1
|
Noll KR, Bradshaw M, Sheppard D, Wefel JS. Perioperative Neurocognitive Function in Glioma Surgery. Curr Oncol Rep 2024; 26:466-476. [PMID: 38573439 DOI: 10.1007/s11912-024-01522-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
PURPOSE OF REVIEW This review provides a concise overview of the recent literature regarding preoperative and postoperative neurocognitive functioning (NCF) in patients with glioma. Brief discussion also covers contemporary intraoperative brain mapping work, with a focus on potential influence of mapping upon NCF outcomes following awake surgery. RECENT FINDINGS Most patients with glioma exhibit preoperative NCF impairment, with severity varying by germ line and tumoral genetics, tumor grade, and lesion location, among other characteristics. Literature regarding postoperative NCF changes is mixed, though numerous studies indicate a majority of patients exhibit immediate and short-term worsening. This is often followed by recovery over several months; however, a substantial portion of patients harbor persisting declines. Decline appears related to surgically-induced structural and functional brain alterations, both local and distal to the tumor and resection cavity. Importantly, NCF decline may be mitigated to some extent by intraoperative brain mapping, including mapping of both language-mediated and nonverbal functions. Research regarding perioperative NCF in patients with glioma has flourished over recent years. While this has increased our understanding of contributors to NCF and risk of decline associated with surgical intervention, more work is needed to better preserve NCF throughout the disease course.
Collapse
Affiliation(s)
- Kyle R Noll
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 431, Houston, TX, 77030, USA.
| | - Mariana Bradshaw
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 431, Houston, TX, 77030, USA
| | - David Sheppard
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| | - Jeffrey S Wefel
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 431, Houston, TX, 77030, USA
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
2
|
Lv K, Hu Y, Cao X, Xie Y, Fu J, Chen H, Xiong J, Zhu L, Geng D, Zhang J. Altered whole-brain functional network in patients with frontal low-grade gliomas: a resting-state functional MRI study. Neuroradiology 2024; 66:775-784. [PMID: 38294728 DOI: 10.1007/s00234-024-03300-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/27/2024] [Indexed: 02/01/2024]
Abstract
PURPOSE Gliomas are the most common primary brain tumor. Currently, topological alterations of whole-brain functional network caused by gliomas are not fully understood. The work here clarified the topological reorganization of the functional network in patients with unilateral frontal low-grade gliomas (LGGs). METHODS A total of 45 patients with left frontal LGGs, 19 with right frontal LGGs, and 25 healthy controls (HCs) were enrolled. All the resting-state functional MRI (rs-fMRI) images of the subjects were preprocessed to construct the functional network matrix, which was used for graph theoretical analysis. A two-sample t-test was conducted to clarify the differences in global and nodal network metrics between patients and HCs. A network-based statistic approach was used to identify the altered specific pairs of regions in which functional connectivity in patients with LGGs. RESULTS The local efficiency, clustering coefficient, characteristic path length, and normalized characteristic path length of patients with unilateral frontal LGGs were significantly lower than HCs, while there were no significant differences of global efficiency and small-worldness between patients and HCs. Compared with the HCs, betweenness centrality, degree centrality, and nodal efficiency of several brain nodes were changed significantly in patients. Around the tumor and its adjacent areas, the inter- and intra-hemispheric connections were significantly decreased in patients with left frontal LGGs. CONCLUSION The patients with unilateral frontal LGGs have altered global and nodal network metrics and decreased inter- and intra-hemispheric connectivity. These topological alterations may be involved in functional impairment and compensation of patients.
Collapse
Affiliation(s)
- Kun Lv
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Intelligent Imaging for Critical Brain Diseases, Shanghai, China
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Yue Hu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- Department of Radiology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Xin Cao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Intelligent Imaging for Critical Brain Diseases, Shanghai, China
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Yongsheng Xie
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Junyan Fu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Intelligent Imaging for Critical Brain Diseases, Shanghai, China
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China
| | - Hongyi Chen
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Ji Xiong
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Zhu
- Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai, China.
| | - Daoying Geng
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China.
- Shanghai Engineering Research Center of Intelligent Imaging for Critical Brain Diseases, Shanghai, China.
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China.
- Academy for Engineering and Technology, Fudan University, Shanghai, China.
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China.
- Shanghai Engineering Research Center of Intelligent Imaging for Critical Brain Diseases, Shanghai, China.
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China.
