1
|
Herbstein F, Sapochnik M, Attorresi A, Pollak C, Senin S, Gonilski‐Pacin D, Ciancio del Giudice N, Fiz M, Elguero B, Fuertes M, Müller L, Theodoropoulou M, Pontel LB, Arzt E. The SASP factor IL-6 sustains cell-autonomous senescent cells via a cGAS-STING-NFκB intracrine senescent noncanonical pathway. Aging Cell 2024; 23:e14258. [PMID: 39012326 PMCID: PMC11464112 DOI: 10.1111/acel.14258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 07/17/2024] Open
Abstract
Senescent cells produce a Senescence-Associated Secretory Phenotype (SASP) that involves factors with diverse and sometimes contradictory activities. One key SASP factor, interleukin-6 (IL-6), has the potential to amplify cellular senescence in the SASP-producing cells in an autocrine action, while simultaneously inducing proliferation in the neighboring cells. The underlying mechanisms for the contrasting actions remain unclear. We found that the senescence action does not involve IL-6 secretion nor the interaction with the receptor expressed in the membrane but is amplified through an intracrine mechanism. IL-6 sustains intracrine senescence interacting with the intracellular IL-6 receptor located in anterograde traffic specialized structures, with cytosolic DNA, cGAS-STING, and NFκB activation. This pathway triggered by intracellular IL-6 significantly contributes to cell-autonomous induction of senescence and impacts in tumor growth control. Inactivation of IL-6 in somatotrophic senescent cells transforms them into strongly tumorigenic in NOD/SCID mice, while re-expression of IL-6 restores senescence control of tumor growth. The intracrine senescent IL-6 pathway is further evidenced in three human cellular models of therapy-induced senescence. The compartmentalization of the intracellular signaling, in contrast to the paracrine tumorigenic action, provides a pathway for IL-6 to sustain cell-autonomous senescent cells, driving the SASP, and opens new avenues for clinical consideration to senescence-based therapies.
Collapse
Affiliation(s)
- Florencia Herbstein
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Melanie Sapochnik
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Alejandra Attorresi
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Cora Pollak
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Sergio Senin
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - David Gonilski‐Pacin
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Nicolas Ciancio del Giudice
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Manuel Fiz
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Belén Elguero
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Mariana Fuertes
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
| | - Lara Müller
- Medizinische Klinik und Poliklinik IVLudwig‐Maximilians‐Universität (LMU) MünchenMunichGermany
| | - Marily Theodoropoulou
- Medizinische Klinik und Poliklinik IVLudwig‐Maximilians‐Universität (LMU) MünchenMunichGermany
| | - Lucas B. Pontel
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
- Present address:
Josep Carreras Leukaemia Research Institute (IJC)BadalonaSpain
| | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
| |
Collapse
|
2
|
Xiang B, Zhang X, Liu W, Mao B, Zhao Y, Wang Y, Gong W, Ye H, Li Y, Zhang Z, Yu Y, He M. Germline AIP variants in sporadic young acromegaly and pituitary gigantism: clinical and genetic insights from a Han Chinese cohort. Endocrine 2024; 85:1346-1356. [PMID: 38851643 DOI: 10.1007/s12020-024-03898-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
PURPOSE Variants in the Aryl hydrocarbon receptor-interacting protein (AIP) gene have been identified in sporadic acromegaly and pituitary gigantism, especially in young patients, with a predisposition to aggressive clinical phenotype and poor treatment efficacy. The clinical characteristics of patients with sporadic acromegaly and pituitary gigantism as well as AIP variants in Han Chinese have been rarely reported. We aimed to identify AIP gene variants and analyze the clinical characteristics of patients with sporadic acromegaly and pituitary gigantism in Han Chinese. METHODS The study included 181 sporadic acromegaly (N = 163) and pituitary gigantism (N = 18) patients with an onset age of no more than 45 years old, who were diagnosed, treated, and followed up in Huashan Hospital. All 6 exons and their flanking regions of the AIP gene were analyzed with Sanger sequencing or NGS. The clinical characteristics were compared between groups with and without AIP variants. RESULTS Germline AIP variants were found in 15/181 (8.29%) cases. In patients with an onset age ≤30 years old, AIP variants were identified in 12/133 (9.02%). Overall, 13 variants were detected. The pathogenic (P) variants p.R304X and p.R81X were identified in four cases, with two instances of each variant. Six exon variants (p.C254R, p.K103fs, p.Q228fs, p.Y38X, p.Q213*, and p.1115 fs) have not been reported before, which were likely pathogenic (LP). Patients with P/LP variants had younger onset ages, a higher prevalence of pituitary gigantism, larger tumor volumes, and a higher percentage of Ki-67-positive cells in tumors. In addition, the group with P/LP variants showed a less significant reduction of GH levels in an acute octreotide suppression test (OST) [17.7% (0, 65.0%) vs. 80.5% (63.9%, 90.2%), P = 0.001], and a trend of less GH decrease after the 3-month treatment with long-acting somatostatin analogs (SSAs). CONCLUSION Germline AIP variants existed in sporadic Chinese Han acromegaly and pituitary gigantism patients and were more likely to be detected in young patients. AIP variants were associated with more aggressive tumor phenotypes and less response to SSA treatment.
