 2021. [DOI: 10.1016/j.neucir.2021.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Philipp LR, Matias CM, Thalheimer S, Mehta SH, Sharan A, Wu C. Robot-Assisted Stereotaxy Reduces Target Error: A Meta-Analysis and Meta-Regression of 6056 Trajectories. Neurosurgery 2021; 88:222-233. [PMID: 33045739 DOI: 10.1093/neuros/nyaa428] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 07/12/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The pursuit of improved accuracy for localization and electrode implantation in deep brain stimulation (DBS) and stereoelectroencephalography (sEEG) has fostered an abundance of disparate surgical/stereotactic practices. Specific practices/technologies directly modify implantation accuracy; however, no study has described their respective influence in multivariable context. OBJECTIVE To synthesize the known literature to statistically quantify factors affecting implantation accuracy. METHODS A systematic review and meta-analysis was conducted to determine the inverse-variance weighted pooled mean target error (MTE) of implanted electrodes among patients undergoing DBS or sEEG. MTE was defined as Euclidean distance between planned and final electrode tip. Meta-regression identified moderators of MTE in a multivariable-adjusted model. RESULTS A total of 37 eligible studies were identified from a search return of 2,901 potential articles (2002-2018) - 27 DBS and 10 sEEG. Random-effects pooled MTE = 1.91 mm (95% CI: 1.7-2.1) for DBS and 2.34 mm (95% CI: 2.1-2.6) for sEEG. Meta-regression identified study year, robot use, frame/frameless technique, and intraoperative electrophysiologic testing (iEPT) as significant multivariable-adjusted moderators of MTE (P < .0001, R2 = 0.63). Study year was associated with a 0.92-mm MTE reduction over the 16-yr study period (P = .0035), and robot use with a 0.79-mm decrease (P = .0019). Frameless technique was associated with a mean 0.50-mm (95% CI: 0.17-0.84) increase, and iEPT use with a 0.45-mm (95% CI: 0.10-0.80) increase in MTE. Registration method, imaging type, intraoperative imaging, target, and demographics were not significantly associated with MTE on multivariable analysis. CONCLUSION Robot assistance for stereotactic electrode implantation is independently associated with improved accuracy and reduced target error. This remains true regardless of other procedural factors, including frame-based vs frameless technique.
Collapse
Affiliation(s)
- Lucas R Philipp
- Department of Neurological Surgery, Thomas Jefferson University Hospitals, Philadelphia, Pennsylvania
| | - Caio M Matias
- Department of Neurological Surgery, Thomas Jefferson University Hospitals, Philadelphia, Pennsylvania
| | - Sara Thalheimer
- Department of Neurological Surgery, Thomas Jefferson University Hospitals, Philadelphia, Pennsylvania
| | - Shyle H Mehta
- Department of Neurological Surgery, Thomas Jefferson University Hospitals, Philadelphia, Pennsylvania
| | - Ashwini Sharan
- Department of Neurological Surgery, Thomas Jefferson University Hospitals, Philadelphia, Pennsylvania
| | - Chengyuan Wu
- Department of Neurological Surgery, Thomas Jefferson University Hospitals, Philadelphia, Pennsylvania
| |
Collapse
|
9
|
Furlanetti L, Hasegawa H, Oviedova A, Raslan A, Samuel M, Selway R, Ashkan K. O-Arm Stereotactic Imaging in Deep Brain Stimulation Surgery Workflow: A Utility and Cost-Effectiveness Analysis. Stereotact Funct Neurosurg 2020; 99:93-106. [PMID: 33260175 DOI: 10.1159/000510344] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/21/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Deep brain stimulation (DBS) surgery is an established treatment for movement disorders. Advances in neuroimaging techniques have resulted in improved targeting accuracy that may improve clinical outcomes. This study aimed to evaluate the safety and feasibility of using the Medtronic O-arm device for the acquisition of intraoperative stereotactic imaging, targeting, and localization of DBS electrodes compared with standard stereotactic MRI or computed tomography (CT). METHODS Patients were recruited prospectively into the study. Routine frame-based stereotactic DBS surgery was performed. Intraoperative imaging was used to facilitate and verify the accurate placement of the intracranial electrodes. The acquisition of coordinates and verification of the position of the electrodes using the O-arm were evaluated and compared with conventional stereotactic MRI or CT. Additionally, a systematic review of the literature on the use of intraoperative imaging in DBS surgery was performed. RESULTS Eighty patients were included. The indications for DBS surgery were dystonia, Parkinson's disease, essential tremor, and epilepsy. The globus pallidus internus was the most commonly targeted region (43.7%), followed by the subthalamic nucleus (35%). Stereotactic O-arm imaging reduced the overall surgical time by 68 min, reduced the length of time of acquisition of stereotactic images by 77%, reduced patient exposure to ionizing radiation by 24.2%, significantly reduced operating room (OR) costs per procedure by 31%, and increased the OR and neuroradiology suite availability. CONCLUSIONS The use of the O-arm in DBS surgery workflow significantly reduced the duration of image acquisition, the exposure to ionizing radiation, and costs when compared with standard stereotactic MRI or CT, without reducing accuracy.