- Academy for Engineering and Technology, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Zhang S, Sun H, Yang X, Wan X, Tan Q, Li S, Shao H, Su X, Yue Q, Gong Q. An MRI Study Combining Virtual Brain Grafting and Surface-Based Morphometry Analysis to Investigate Contralateral Alterations in Cortical Morphology in Patients With Diffuse Low-Grade Glioma. J Magn Reson Imaging 2023; 58:741-749. [PMID: 36524459 DOI: 10.1002/jmri.28562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND The human brain has ability to reorganize itself in response to glioma. However, the mechanism of cortical reorganization remains unclear. PURPOSE To investigate alterations in cortical thickness and local gyration index (LGI) in patients with unilateral frontal lobe diffuse low-grade glioma (DLGG). STUDY TYPE Retrospective. SUBJECTS Ninety-nine patients with histopathologically proven DLGG invading the left frontal lobe (LF; N = 56) or the right frontal lobe (RF; N = 43), and healthy controls (HC; N = 53). FIELD STRENGTH/SEQUENCE 3.0 T, 3D T1-weighted images and gadolinium enhanced T1-weighted images using magnetization-prepared rapid gradient echo sequence, T2-weighted images, and fluid-attenuated inversion recovery using turbo spin echo sequence. ASSESSMENT In patients with DLGG, virtual brain grafting combined with Freesurfer was utilized to enable automated cortical thickness and LGI calculation. In HC, standard FreeSurfer pipeline was applied to calculate these measures. Radiomic features were extracted from glioma using Pyradiomic software. STATISTICAL TESTS General linear model and Pearson's correlation analysis. A P value <0.05 was considered statistically significant. RESULTS For LF patients, there was significantly increased cortical thickness in the rostral middle frontal gyrus, significantly reduced cortical thickness in the precentral gyrus and hypogyrification in the lingual and medial orbitofrontal (MOF) gyrus in contralateral hemisphere. For RF patients, there was significantly increased cortical thickness in the middle temporal, lateral occipital extending to isthmus cingulate gyrus, significantly reduced cortical thickness in the precentral gyrus and hypogyrification in the lingual gyrus in the contralateral hemisphere. A negative association between four textural features of DLGG and LGI in the right MOF gyrus of LF group was found (r = -0.609, -0.442, -0.545, and -0.417, respectively). DATA CONCLUSION Cortical thickness compensation was shown in contralateral homotopic location and some distant contralateral regions. Additionally, there was decreased cortical thickness in the contralateral precentral gyrus and hypogyrification in contralateral lingual gyrus. EVIDENCE LEVEL 4 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Simin Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Huaxi Glioma Center, West China Hospital of Sichuan University, Chengdu, China
| | - Huaiqiang Sun
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Xibiao Yang
- Huaxi Glioma Center, West China Hospital of Sichuan University, Chengdu, China
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xinyue Wan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - QiaoYue Tan
- Division of Radiation Physics, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Shuang Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Huaxi Glioma Center, West China Hospital of Sichuan University, Chengdu, China
| | - Hanbin Shao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Huaxi Glioma Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaorui Su
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, china
| | - Qiang Yue
- Huaxi Glioma Center, West China Hospital of Sichuan University, Chengdu, China
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qiyong Gong
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| |
Collapse
|
4
|
Zhang X, Zhang G, Wang Y, Huang H, Li H, Li M, Yang C, Li M, Chen H, Jing B, Lin S. Alteration of default mode network: association with executive dysfunction in frontal glioma patients. J Neurosurg 2023; 138:1512-1521. [PMID: 36242576 DOI: 10.3171/2022.8.jns22591] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 08/15/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Patients with frontal gliomas often experience executive dysfunction (EF-D) before surgery, and the changes in brain plasticity underlying this effect remain obscure. In this study, the authors aimed to assess whole-brain structural and functional alterations by using structural MRI and resting-state functional MRI (rs-fMRI) in frontal glioma patients with or without EF-D. METHODS Fifty-seven patients with frontal gliomas were admitted prospectively to the authors' institution and assigned to one of two groups: 1) the normal executive function (EF-N) group and 2) the EF-D group, based on patient results for the Trail Making Test, Part B and Stroop Color-Word Test, Part C. Twenty-nine baseline-matched healthy controls were also recruited. All participants underwent multimodal MRI examination. Cortical surface thickness, surface-based resting-state activity (fractional amplitude of low-frequency fluctuation [fALFF] and regional homogeneity [ReHo]), and edge-based network functional connectivity (FC) were measured with FreeSurfer and fMRIPrep. The correlation between altered MRI parameters and executive function (EF) was assessed using Pearson correlation and receiver operating characteristic (ROC) analysis. RESULTS Demographic characteristics (sex, age, and education level) and clinical characteristics (location, volume, grade of tumor, and preoperative epilepsy) were not significantly different between the groups, but the Karnofsky Performance Scale score was worse in the EF-D group. There was no significant difference in cortical surface thickness between the EF-D and EF-N groups. In both low-grade and high-grade glioma patients the fALFF value (permutation test + threshold-free cluster enhancement, p value after family-wise error correction < 0.05) and ReHo value (t-test, p < 0.001) of the left precuneus cortex in the EF-D group were greater than those in the EF-N group, which were negatively correlated with EF (p < 0.05) and enabled prediction of EF (area under the ROC curve 0.826 for fALFF and 0.855 for ReHo, p < 0.001). Compared with the EF-N group, the FCs between the default mode network (DMN) from DMN node to DMN node (DMN-DMN) and from the DMN to the central executive network (DMN-CEN) in the EF-D group were increased significantly (network-based statistics corrected p < 0.05) and negatively correlated with EF (Pearson correlation, p < 0.05). CONCLUSIONS Apart from local disruption, the abnormally activated DMN in the resting state is related to EF-D in frontal glioma patients. DMN activity should be considered during preoperative planning and postoperative neurorehabilitation for frontal glioma patients to preserve EF. Clinical trial registration no.: NCT03087838 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Xiaokang Zhang
- 1Department of Neurosurgery, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing Tiantan Hospital, Capital Medical University
- 3Beijing Key Laboratory of Brain Tumor, Beijing Tiantan Hospital, Capital Medical University
| | - Guobin Zhang