Collapse
Affiliation(s)
- Boni Xiang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, No. 12 Wulumuqi Middle Road, Shanghai, China
| | - Xintong Zhang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, No. 12 Wulumuqi Middle Road, Shanghai, China
- Department of General Practice, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, China
| | - Wenjuan Liu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, No. 12 Wulumuqi Middle Road, Shanghai, China
| | - Bei Mao
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, No. 12 Wulumuqi Middle Road, Shanghai, China
| | - Yao Zhao
- Department of Neurosurgery, Huashan Hospital, Fudan University, No. 12 Wulumuqi Middle Road, Shanghai, China
- Shanghai Pituitary Tumor Center, Shanghai, China
| | - Yongfei Wang
- Department of Neurosurgery, Huashan Hospital, Fudan University, No. 12 Wulumuqi Middle Road, Shanghai, China
- Shanghai Pituitary Tumor Center, Shanghai, China
| | - Wei Gong
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, No. 12 Wulumuqi Middle Road, Shanghai, China
| | - Hongying Ye
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, No. 12 Wulumuqi Middle Road, Shanghai, China
- Shanghai Pituitary Tumor Center, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital Fudan University, Shanghai, China
| | - Yiming Li
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, No. 12 Wulumuqi Middle Road, Shanghai, China
- Shanghai Pituitary Tumor Center, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital Fudan University, Shanghai, China
| | - Zhaoyun Zhang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, No. 12 Wulumuqi Middle Road, Shanghai, China
- Shanghai Pituitary Tumor Center, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital Fudan University, Shanghai, China
| | - Yifei Yu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, No. 12 Wulumuqi Middle Road, Shanghai, China.
| | - Min He
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, No. 12 Wulumuqi Middle Road, Shanghai, China.
- Shanghai Pituitary Tumor Center, Shanghai, China.
- Huashan Rare Disease Center, Huashan Hospital Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Guo X, Yang Y, Qian Z, Chang M, Zhao Y, Ma W, Wang Y, Xing B. Immune landscape and progress in immunotherapy for pituitary neuroendocrine tumors. Cancer Lett 2024; 592:216908. [PMID: 38677640 DOI: 10.1016/j.canlet.2024.216908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
Pituitary neuroendocrine tumors (pitNETs) are the second most common primary brain tumors. Despite their prevalence, the tumor immune microenvironment (TIME) and its clinical implications remain largely unexplored. This review provides a comprehensive overview of current knowledge on the immune landscape and advancements in targeted immunotherapy for pitNETs. Macrophages and T cells are principal immune infiltrates within the TIME. Different subtypes of pitNETs display distinct immune patterns, influencing tumor progressive behaviors. PD-L1, the most extensively studied immune checkpoint, is prominently expressed in hormonal pitNETs and correlates with tumor growth and invasion. Cytokines and chemokines including interleukins, CCLs, and CXCLs have complex correlations with tumor subtypes and immune cell infiltration. Crosstalk between macrophages and pitNET cells highlights bidirectional regulatory roles, suggesting potential macrophage-targeted strategies. Recent preclinical studies have demonstrated the efficacy of anti-PD-L1 therapy in a mouse model of corticotroph pitNET. Moreover, anti-PD-1 and/or anti-CTLA-4 immunotherapy has been applied globally in 28 cases of refractory pitNETs, showing more favorable responses in pituitary carcinomas than aggressive pitNETs. In conclusion, the TIME of pitNETs represents a promising avenue for targeted immunotherapy and warrants further investigation.
