1
|
Genedy HH, Humbert P, Laoulaou B, Le Moal B, Fusellier M, Passirani C, Le Visage C, Guicheux J, Lepeltier É, Clouet J. MicroRNA-targeting nanomedicines for the treatment of intervertebral disc degeneration. Adv Drug Deliv Rev 2024; 207:115214. [PMID: 38395361 DOI: 10.1016/j.addr.2024.115214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
Low back pain stands as a pervasive global health concern, afflicting almost 80% of adults at some point in their lives with nearly 40% attributable to intervertebral disc degeneration (IVDD). As only symptomatic relief can be offered to patients there is a dire need for innovative treatments.Given the accumulating evidence that multiple microRNAs (miRs) are dysregulated during IVDD, they could have a huge potential against this debilitating condition. The way miRs can profoundly modulate signaling pathways and influence several cellular processes at once is particularly exciting to tackle this multifaceted disorder. However, miR delivery encounters extracellular and intracellular biological barriers. A promising technology to address this challenge is the vectorization of miRs within nanoparticles, providing both protection and enhancing their uptake within the scarce target cells of the degenerated IVD. This comprehensive review presents the diverse spectrum of miRs' connection with IVDD and demonstrates their therapeutic potential when vectorized in nanomedicines.
Collapse
Affiliation(s)
- Hussein H Genedy
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, Nantes, France; Univ Angers, INSERM, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Paul Humbert
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, Nantes, France
| | - Bilel Laoulaou
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, Nantes, France; Univ Angers, INSERM, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Brian Le Moal
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, Nantes, France; Univ Angers, INSERM, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - Marion Fusellier
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, Nantes, France; Department of Diagnostic Imaging, CRIP, ONIRIS, College of Veterinary Medicine, Food Science and Engineering, Nantes F-44307, France
| | | | - Catherine Le Visage
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, Nantes, France
| | - Jérôme Guicheux
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, Nantes, France
| | - Élise Lepeltier
- Univ Angers, INSERM, CNRS, MINT, SFR ICAT, F-49000 Angers, France; Institut Universitaire de France (IUF), France.
| | - Johann Clouet
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, Nantes, France
| |
Collapse
|
2
|
Wang C, Cui L, Gu Q, Guo S, Zhu B, Liu X, Li Y, Liu X, Wang D, Li S. The Mechanism and Function of miRNA in Intervertebral Disc Degeneration. Orthop Surg 2022; 14:463-471. [PMID: 35142050 PMCID: PMC8926997 DOI: 10.1111/os.13204] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 10/13/2021] [Accepted: 12/20/2021] [Indexed: 12/31/2022] Open
Abstract
Intervertebral disc degeneration (IDD) disease has been considered as the main cause of low back pain (LBP), which is a very common symptom and the leading cause of disability worldwide today. The pathological mechanism of IDD remains quite complicated, and genetic, developmental, biochemical, and biomechanical factors all contribute to the development of the disease. There exists no effective, non-surgical treatment for IDD nowadays, which is largely related to the lack of knowledge of the specific mechanisms of IDD, and the lack of effective specific targets. Recently, non-coding RNA, including miRNA, has been recognized as an important regulator of gene expression. Current studies on the effects of miRNA in IDD have confirmed that a variety of miRNAs play a crucial role in the process of IDD via nucleus pulposus cells (NPC) apoptosis, abnormal proliferation, inflammatory factors, the extracellular matrix (ECM) degradation, and annulus fibrosus (AF) degeneration. In the past 10 years, research on miRNA has been quite active in IDD. This review summarizes the current research progression of miRNA in the IDD and puts forward some prospects and challenges on non-surgical treatment for IDD.