- 1Department of Neurosurgery, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing Tiantan Hospital, Capital Medical University
- 4Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University
| | - Yonggang Wang
- 1Department of Neurosurgery, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing Tiantan Hospital, Capital Medical University
- 4Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University
| | | | - Haoyi Li
- 1Department of Neurosurgery, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing Tiantan Hospital, Capital Medical University
- 3Beijing Key Laboratory of Brain Tumor, Beijing Tiantan Hospital, Capital Medical University
| | - Mingxiao Li
- 1Department of Neurosurgery, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing Tiantan Hospital, Capital Medical University
- 3Beijing Key Laboratory of Brain Tumor, Beijing Tiantan Hospital, Capital Medical University
| | - Chuanwei Yang
- 1Department of Neurosurgery, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing Tiantan Hospital, Capital Medical University
- 3Beijing Key Laboratory of Brain Tumor, Beijing Tiantan Hospital, Capital Medical University
| | - Ming Li
- 1Department of Neurosurgery, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing Tiantan Hospital, Capital Medical University
- 3Beijing Key Laboratory of Brain Tumor, Beijing Tiantan Hospital, Capital Medical University
| | - Hongyan Chen
- 6Department of Radiology, Beijing Tiantan Hospital, Capital Medical University; and
| | - Bin Jing
- 7School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Song Lin
- 1Department of Neurosurgery, China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing Tiantan Hospital, Capital Medical University
- 4Department of Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University
| |
Collapse
|
5
|
Zhang Y, Xu H, Liu Y, Yang K, Zou Y, Liu H. Stable functional compensation within hippocampal-subregion networks in patients with temporal glioma before and after surgery. Front Neurosci 2022; 16:991406. [PMID: 36117628 PMCID: PMC9475067 DOI: 10.3389/fnins.2022.991406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/08/2022] [Indexed: 12/04/2022] Open
Abstract
Objective To identify whether tumor invasion of the temporal lobe induces functional compensation of the hippocampal-subregion (HIPsub) network connectivity before surgery, and to further validate the stability of this functional compensation within the HIPsub network in patients with temporal glioma tumor (TTumor) after surgical resection of the tumor. Methods In the first cohort, analysis of HIPsub functional connectivity (FC) was conducted to identify the functional compensation of the altered HIPsub connectivity pattern in TTumor through a pattern classification approach. Then, the second cohort investigated whether functional compensation in TTumor patients changed after surgical resection of the tumor. Results In the first cohort, this study identified altered HIPsub network connectivity patterns and its functional compensation regions (i.e., left parahippocampal gyrus and bilateral cerebellum anterior lobe) in TTumor patients. Second, the altered HIPsub network connectivity patterns had the power to discriminate TTumor patients from healthy controls (CN) on an individual subject basis, with an AUC of 97.0%, sensitivity of 93.5%, and specificity of 90.3%. Finally, in the second cohort, we found that functional connectivities of functional compensation regions within the HIPsub network in TTumor patients did not change between before and after surgery. Conclusion This study provides novel evidence regarding functional compensation within the HIPsub network in TTumor patients. It has been suggested that the fine hippocampal subregion was more sensitive, which reveals functional compensation induced by tumor invasion of the temporal lobe. Furthermore, this study verified the stability and persistence of this functional compensation in TTumor patients after surgical resection of the tumor.
Collapse
Affiliation(s)
- Yuhai Zhang
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Honghao Xu
- Department of Functional Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Liu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Kun Yang
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yuanjie Zou
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Hongyi Liu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Hongyi Liu,
| |
Collapse
|
6
|
Di G, Tan M, Xu R, Zhou W, Duan K, Hu Z, Cao X, Zhang H, Jiang X. Altered Structural and Functional Patterns Within Executive Control Network Distinguish Frontal Glioma-Related Epilepsy. Front Neurosci 2022; 16:916771. [PMID: 35692418 PMCID: PMC9179179 DOI: 10.3389/fnins.2022.916771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/05/2022] [Indexed: 11/27/2022] Open
Abstract
Background The tumor invasion of the frontal lobe induces changes in the executive control network (ECN). It remains unclear whether epileptic seizures in frontal glioma patients exacerbate the structural and functional alterations within the ECN, and whether these changes can be used to identify glioma-related seizures at an early stage. This study aimed to investigate the altered structural and functional patterns of ECN in frontal gliomas without epilepsy (non-FGep) and frontal gliomas with epilepsy (FGep) and to evaluate whether the patterns can accurately distinguish glioma-related epilepsy. Methods We measured gray matter (GM) volume, regional homogeneity (ReHo), and functional connectivity (FC) within the ECN to identify the structural and functional changes in 50 patients with frontal gliomas (29 non-FGep and 21 FGep) and 39 healthy controls (CN). We assessed the relationships between the structural and functional changes and cognitive function using partial correlation analysis. Finally, we applied a pattern classification approach to test whether structural and functional abnormalities within the ECN can distinguish non-FGep and FGep from CN subjects. Results Within the ECN, non-FGep and FGep showed increased local structure (GM) and function (ReHo), and decreased FC between brain regions compared to CN. Also, non-FGep and FGep showed differential patterns of structural and functional abnormalities within the ECN, and these abnormalities are more severe in FGep than in non-FGep. Lastly, FC between the right superior frontal gyrus and right dorsolateral prefrontal cortex was positively correlated with episodic memory scores in non-FGep and FGep. In particular, the support vector machine (SVM) classifier based on structural and functional abnormalities within ECN could accurately distinguish non-FGep and FGep from CN, and FGep from non-FGep on an individual basis with very high accuracy, area under the curve (AUC), sensitivity, and specificity. Conclusion Tumor invasion of the frontal lobe induces local structural and functional reorganization within the ECN, exacerbated by the accompanying epileptic seizures. The ECN abnormalities can accurately distinguish the presence or absence of epileptic seizures in frontal glioma patients. These findings suggest that differential ECN patterns can assist in the early identification and intervention of epileptic seizures in frontal glioma patients.