Collapse
Affiliation(s)
- Luciano Furlanetti
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, United Kingdom,
| | - Harutomo Hasegawa
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Anna Oviedova
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Ahmed Raslan
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Michael Samuel
- Department of Neurology, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Richard Selway
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Keyoumars Ashkan
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
10
|
Zaffino P, Moccia S, De Momi E, Spadea MF. A Review on Advances in Intra-operative Imaging for Surgery and Therapy: Imagining the Operating Room of the Future. Ann Biomed Eng 2020; 48:2171-2191. [PMID: 32601951 DOI: 10.1007/s10439-020-02553-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/17/2020] [Indexed: 12/19/2022]
Abstract
With the advent of Minimally Invasive Surgery (MIS), intra-operative imaging has become crucial for surgery and therapy guidance, allowing to partially compensate for the lack of information typical of MIS. This paper reviews the advancements in both classical (i.e. ultrasounds, X-ray, optical coherence tomography and magnetic resonance imaging) and more recent (i.e. multispectral, photoacoustic and Raman imaging) intra-operative imaging modalities. Each imaging modality was analyzed, focusing on benefits and disadvantages in terms of compatibility with the operating room, costs, acquisition time and image characteristics. Tables are included to summarize this information. New generation of hybrid surgical room and algorithms for real time/in room image processing were also investigated. Each imaging modality has its own (site- and procedure-specific) peculiarities in terms of spatial and temporal resolution, field of view and contrasted tissues. Besides the benefits that each technique offers for guidance, considerations about operators and patient risk, costs, and extra time required for surgical procedures have to be considered. The current trend is to equip surgical rooms with multimodal imaging systems, so as to integrate multiple information for real-time data extraction and computer-assisted processing. The future of surgery is to enhance surgeons eye to minimize intra- and after-surgery adverse events and provide surgeons with all possible support to objectify and optimize the care-delivery process.
Collapse
Affiliation(s)
- Paolo Zaffino
- Department of Experimental and Clinical Medicine, Universitá della Magna Graecia, Catanzaro, Italy
| | - Sara Moccia
- Department of Information Engineering (DII), Universitá Politecnica delle Marche, via Brecce Bianche, 12, 60131, Ancona, AN, Italy.
| | - Elena De Momi
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133, Milano, MI, Italy
| | - Maria Francesca Spadea
- Department of Experimental and Clinical Medicine, Universitá della Magna Graecia, Catanzaro, Italy
| |
Collapse
|
11
|
Fernandez-Garcia C, Alonso-Frech F, Monje MHG, Matias-Guiu J. Role of deep brain stimulation therapy in the magnetic resonance-guided high-frequency focused ultrasound era: current situation and future prospects. Expert Rev Neurother 2019; 20:7-21. [PMID: 31623494 DOI: 10.1080/14737175.2020.1677465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Deep brain stimulation (DBS) is a well-established treatment of movement disorders; but recently there has been an increasing trend toward the ablative procedure magnetic resonance-guided focused ultrasound (MRgFU). DBS is an efficient neuromodulatory technique but associated with surgical complications. MRIgFUS is an incision-free method that allows thermal lesioning, with fewer surgical complications but irreversible effects.Areas covered: We look at current and prospective aspects of both techniques. In DBS, appropriate patient selection, improvement in surgical expertise, target accuracy (preoperative and intraoperative imaging), neurophysiological recordings, and novel segmented leads need to be considered. However, increased number of older patients with higher comorbidities and risk of DBS complications (mainly intracranial hemorrhage, but also infections, hardware complications) make them not eligible for surgery. With MRgFUS, hemorrhage risks are virtually nonexistent, infection or hardware malfunction are eliminated, while irreversible side effects can appear.Expert commentary: Comparison of the efficacy and risks associated with these techniques, in combination with a growing aged population in developed countries with higher comorbidities and a preference for less invasive treatments, necessitates a review of the indications for movement disorders and the most appropriate treatment modalities.