Collapse
Affiliation(s)
- Chenglong Wang
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Liqiang Cui
- Department of Spine Surgery, Mianyang Orthopaedic Hospital, Mianyang, China
| | - Qinwen Gu
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Sheng Guo
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Bin Zhu
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Xueli Liu
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Yujie Li
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Xinyue Liu
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Dingxuan Wang
- Institute of Physical Education, Southwest Medical University, Luzhou, China
| | - Sen Li
- Spinal Surgery Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
3
|
Lin XL, Zheng ZY, Zhang QS, Zhang Z, An YZ. Expression of miR-195 and its target gene Bcl-2 in human intervertebral disc degeneration and their effects on nucleus pulposus cell apoptosis. J Orthop Surg Res 2021; 16:412. [PMID: 34183039 PMCID: PMC8240386 DOI: 10.1186/s13018-021-02538-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 06/08/2021] [Indexed: 01/07/2023] Open
Abstract
Objective To investigate the expression of miR-195 and its target gene Bcl-2 in intervertebral disc degeneration (IVDD) and its effect on nucleus pulposus (NP) cell apoptosis. Methods The expressions of miR-195 and Bcl-2 in NP tissues of IVDD patients were quantified by qRT-PCR and western blotting, respectively. NP cells were divided into blank group, TNF-α group, TNF-α + miR-NC group, TNF-α + siBcl-2 group, and TNF-α + miR-195 inhibitors + siBcl-2 group. Cell proliferation was detected by MTT assay, cell apoptosis evaluated by flow cytometry, and mitochondrial membrane potential (MMP) tested by JC-1 staining. Moreover, the function of miR-195 on IVDD in vivo was investigated using a puncture-induced IVDD rat model. Results IVDD patients had significantly increased miR-195 expression and decreased Bcl-2 protein expression in NP tissues. The expression of miR-195 was negatively correlated with the expression of Bcl-2 in IVDD patients. Dual-luciferase reporter gene assay indicated that Bcl-2 was a target gene of miR-195. In comparison with blank group, TNF-α group showed decreased cell proliferation and MMP, increased cell apoptosis, upregulated expression of miR-195, Bax, and cleaved caspase 3, and downregulated Bcl-2 protein, while these changes were attenuated by miR-195 inhibitors. Additionally, siBcl-2 can reverse the protective effect of miR-195 inhibitors on TNF-α-induced NP cells. Besides, inhibition of miR-195 alleviated IVDD degeneration and NP cell apoptosis in the rat model. Conclusion MiR-195 was significantly upregulated in NP tissues of IVDD patients, and inhibition of miR-195 could protect human NP cells from TNF-α-induced apoptosis via upregulation of Bcl-2.
Collapse
Affiliation(s)
- Xue-Lin Lin
- Second Department of Spinal Surgery, The Second Hospital of Liaocheng Affiliated to Shandong First Medical University, Linqing, 252600, Shandong, China
| | - Zhao-Yun Zheng
- Second Department of Spinal Surgery, The Second Hospital of Liaocheng Affiliated to Shandong First Medical University, Linqing, 252600, Shandong, China
| | - Qing-Shan Zhang
- Second Department of Spinal Surgery, The Second Hospital of Liaocheng Affiliated to Shandong First Medical University, Linqing, 252600, Shandong, China
| | - Zhen Zhang
- Second Department of Spinal Surgery, The Second Hospital of Liaocheng Affiliated to Shandong First Medical University, Linqing, 252600, Shandong, China
| | - You-Zhi An
- Second Department of Spinal Surgery, The Second Hospital of Liaocheng Affiliated to Shandong First Medical University, Linqing, 252600, Shandong, China.
| |
Collapse
|
4
|
Yang F, Wang J, Chen Z, Yang Y, Zhang W, Guo S, Yang Q. Role of microRNAs in intervertebral disc degeneration (Review). Exp Ther Med 2021; 22:860. [PMID: 34178133 PMCID: PMC8220656 DOI: 10.3892/etm.2021.10292] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 05/19/2021] [Indexed: 11/14/2022] Open
Abstract
The incidence of lower back pain caused by intervertebral disc degeneration (IDD) is gradually increasing. IDD not only affects the quality of life of the patients, but also poses a major socioeconomic burden. There is currently no optimal method for delaying or reversing IDD, mainly due to its unknown pathogenesis. MicroRNAs (miRNAs/miRs) participate in the development of a number of diseases, including IDD. Abnormal expression of miRNAs in the intervertebral disc is implicated in various pathological processes underlying the development of IDD, including nucleus pulposus (NP) cell (NPC) proliferation, NPC apoptosis, extracellular matrix remodeling, inflammation and cartilaginous endplate changes, among others. The focus of the present review was the advances in research on the involvement of miRNAs in the mechanism underlying IDD. Further research is expected to identify markers for early diagnosis of IDD and new targets for delaying or reversing IDD.
Collapse
Affiliation(s)
- Fengguang Yang
- Department of Orthopedics, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Jizu Wang
- Department of Orthopedics, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Zhixin Chen
- Department of Orthopedics, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Yuping Yang
- Department of Orthopedics, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Wenhui Zhang
- Department of Orthopedics, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Shifang Guo
- Department of Orthopedics, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Qingshan Yang
- Department of Orthopedics, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|