Collapse
Affiliation(s)
- Guangfu Di
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders of Wannan Medical College, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Mingze Tan
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders of Wannan Medical College, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Rui Xu
- Department of Radiology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Wei Zhou
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders of Wannan Medical College, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Kaiqiang Duan
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders of Wannan Medical College, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Zongwen Hu
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders of Wannan Medical College, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Xiaoxiang Cao
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders of Wannan Medical College, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Hongchuang Zhang
- Department of Radiology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Xiaochun Jiang
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders of Wannan Medical College, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China
- *Correspondence: Xiaochun Jiang,
| |
Collapse
|
7
|
Cognitive deficits in adult patients with high-grade glioma: A systematic review. Clin Neurol Neurosurg 2022; 219:107296. [DOI: 10.1016/j.clineuro.2022.107296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/04/2022] [Accepted: 05/13/2022] [Indexed: 11/15/2022]
|
8
|
Functional reorganization of contralesional networks varies according to isocitrate dehydrogenase 1 mutation status in patients with left frontal lobe glioma. Neuroradiology 2022; 64:1819-1828. [PMID: 35348814 DOI: 10.1007/s00234-022-02932-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/12/2022] [Indexed: 12/20/2022]
Abstract
PURPOSE The study aimed to assess how isocitrate dehydrogenase 1 (IDH1) mutation status in patients with glioma may alter functional connectivity (FC) in the default mode network (DMN) and fronto-parietal network (FPN). METHODS Using resting-state functional magnetic resonance imaging, a seed-based FC analysis was employed to investigate connectivity within and between networks in seventeen patients with IDH1-mutant glioma (IDH1-M), eleven patients with IDH1-wildtype glioma (IDH1-WT), and nineteen healthy controls (HC). RESULTS For FC within the DMN, compared to HC, both IDH1-M and IDH1-WT exhibited significantly increased FC between the posterior cingulate cortex (PCC) and the right retrosplenial cortex, right precuneus/cuneus, and right middle cingulate cortex and between the right lateral parietal cortex (LP_R) and the right middle temporal gyrus. For FC within the FPN, compared with HC, IDH1-M showed significantly greater FC between the right posterior parietal cortex (PPC_R) and the right inferior, right medial, and right middle frontal gyrus, and IDH1-WT showed significantly increased FC between the PPC_R and the right middle frontal gyrus. For FC between the DMN and FPN, relative to IDH1-WT and HC, IDH1-M exhibited significantly increased FC between the LP_R and the right superior frontal gyrus and between the PPC_R and the right precuneus/cuneus. In contrast, compared to IDH1-M and HC, IDH1-WT showed significantly reduced FC between the PPC_R and the right angular gyrus. CONCLUSION The preliminary findings revealed that there should be differences in the patterns of network reorganization between IDH1-M and IDH1-WT with different growth kinetics.
Collapse
|
9
|
Yang J, Gohel S, Zhang Z, Hatzoglou V, Holodny AI, Vachha BA. Glioma-Induced Disruption of Resting-State Functional Connectivity and Amplitude of Low-Frequency Fluctuations in the Salience Network. AJNR Am J Neuroradiol 2021; 42:551-558. [PMID: 33384293 DOI: 10.3174/ajnr.a6929] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/02/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND PURPOSE Cognitive challenges are prevalent in survivors of glioma, but their neurobiology is incompletely understood. The purpose of this study was to investigate the effect of glioma presence and tumor characteristics on resting-state functional connectivity and amplitude of low-frequency fluctuations of the salience network, a key neural network associated with cognition. MATERIALS AND METHODS Sixty-nine patients with glioma (mean age, 48.74 [SD, 14.32] years) who underwent resting-state fMRI were compared with 31 healthy controls (mean age, 49.68 [SD, 15.54] years). We identified 4 salience network ROIs: left/right dorsal anterior cingulate cortex and left/right anterior insula. Average salience network resting-state functional connectivity and amplitude of low-frequency fluctuations within the 4 salience network ROIs were computed. RESULTS Patients with gliomas showed decreased overall salience network resting-state functional connectivity (P = .001) and increased amplitude of low-frequency fluctuations in all salience network ROIs (P < .01) except in the left dorsal anterior cingulate cortex. Compared with controls, patients with left-sided gliomas showed increased amplitude of low-frequency fluctuations in the right dorsal anterior cingulate cortex (P = .002) and right anterior insula (P < .001), and patients with right-sided gliomas showed increased amplitude of low-frequency fluctuations in the left anterior insula (P = .002). Anterior tumors were associated with decreased salience network resting-state functional connectivity (P < .001) and increased amplitude of low-frequency fluctuations in the right anterior insula, left anterior insula, and right dorsal anterior cingulate cortex. Patients with high-grade gliomas had decreased salience network resting-state functional connectivity compared with healthy controls (P < .05). The right anterior insula showed increased amplitude of low-frequency fluctuations in patients with grade II and IV gliomas compared with controls (P < .01). CONCLUSIONS By demonstrating decreased resting-state functional connectivity and an increased amplitude of low-frequency fluctuations related to the salience network in patients with glioma, this study adds to our understanding of the neurobiology underpinning observable cognitive deficits in these patients. In addition to more conventional functional connectivity, amplitude of low-frequency fluctuations is a promising functional-imaging biomarker of tumor-induced vascular and neural pathology.
Collapse
Affiliation(s)
- J Yang
- From the Departments of Radiology (J.Y., V.H., A.I.H., B.A.V.)