Collapse
Affiliation(s)
- Xiaopeng Guo
- Department of Neurosurgery, Key Laboratory of Endocrinology of National Ministry of Health, China Pituitary Adenoma Specialist Council, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiying Yang
- Department of Neurosurgery, Key Laboratory of Endocrinology of National Ministry of Health, China Pituitary Adenoma Specialist Council, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Eight-Year Program of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhihong Qian
- Department of Neurosurgery, Key Laboratory of Endocrinology of National Ministry of Health, China Pituitary Adenoma Specialist Council, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Mengqi Chang
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuanli Zhao
- Department of Neurosurgery, Key Laboratory of Endocrinology of National Ministry of Health, China Pituitary Adenoma Specialist Council, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenbin Ma
- Department of Neurosurgery, Key Laboratory of Endocrinology of National Ministry of Health, China Pituitary Adenoma Specialist Council, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Key Laboratory of Endocrinology of National Ministry of Health, China Pituitary Adenoma Specialist Council, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Bing Xing
- Department of Neurosurgery, Key Laboratory of Endocrinology of National Ministry of Health, China Pituitary Adenoma Specialist Council, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Kazzaz SA, Tawil J, Harhaj EW. The aryl hydrocarbon receptor-interacting protein in cancer and immunity: Beyond a chaperone protein for the dioxin receptor. J Biol Chem 2024; 300:107157. [PMID: 38479600 PMCID: PMC11002312 DOI: 10.1016/j.jbc.2024.107157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
The aryl hydrocarbon receptor (AhR)-interacting protein (AIP) is a ubiquitously expressed, immunophilin-like protein best known for its role as a co-chaperone in the AhR-AIP-Hsp90 cytoplasmic complex. In addition to regulating AhR and the xenobiotic response, AIP has been linked to various aspects of cancer and immunity that will be the focus of this review article. Loss-of-function AIP mutations are associated with pituitary adenomas, suggesting that AIP acts as a tumor suppressor in the pituitary gland. However, the tumor suppressor mechanisms of AIP remain unclear, and AIP can exert oncogenic functions in other tissues. While global deletion of AIP in mice yields embryonically lethal cardiac malformations, heterozygote, and tissue-specific conditional AIP knockout mice have revealed various physiological roles of AIP. Emerging studies have established the regulatory roles of AIP in both innate and adaptive immunity. AIP interacts with and inhibits the nuclear translocation of the transcription factor IRF7 to inhibit type I interferon production. AIP also interacts with the CARMA1-BCL10-MALT1 complex in T cells to enhance IKK/NF-κB signaling and T cell activation. Taken together, AIP has diverse functions that vary considerably depending on the client protein, the tissue, and the species.
Collapse
Affiliation(s)
- Sarah A Kazzaz
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA; Medical Scientist Training Program, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - John Tawil
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Edward W Harhaj
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA.
| |
Collapse
|
5
|
Hassan M, Shahzadi S, Yasir M, Chun W, Kloczkowski A. Computational prognostic evaluation of Alzheimer's drugs from FDA-approved database through structural conformational dynamics and drug repositioning approaches. Sci Rep 2023; 13:18022. [PMID: 37865690 PMCID: PMC10590448 DOI: 10.1038/s41598-023-45347-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023] Open
Abstract
Drug designing is high-priced and time taking process with low success rate. To overcome this obligation, computational drug repositioning technique is being promptly used to predict the possible therapeutic effects of FDA approved drugs against multiple diseases. In this computational study, protein modeling, shape-based screening, molecular docking, pharmacogenomics, and molecular dynamic simulation approaches have been utilized to retrieve the FDA approved drugs against AD. The predicted MADD protein structure was designed by homology modeling and characterized through different computational resources. Donepezil and galantamine were implanted as standard drugs and drugs were screened out based on structural similarities. Furthermore, these drugs were evaluated and based on binding energy (Kcal/mol) profiles against MADD through PyRx tool. Moreover, pharmacogenomics analysis showed good possible associations with AD mediated genes and confirmed through detail literature survey. The best 6 drug (darifenacin, astemizole, tubocurarine, elacridar, sertindole and tariquidar) further docked and analyzed their interaction behavior through hydrogen binding. Finally, MD simulation study were carried out on these drugs and evaluated their stability behavior by generating root mean square deviation and fluctuations (RMSD/F), radius of gyration (Rg) and soluble accessible surface area (SASA) graphs. Taken together, darifenacin, astemizole, tubocurarine, elacridar, sertindole and tariquidar displayed good lead like profile as compared with standard and can be used as possible therapeutic agent in the treatment of AD after in-vitro and in-vivo assessment.