Collapse
Affiliation(s)
- C Fernandez-Garcia
- Department of Neurosurgery, Hospital Clínico San Carlos, San Carlos Research Health Institute (IdISSC), Madrid, Spain.,Medicine Department, Universidad Complutense, Madrid, Spain
| | - F Alonso-Frech
- Department of Neurology, Hospital Clínico San Carlos, San Carlos Research Health Institute (IdISSC), Universidad Complutense, Madrid, Spain.,HM CINAC, Hospital Universitario HM Puerta del Sur, Universidad CEU-San Pablo, Móstoles, Madrid, Spain
| | - M H G Monje
- HM CINAC, Hospital Universitario HM Puerta del Sur, Universidad CEU-San Pablo, Móstoles, Madrid, Spain
| | - J Matias-Guiu
- Medicine Department, Universidad Complutense, Madrid, Spain.,Department of Neurology, Hospital Clínico San Carlos, San Carlos Research Health Institute (IdISSC), Universidad Complutense, Madrid, Spain
| |
Collapse
|
12
|
Yin Z, Luo Y, Jin Y, Yu Y, Zheng S, Duan J, Xu R, Zhou D, Hong T, Lu G. Is awake physiological confirmation necessary for DBS treatment of Parkinson's disease today? A comparison of intraoperative imaging, physiology, and physiology imaging-guided DBS in the past decade. Brain Stimul 2019; 12:893-900. [PMID: 30876883 DOI: 10.1016/j.brs.2019.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) is a well-established surgical therapy for Parkinson's disease (PD). Intraoperative imaging (IMG), intraoperative physiology (PHY) and their combination (COMB) are the three mainstream DBS guidance methods. OBJECTIVE To comprehensively compare the use of IMG-DBS, PHY-DBS and COMB-DBS in treating PD. METHODS PubMed, Embase, the Cochrane Library and OpenGrey were searched to identify PD-DBS studies reporting guidance techniques published between January 1, 2010, and May 1, 2018. We quantitatively compared the therapeutic effects, surgical time, target error and complication risk and qualitatively compared the patient experience, cost and technical prospects. A meta-regression analysis was also performed. This study is registered with PROSPERO, number CRD42018105995. RESULTS Fifty-nine cohorts were included in the main analysis. The three groups were equivalent in therapeutic effects and infection risks. IMG-DBS (p < 0.001) and COMB-DBS (p < 0.001) had a smaller target error than PHY-DBS. IMG-DBS had a shorter surgical time (p < 0.001 and p = 0.008, respectively) and a lower intracerebral hemorrhage (ICH) risk (p = 0.013 and p = 0.004, respectively) than PHY- and COMB-DBS. The use of intraoperative imaging and microelectrode recording correlated with a higher surgical accuracy (p = 0.018) and a higher risk of ICH (p = 0.049). CONCLUSIONS The comparison of COMB-DBS and PHY-DBS showed intraoperative imaging's superiority (higher surgical accuracy), while the comparison of COMB-DBS and IMG-DBS showed physiological confirmation's inferiority (longer surgical time and higher ICH risk). Combined with previous evidence, the use of intraoperative neuroimaging techniques should become a future trend.
Collapse
Affiliation(s)
- Zixiao Yin
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China; The First Clinical Medical College of Nanchang University, Nanchang, Jiangxi, PR China
| | - Yunyun Luo
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China; The First Clinical Medical College of Nanchang University, Nanchang, Jiangxi, PR China
| | - Yanwen Jin
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China; The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, PR China
| | - Yaqing Yu
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Suyue Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Jian Duan
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Renxu Xu
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Dongwei Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Guohui Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China.
| |
Collapse
|