- New York University Grossman School of Medicine (J.Y.), New York University, New York, New York
| | - S Gohel
- Department of Health Informatics (S.G.), Rutgers University School of Health Professions, Newark, New Jersey
| | - Z Zhang
- Epidemiology and Biostatistics (Z.Z.)
| | - V Hatzoglou
- From the Departments of Radiology (J.Y., V.H., A.I.H., B.A.V.)
- Brain Tumor Center (V.H., A.I.H., B.A.V.), Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology (V.H., A.I.H., B.A.V.), Weill Medical College of Cornell University, New York, New York
| | - A I Holodny
- From the Departments of Radiology (J.Y., V.H., A.I.H., B.A.V.)
- Brain Tumor Center (V.H., A.I.H., B.A.V.), Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology (V.H., A.I.H., B.A.V.), Weill Medical College of Cornell University, New York, New York
- Department of Neuroscience (A.I.H.), Weill-Cornell Graduate School of the Medical Sciences, New York, New York
| | - B A Vachha
- From the Departments of Radiology (J.Y., V.H., A.I.H., B.A.V.)
- Brain Tumor Center (V.H., A.I.H., B.A.V.), Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology (V.H., A.I.H., B.A.V.), Weill Medical College of Cornell University, New York, New York
| |
Collapse
|
10
|
Tordjman M, Madelin G, Gupta PK, Cordova C, Kurz SC, Orringer D, Golfinos J, Kondziolka D, Ge Y, Wang RL, Lazar M, Jain R. Functional connectivity of the default mode, dorsal attention and fronto-parietal executive control networks in glial tumor patients. J Neurooncol 2021; 152:347-355. [PMID: 33528739 DOI: 10.1007/s11060-021-03706-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE Resting state functional magnetic resonance imaging (rsfMRI) is an emerging tool to explore the functional connectivity of different brain regions. We aimed to assess the disruption of functional connectivity of the Default Mode Network (DMN), Dorsal Attention Network(DAN) and Fronto-Parietal Network (FPN) in patients with glial tumors. METHODS rsfMRI data acquired on 3T-MR of treatment-naive glioma patients prospectively recruited (2015-2019) and matched controls from the 1000 functional-connectomes-project were analyzed using the CONN functional toolbox. Seed-Based Connectivity Analysis (SBCA) and Independent Component Analysis (ICA, with 10 to 100 components) were performed to study reliably the three networks of interest. RESULTS 35 patients with gliomas (17 WHO grade I-II, 18 grade III-IV) and 70 controls were included. Global increased DMN connectivity was consistently found with SBCA and ICA in patients compared to controls (Cluster1: Precuneus, height: p < 10-6; Cluster2: subcallosum; height: p < 10-5). However, an area of decreased connectivity was found in the posterior corpus callosum, particularly in high-grade gliomas (height: p < 10-5). The DAN demonstrated small areas of increased connectivity in frontal and occipital regions (height: p < 10-6). For the FPN, increased connectivity was noted in the precuneus, posterior cingulate gyrus, and frontal cortex. No difference in the connectivity of the networks of interest was demonstrated between low- and high-grade gliomas, as well as when stratified by their IDH1-R132H (isocitrate dehydrogenase) mutation status. CONCLUSION Altered functional connectivity is reliably found with SBCA and ICA in the DMN, DAN, and FPN in glioma patients, possibly explained by decreased connectivity between the cerebral hemispheres across the corpus callosum due to disruption of the connections.
Collapse
Affiliation(s)
- Mickael Tordjman
- Department of Radiology, New York University Grossman School of Medicine, 650 First Avenue, New York, NY, 10022, USA.
| | - Guillaume Madelin
- Department of Radiology, New York University Grossman School of Medicine, 650 First Avenue, New York, NY, 10022, USA
| | - Pradeep Kumar Gupta
- Department of Radiology, New York University Grossman School of Medicine, 650 First Avenue, New York, NY, 10022, USA
| | - Christine Cordova
- Perlmutter Cancer Center, Brain and Spine Tumor Center, NYU Langone Health, 240 E 38th Street, New York, NY, 10016, USA
| | - Sylvia C Kurz
- Perlmutter Cancer Center, Brain and Spine Tumor Center, NYU Langone Health, 240 E 38th Street, New York, NY, 10016, USA
| | - Daniel Orringer
- Department of Neurosurgery, New York University Grossman School of Medicine, 650 First Avenue, New York, NY, 10022, USA
| | - John Golfinos
- Department of Neurosurgery, New York University Grossman School of Medicine, 650 First Avenue, New York, NY, 10022, USA
| | - Douglas Kondziolka
- Department of Neurosurgery, New York University Grossman School of Medicine, 650 First Avenue, New York, NY, 10022, USA
| | - Yulin Ge
- Department of Radiology, New York University Grossman School of Medicine, 650 First Avenue, New York, NY, 10022, USA
| | - Ruoyu Luie Wang
- Department of Radiology, New York University Grossman School of Medicine, 650 First Avenue, New York, NY, 10022, USA
| | - Mariana Lazar
- Department of Radiology, New York University Grossman School of Medicine, 650 First Avenue, New York, NY, 10022, USA
| | - Rajan Jain
- Department of Radiology, New York University Grossman School of Medicine, 650 First Avenue, New York, NY, 10022, USA.,Department of Neurosurgery, New York University Grossman School of Medicine, 650 First Avenue, New York, NY, 10022, USA
| |
Collapse
|
11
|
Liu D, Chen J, Hu X, Hu G, Liu Y, Yang K, Xiao C, Zou Y, Liu H. Contralesional homotopic functional plasticity in patients with temporal glioma. J Neurosurg 2021; 134:417-425. [PMID: 31923896 DOI: 10.3171/2019.11.jns191982] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/05/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE This study aimed to explore the contralesional homotopic functional plasticity in the brain of patients with unilateral temporal glioma. METHODS Demographic, neurocognitive, and resting-state functional MRI data were collected from 17 patients with temporal glioma (10 in the right lobe and 7 in the left lobe), along with 14 age- and sex-matched healthy controls. The amplitude of low-frequency fluctuation (ALFF) of the contralesional homotopic region and 2 control regions was examined. The region-of-interest-based analysis was used to determine the altered functional connectivity (FC) of the contralesional homotopic region, showing significantly different intrinsic regional brain activity between patients and controls. Partial correlation analysis was conducted to determine the association between the altered neural activity and behavioral characteristics. RESULTS Compared with controls, patients with right temporal glioma exhibited significantly increased ALFF in the contralesional homotopic hippocampus and parahippocampal region. In addition, the intrinsic regional activity in these regions was negatively correlated with the visuospatial score (r = -0.718, p = 0.045). Whole-brain FC analysis revealed significantly increased FC between the left hippocampus and parahippocampal regions and the left inferior temporal gyrus, and decreased FC between the left hippocampus and parahippocampal regions and the left inferior frontal gyrus. No significant changes were found in the 2 control regions. CONCLUSIONS Contralesional homotopic regions are instrumental in the process of neural plasticity and functional compensation observed in patients with unilateral temporal glioma. The observed findings might be used to help preoperative evaluation or rehabilitation of postsurgical patients.