Collapse
Affiliation(s)
- Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA.
| | - Saba Shahzadi
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Muhammad Yasir
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Wanjoo Chun
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, 43205, USA.
- Department of Pediatrics, The Ohio State University, Columbus, OH, 43205, USA.
| |
Collapse
|
6
|
Marques P, Silva AL, López-Presa D, Faria C, Bugalho MJ. The microenvironment of pituitary adenomas: biological, clinical and therapeutical implications. Pituitary 2022; 25:363-382. [PMID: 35194709 DOI: 10.1007/s11102-022-01211-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/15/2022] [Indexed: 10/19/2022]
Abstract
The microenvironment of pituitary adenomas (PAs) includes a range of non-tumoral cells, such as immune and stromal cells, as well as cell signaling molecules such as cytokines, chemokines and growth factors, which surround pituitary tumor cells and may modulate tumor initiation, progression, invasion, angiogenesis and other tumorigenic processes. The microenvironment of PAs has been actively investigated over the last years, with several immune and stromal cell populations, as well as different cytokines, chemokines and growth factors being recently characterized in PAs. Moreover, key microenvironment-related genes as well as immune-related molecules and pathways have been investigated, with immune check point regulators emerging as promising targets for immunotherapy. Understanding the microenvironment of PAs will contribute to a deeper knowledge of the complex biology of PAs, as well as will provide developments in terms of diagnosis, clinical management and ultimately treatment of patients with aggressive and/or refractory PAs.
Collapse
Affiliation(s)
- Pedro Marques
- Endocrinology Department, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte (CHULN), Lisbon, Portugal.
| | - Ana Luísa Silva
- Endocrinology Department, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte (CHULN), Lisbon, Portugal
- Faculty of Medicine, Lisbon University, Lisbon, Portugal
| | - Dolores López-Presa
- Pathology Department, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte (CHULN), Lisbon, Portugal
| | - Cláudia Faria
- Neurosurgery Department, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte (CHULN), Lisbon, Portugal
| | - Maria João Bugalho
- Endocrinology Department, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte (CHULN), Lisbon, Portugal
- Faculty of Medicine, Lisbon University, Lisbon, Portugal
| |
Collapse
|
7
|
Liu C, Nakano-Tateno T, Satou M, Chik C, Tateno T. Emerging role of signal transducer and activator of transcription 3 (STAT3) in pituitary adenomas. Endocr J 2021; 68:1143-1153. [PMID: 34248112 DOI: 10.1507/endocrj.ej21-0106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Pituitary adenomas are benign tumours that can cause an individual various clinical manifestations including tumour mass effects and/or the diverse effects of abnormal pituitary hormone secretion. Given the morbidity and limited treatment options for pituitary adenomas, there is a need for better biomarkers and treatment options. One molecule that is of specific interest is the signal transducer and activator of transcription 3 (STAT3), a transcription factor that plays a critical role in mediating cytokine-induced changes in gene expression. In addition, STAT3 controls cell proliferation by regulating mitochondrial activity. Not only does activation of STAT3 play a crucial role in tumorigenesis, including pituitary tumorigenesis, but a number of studies also demonstrate pharmacological STAT3 inhibition as a promising treatment approach for many types of tumours, including pituitary tumours. This review will focus on the role of STAT3 in different pituitary adenomas, in particular, growth hormone-producing adenomas and null cell adenomas. Furthermore, how STAT3 is involved in the cell proliferation and hormone regulation in pituitary adenomas and its potential role as a molecular therapeutic target in pituitary adenomas will be summarized.