Collapse
Affiliation(s)
- Dongming Liu
- 1Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu
| | - Jiu Chen
- 2Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, Jiangsu
- 3Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu; and
| | - Xinhua Hu
- 1Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu
- 3Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu; and
| | - Guanjie Hu
- 1Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu
| | - Yong Liu
- 1Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu
| | - Kun Yang
- 1Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu
| | - Chaoyong Xiao
- 3Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu; and
- 4Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuanjie Zou
- 1Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu
- 3Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu; and
| | - Hongyi Liu
- 1Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu
- 3Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu; and
| |
Collapse
|
12
|
Fang S, Zhou C, Wang Y, Jiang T. Contralesional functional network reorganization of the insular cortex in diffuse low-grade glioma patients. Sci Rep 2021; 11:623. [PMID: 33436741 PMCID: PMC7804949 DOI: 10.1038/s41598-020-79845-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
Diffuse low-grade gliomas (DLGGs) growing on the insular lobe induce contralesional hemispheric insular lobe compensation of damaged functioning by increasing cortical volumes. However, it remains unclear how functional networks are altered in patients with insular lobe DLGGs during functional compensation. Thirty-five patients with insular DLGGs were classified into the left (insL, n = 16) and right groups (insR, n = 19), and 33 healthy subjects were included in the control group. Resting state functional magnetic resonance imaging was used to generate functional connectivity (FC), and network topological properties were evaluated using graph theoretical analysis based on FC matrices. Network-based statistics were applied to compare differences in the FC matrices. A false discovery rate was applied to correct the topological properties. There was no difference in the FC of edges between the control and insL groups; however, the nodal shortest path length of the right insular lobe was significantly increased in the insL group compared to the control group. Additionally, FC was increased in the functional edges originating from the left insular lobe in the insR group compared to the control group. Moreover, there were no differences in topological properties between the insR and control groups. The contralesional insular lobe is crucial for network alterations. The detailed patterns of network alterations were different depending on the affected hemisphere. The observed network alterations might be associated with functional network reorganization and functional compensation.
Collapse
Affiliation(s)
- Shengyu Fang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119, the Western Road of the southern 4th Ring Road, Beijing, 100070, China
| | - Chunyao Zhou
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119, the Western Road of the southern 4th Ring Road, Beijing, 100070, China
| | - Yinyan Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China. .,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119, the Western Road of the southern 4th Ring Road, Beijing, 100070, China.
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China. .,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119, the Western Road of the southern 4th Ring Road, Beijing, 100070, China. .,Research Unit of Accurate Diagnosis, Treatment, and Translational Medicine of Brain Tumors Chinese (2019RU11), Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
13
|
Impaired neurocognitive function in glioma patients: from pathophysiology to novel intervention strategies. Curr Opin Neurol 2020; 33:716-722. [PMID: 33009006 DOI: 10.1097/wco.0000000000000865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW This review succinctly summarizes the recent literature regarding etiological contributors to impaired neurocognitive function (NCF) in adult patients with glioma. A brief overview of intervention and prevention strategies is also provided. RECENT FINDINGS A majority of patients with glioma exhibit NCF deficits, most frequently in memory and executive functioning. Impairments are often disabling and associated with reduced quality of life and survival. Cause is multifactorial and includes the tumour itself, treatments received and associated comorbidities. Although modern techniques such as brain mapping, dosing modifications and prophylactic medication aim to improve the NCF outcomes following neurosurgical resection and radiation therapy, a sizeable proportion of patients continue to evidence treatment-related NCF declines related to adverse effects to both local and distributed cerebral networks. Numerous patient and tumour characteristics, including genetic markers and sociodemographic factors, influence the pattern and severity of NCF impairment. Some rehabilitative and pharmacologic approaches show promise in mitigating NCF impairment in this population, though benefits are somewhat modest and larger scale intervention studies are needed. SUMMARY Research regarding NCF in patients with glioma has dramatically proliferated, providing insights into the mechanisms underlying impaired NCF and pointing to potential interventions, though further work is needed.
Collapse
|
14
|
Duffau H. Functional Mapping before and after Low-Grade Glioma Surgery: A New Way to Decipher Various Spatiotemporal Patterns of Individual Neuroplastic Potential in Brain Tumor Patients. Cancers (Basel) 2020; 12:E2611. [PMID: 32933174 PMCID: PMC7565450 DOI: 10.3390/cancers12092611] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 12/21/2022] Open
Abstract
Intraoperative direct electrostimulation mapping (DEM) is currently the gold-standard for glioma surgery, since functional-based resection allows an optimization of the onco-functional balance (increased resection with preserved quality of life). Besides intrasurgical awake mapping of conation, cognition, and behavior, preoperative mapping by means of functional neuroimaging (FNI) and transcranial magnetic stimulation (TMS) has increasingly been utilized for surgical selection and planning. However, because these techniques suffer from several limitations, particularly for direct functional mapping of subcortical white matter pathways, DEM remains crucial to map neural connectivity. On the other hand, non-invasive FNI and TMS can be repeated before and after surgical resection(s), enabling longitudinal investigation of brain reorganization, especially in slow-growing tumors like low-grade gliomas. Indeed, these neoplasms generate neuroplastic phenomena in patients with usually no or only slight neurological deficits at diagnosis, despite gliomas involving the so-called "eloquent" structures. Here, data gained from perioperative FNI/TMS mapping methods are reviewed, in order to decipher mechanisms underpinning functional cerebral reshaping induced by the tumor and its possible relapse, (re)operation(s), and postoperative rehabilitation. Heterogeneous spatiotemporal patterns of rearrangement across patients and in a single patient over time have been evidenced, with structural changes as well as modifications of intra-hemispheric (in the ipsi-lesional and/or contra-lesional hemisphere) and inter-hemispheric functional connectivity. Such various fingerprints of neural reconfiguration were correlated to different levels of cognitive compensation. Serial multimodal studies exploring neuroplasticity might lead to new management strategies based upon multistage therapeutic approaches adapted to the individual profile of functional reallocation.
Collapse
Affiliation(s)
- Hugues Duffau
- Department of Neurosurgery, Montpellier University Medical Center, 34295 Montpellier, France; ; Tel.: +33-4-67-33-66-12; Fax: +33-4-67-33-69-12
- Institute of Functional Genomics, INSERM U-1191, University of Montpellier, 34298 Montpellier, France
| |
Collapse
|
15
|
Liu Y, Hu G, Yu Y, Jiang Z, Yang K, Hu X, Li Z, Liu D, Zou Y, Liu H, Chen J. Structural and Functional Reorganization Within Cognitive Control Network Associated With Protection of Executive Function in Patients With Unilateral Frontal Gliomas. Front Oncol 2020; 10:794. [PMID: 32528887 PMCID: PMC7266965 DOI: 10.3389/fonc.2020.00794] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/22/2020] [Indexed: 11/18/2022] Open
Abstract
Background: The cognitive control network (CCN) is widely considered to be a frontoparietal circuit that is involved in executive function. This study aimed to investigate the structural and functional plasticity within the CCN in unilateral frontal gliomas, which are associated with the protection of executive functions. Methods: To detect structural and functional changes within the CCN, we measured gray matter (GM) volume, regional homogeneity, the amplitude of low-frequency fluctuation (ALFF), degree centrality, and functional connectivity within the CCN in 37 patients with gliomas invading the left frontal lobe (n = 16) or the right frontal lobe (n = 21) and 40 healthy controls (CNs). Partial correlation analysis was performed to assess the association between the altered structural and functional indices and executive function. Results: When the tumor invaded the left frontal lobe, the patients showed reduced ALFF in the dorsal medial prefrontal cortex (dmPFC) within the CCN and increased ALFF in the right superior parietal cortex (rSP) within the CCN compared to the CNs. When the tumor invaded the right frontal lobe, the patients showed significantly increased GM volume and ALFF in the left superior parietal cortex (lSP) within the CCN compared to the CNs. Furthermore, the patients showed significantly increased functional connectivities between the lSP and the dmPFC and between the lSP and the rSP within the CCN compared to the CNs. Increased ALFF in the lSP within the CCN was positively correlated with executive function. Conclusions: Tumors invading the frontal lobe induced contralesional structural and functional reorganization within the posterior CCN in patients with unilateral frontal gliomas. This further suggests that the contralesional superior parietal cortex acts as a functional compensation hub within the CCN, which may protect it against the detrimental effects of tumor invasion on executive functions.