Collapse
Affiliation(s)
- Cyndy Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Tae Nakano-Tateno
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Motoyasu Satou
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Constance Chik
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Toru Tateno
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
8
|
Genetics of Acromegaly and Gigantism. J Clin Med 2021; 10:jcm10071377. [PMID: 33805450 PMCID: PMC8036715 DOI: 10.3390/jcm10071377] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
Growth hormone (GH)-secreting pituitary tumours represent the most genetically determined pituitary tumour type. This is true both for germline and somatic mutations. Germline mutations occur in several known genes (AIP, PRKAR1A, GPR101, GNAS, MEN1, CDKN1B, SDHx, MAX) as well as familial cases with currently unknown genes, while somatic mutations in GNAS are present in up to 40% of tumours. If the disease starts before the fusion of the epiphysis, then accelerated growth and increased final height, or gigantism, can develop, where a genetic background can be identified in half of the cases. Hereditary GH-secreting pituitary adenoma (PA) can manifest as isolated tumours, familial isolated pituitary adenoma (FIPA) including cases with AIP mutations or GPR101 duplications (X-linked acrogigantism, XLAG) or can be a part of systemic diseases like multiple endocrine neoplasia type 1 or type 4, McCune-Albright syndrome, Carney complex or phaeochromocytoma/paraganglioma-pituitary adenoma association. Family history and a search for associated syndromic manifestations can help to draw attention to genetic causes; many of these are now tested as part of gene panels. Identifying genetic mutations allows appropriate screening of associated comorbidities as well as finding affected family members before the clinical manifestation of the disease. This review focuses on germline and somatic mutations predisposing to acromegaly and gigantism.
Collapse
|
9
|
Srirangam Nadhamuni V, Korbonits M. Novel Insights into Pituitary Tumorigenesis: Genetic and Epigenetic Mechanisms. Endocr Rev 2020; 41:bnaa006. [PMID: 32201880 PMCID: PMC7441741 DOI: 10.1210/endrev/bnaa006] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/19/2020] [Indexed: 02/08/2023]
Abstract
Substantial advances have been made recently in the pathobiology of pituitary tumors. Similar to many other endocrine tumors, over the last few years we have recognized the role of germline and somatic mutations in a number of syndromic or nonsyndromic conditions with pituitary tumor predisposition. These include the identification of novel germline variants in patients with familial or simplex pituitary tumors and establishment of novel somatic variants identified through next generation sequencing. Advanced techniques have allowed the exploration of epigenetic mechanisms mediated through DNA methylation, histone modifications and noncoding RNAs, such as microRNA, long noncoding RNAs and circular RNAs. These mechanisms can influence tumor formation, growth, and invasion. While genetic and epigenetic mechanisms often disrupt similar pathways, such as cell cycle regulation, in pituitary tumors there is little overlap between genes altered by germline, somatic, and epigenetic mechanisms. The interplay between these complex mechanisms driving tumorigenesis are best studied in the emerging multiomics studies. Here, we summarize insights from the recent developments in the regulation of pituitary tumorigenesis.
Collapse
Affiliation(s)
- Vinaya Srirangam Nadhamuni
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| |
Collapse
|
10
|
Marques P, Grossman AB, Korbonits M. The tumour microenvironment of pituitary neuroendocrine tumours. Front Neuroendocrinol 2020; 58:100852. [PMID: 32553750 DOI: 10.1016/j.yfrne.2020.100852] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/26/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023]
Abstract
The tumour microenvironment (TME) includes a variety of non-neoplastic cells and non-cellular elements such as cytokines, growth factors and enzymes surrounding tumour cells. The TME emerged as a key modulator of tumour initiation, progression and invasion, with extensive data available in many cancers, but little is known in pituitary tumours. However, the understanding of the TME of pituitary tumours has advanced thanks to active research in this field over the last decade. Different immune and stromal cell subpopulations, and several cytokines, growth factors and matrix remodelling enzymes, have been characterised in pituitary tumours. Studying the TME in pituitary tumours may lead to a better understanding of tumourigenic mechanisms, identification of biomarkers useful to predict aggressive disease, and development of novel therapies. This review summarises the current knowledge on the different TME cellular/non-cellular elements in pituitary tumours and provides an overview of their role in tumourigenesis, biological behaviour and clinical outcomes.
Collapse
Affiliation(s)
- Pedro Marques
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Ashley B Grossman
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|