Collapse
Affiliation(s)
- Yong Liu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Guanjie Hu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China.,Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yun Yu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Zijuan Jiang
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Kun Yang
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Xinhua Hu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Zonghong Li
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China.,Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Dongming Liu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yuanjie Zou
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Hongyi Liu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Jiu Chen
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China.,Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Kocher M, Jockwitz C, Caspers S, Schreiber J, Farrher E, Stoffels G, Filss C, Lohmann P, Tscherpel C, Ruge MI, Fink GR, Shah NJ, Galldiks N, Langen KJ. Role of the default mode resting-state network for cognitive functioning in malignant glioma patients following multimodal treatment. Neuroimage Clin 2020; 27:102287. [PMID: 32540630 PMCID: PMC7298724 DOI: 10.1016/j.nicl.2020.102287] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/31/2020] [Accepted: 04/27/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Progressive cognitive decline following multimodal neurooncological treatment is a common observation in patients suffering from malignant glioma. Alterations of the default-mode network (DMN) represent a possible source of impaired neurocognitive functioning and were analyzed in these patients. METHODS Eighty patients (median age, 51 years) with glioma (WHO grade IV glioblastoma, n = 57; WHO grade III anaplastic astrocytoma, n = 13; WHO grade III anaplastic oligodendroglioma, n = 10) and ECOG performance score 0-1 underwent resting-state functional MRI (rs-fMRI) and neuropsychological testing at a median interval of 13 months (range, 1-114 months) after initiation of therapy. For evaluation of structural and metabolic changes after treatment, anatomical MRI and amino acid PET using O-(2-[18F]fluoroethyl)-L-tyrosine (FET) were simultaneously acquired to rs-fMRI on a hybrid MR/PET scanner. A cohort of 80 healthy subjects matched for gender, age, and educational status served as controls. RESULTS The connectivity pattern within the DMN (12 nodes) of the glioma patients differed significantly from that of the healthy subjects but did not depend on age, tumor grade, time since treatment initiation, presence of residual/recurrent tumor, number of chemotherapy cycles received, or anticonvulsive medication. Small changes in the connectivity pattern were observed in patients who had more than one series of radiotherapy. In contrast, structural tissue changes located at or near the tumor site (including resection cavities, white matter lesions, edema, and tumor tissue) had a strong negative impact on the functional connectivity of the adjacent DMN nodes, resulting in a marked dependence of the connectivity pattern on tumor location. In the majority of neurocognitive domains, glioma patients performed significantly worse than healthy subjects. Correlation analysis revealed that reduced connectivity in the left temporal and parietal DMN nodes was associated with low performance in language processing and verbal working memory. Furthermore, connectivity of the left parietal DMN node also correlated with processing speed, executive function, and verbal as well as visual working memory. Overall DMN connectivity loss and cognitive decline were less pronounced in patients with higher education. CONCLUSION Personalized treatment strategies for malignant glioma patients should consider the left parietal and temporal DMN nodes as vulnerable regions concerning neurocognitive outcome.
Collapse
Affiliation(s)
- Martin Kocher
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany; Department of Stereotaxy and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany; Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Duesseldorf, Kerpener Str. 62, 50937 Cologne, Germany.
| | - Christiane Jockwitz
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany; Juelich-Aachen Research Alliance (JARA)-Section JARA-Brain, Wilhelm-Johnen-Str., 52428 Juelich, Germany; Institute for Anatomy I, Medical Faculty, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Jan Schreiber
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany
| | - Ezequiel Farrher
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany
| | - Gabriele Stoffels
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany
| | - Christian Filss
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany; Department of Stereotaxy and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Caroline Tscherpel
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany; Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Duesseldorf, Kerpener Str. 62, 50937 Cologne, Germany
| | - Maximilian I Ruge
- Department of Stereotaxy and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany; Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Duesseldorf, Kerpener Str. 62, 50937 Cologne, Germany
| | - Gereon R Fink
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany; Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Nadim J Shah
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany; Institute of Neuroscience and Medicine 11, JARA, Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany; Juelich-Aachen Research Alliance (JARA)-Section JARA-Brain, Wilhelm-Johnen-Str., 52428 Juelich, Germany; Department of Neurology, University Hospital Aachen, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany; Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Duesseldorf, Kerpener Str. 62, 50937 Cologne, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-1, -3, -4), Research Center Juelich, Wilhelm-Johnen-Str., 52428 Juelich, Germany; Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| |
Collapse
|
17
|
Hu G, Hu X, Yang K, Liu D, Xue C, Liu Y, Xiao C, Zou Y, Liu H, Chen J. Restructuring of contralateral gray matter volume associated with cognition in patients with unilateral temporal lobe glioma before and after surgery. Hum Brain Mapp 2019; 41:1786-1796. [PMID: 31883293 PMCID: PMC7268035 DOI: 10.1002/hbm.24911] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022] Open
Abstract
Glioma can cause variable alterations to the structure and function of the brain. However, there is a paucity of studies on the gray matter (GM) volume alterations in the brain region opposite the temporal glioma before and after surgery. Therefore, the present study was initiated to investigate the alternation in contralateral homotopic GM volume in patients with unilateral temporal lobe glioma and further, assess the relationship between GM volume alternations with cognition. Eight left temporal lobe glioma patients (LTPs), nine right temporal lobe glioma patients (RTPs), and 28 demographically matched healthy controls (HCs) were included. Using voxel‐based morphometry method, alternations in the contralateral homotopic GM volume in patients with unilateral temporal lobe glioma was determined. Furthermore, the correlation analysis was performed to explore the relationship between cognitive function and altered GM volume. In the preoperative analysis, compared to HCs, LTPs exhibited increased GM volume in right inferior temporal gyrus and right temporal pole (superior temporal gyrus), and, RTPs presented increased GM volume in left inferior temporal gyrus. In the postoperative analysis, compared to HCs, RTPs presented increased GM volume in left middle temporal gyrus. Furthermore, the increased GM volume was significantly positively correlated with the memory test but negatively correlated with the visuospatial test. This study preliminarily confirmed that there were compensatory changes in the GM volume in the contralateral temporal lobe in unilateral temporal lobe glioma patients. Furthermore, alterations of GM volume may be a mechanism for cognitive function compensation.
Collapse
Affiliation(s)
- Guanjie Hu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinhua Hu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kun Yang
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dongming Liu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chen Xue
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yong Liu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chaoyong Xiao
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuanjie Zou
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongyi Liu
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiu Chen
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu, China.,Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|