1
|
García M, Amayra I, Pérez M, Rodríguez AA, Salgueiro M, Infante J. Impact of chronic pain and depressive symptoms on the quality of life of adults with Chiari Malformation type I: A comparative study. Intractable Rare Dis Res 2024; 13:148-156. [PMID: 39220278 PMCID: PMC11350206 DOI: 10.5582/irdr.2024.01010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 09/04/2024] Open
Abstract
Chiari Malformation type I (CM-I) is a neurological disorder characterized by cerebellar tonsillar herniation. Chronic pain, particularly headaches, is a prevalent symptom in CM-I patients, significantly impacting their quality of life. The objective of this study was to evaluate the perceived quality of life in adults with CM-I and examine the influence of chronic pain and comorbid symptoms on their well-being. 26 CM-I patients (8 with decompressive surgery) and 26 matched healthy controls were recruited. Participants completed the following questionnaires: WHOQOL-BREF, HDI, NDI, OLBPDQ and HADS. CM-I patients exhibited significantly lower scores across all domains of quality of life when compared to healthy controls. Chronic pain, including headache, neck pain, and low back pain, was more pronounced among CM-I patients and demonstrated a significant correlation with depressive symptoms. Notably, after controlling for chronic pain, the differences in quality of life between CM-I patients and controls diminished. The results suggest that chronic pain, especially headaches, and comorbid depressive symptoms exert a substantial impact on the quality of life of CM-I patients. Surgical intervention alone may not fully address these issues, highlighting the importance of considering psychological interventions as part of the comprehensive treatment. Further research with larger samples and pre-post-surgery assessments is needed to validate these findings and explore the potential benefits of psychological therapies in enhancing the quality of life for CM-I patients.
Collapse
Affiliation(s)
- Maitane García
- Neuro-e-Motion Research Team, Department of Psychology, Faculty of Health Sciences, University of Deusto, Bilbao, Spain
| | - Imanol Amayra
- Neuro-e-Motion Research Team, Department of Psychology, Faculty of Health Sciences, University of Deusto, Bilbao, Spain
| | - Manuel Pérez
- Faculty of Health Sciences, Isabel I University, Burgos, Spain
| | - Alicia Aurora Rodríguez
- Neuro-e-Motion Research Team, Department of Psychology, Faculty of Health Sciences, University of Deusto, Bilbao, Spain
| | - Monika Salgueiro
- Neuro-e-Motion Research Team, Department of Psychology, Faculty of Health Sciences, University of Deusto, Bilbao, Spain
- Department of Clinical and Health Psychology, and Research Methodology, Faculty of Psychology, University of the Basque Country UPV/EHU, Donostia, Spain
| | - Jon Infante
- Neurology Service, University Hospital Marqués de Valdecilla-IDIVAL, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), University of Cantabria, Santander, Spain
| |
Collapse
|
2
|
Al Samman MMF, Ibrahimy A, Nwotchouang BST, Oshinski JN, Barrow DL, Allen PA, Amini R, Bhadelia RA, Loth F. The Relationship Between Imbalance Symptom and Cardiac Pulsation Induced Mechanical Strain in the Brainstem and Cerebellum for Chiari Malformation Type I. J Biomech Eng 2023; 145:081005. [PMID: 37295931 PMCID: PMC10782862 DOI: 10.1115/1.4062723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
Chiari malformation Type I (CMI) is known to have an altered biomechanical environment for the brainstem and cerebellum; however, it is unclear whether these altered biomechanics play a role in the development of CMI symptoms. We hypothesized that CMI subjects have a higher cardiac-induced strain in specific neurological tracts pertaining to balance, and postural control. We measured displacement over the cardiac cycle using displacement encoding with stimulated echoes magnetic resonance imaging in the cerebellum, brainstem, and spinal cord in 37 CMI subjects and 25 controls. Based on these measurements, we computed strain, translation, and rotation in tracts related to balance. The global strain on all tracts was small (<1%) for CMI subject and controls. Strain was found to be nearly doubled in three tracts for CMI subjects compared to controls (p < 0.03). The maximum translation and rotation were ∼150 μm and ∼1 deg, respectively and 1.5-2 times greater in CMI compared to controls in four tracts (p < 0.005). There was no significant difference between strain, translation, and rotation on the analyzed tracts in CMI subjects with imbalance compared to those without imbalance. A moderate correlation was found between cerebellar tonsillar position and strain on three tracts. The lack of statistically significant difference between strain in CMI subjects with and without imbalance could imply that the magnitude of the observed cardiac-induced strain was too small to cause substantial damage to the tissue (<1%). Activities such as coughing, or Valsalva may produce a greater strain.
Collapse
Affiliation(s)
| | - Alaaddin Ibrahimy
- Department of Biomedical Engineering, Yale University, 17 Hillhouse Ave, New Haven, CT 06520
| | | | - John N. Oshinski
- Departments of Radiology & Imaging Sciences and Biomedical Engineering, Emory University School of Medicine, 1364 Clifton Road NE, Atlanta, GA 30322
| | - Daniel L. Barrow
- Department of Neurosurgery, Emory University School of Medicine, 1364 Clifton Road NE, Atlanta, GA 30322
| | - Philip A. Allen
- Department of Psychology, The University of Akron, 302 E Buchtel Ave, Akron, OH 44325
| | - Rouzbeh Amini
- Departments of Mechanical and Industrial Engineering, and Bioengineering, Northeastern University, 805 Columbus Ave, ISEC 508, Boston, MA 02120
| | - Rafeeque A. Bhadelia
- Department of Radiology, Beth Israel Deaconess Medical Center & Harvard University School of Medicine, 330 Brookline Ave, Boston, MA 02215
| | - Francis Loth
- Departments of Mechanical and Industrial Engineering, and Bioengineering, Northeastern University, 360 Huntington Ave, SN 257, Boston, MA 02115
| |
Collapse
|
3
|
Deli A, Toth R, Zamora M, Divanbeighi Zand AP, Green AL, Denison T. The Design of Brainstem Interfaces: Characterisation of Physiological Artefacts and Implications for Closed-loop Algorithms. INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING : [PROCEEDINGS]. INTERNATIONAL IEEE EMBS CONFERENCE ON NEURAL ENGINEERING 2023; 2023:10123850. [PMID: 37249946 PMCID: PMC7614576 DOI: 10.1109/ner52421.2023.10123850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Surgical neuromodulation through implantable devices allows for stimulation delivery to subcortical regions, crucial for symptom control in many debilitating neurological conditions. Novel closed-loop algorithms deliver therapy tailor-made to endogenous physiological activity, however rely on precise sensing of signals such as subcortical oscillations. The frequency of such intrinsic activity can vary depending on subcortical target nucleus, while factors such as regional anatomy may also contribute to variability in sensing signals. While artefact parameters have been explored in more 'standard' and commonly used targets (such as the basal ganglia, which are implanted in movement disorders), characterisation in novel candidate nuclei is still under investigation. One such important area is the brainstem, which contains nuclei crucial for arousal and autonomic regulation. The brainstem provides additional implantation targets for treatment indications in disorders of consciousness and sleep, yet poses distinct anatomical challenges compared to central subcortical targets. Here we investigate the region-specific artefacts encountered during activity and rest while streaming data from brainstem implants with a cranially-mounted device in two patients. Such artefacts result from this complex anatomical environment and its interactions with physiological parameters such as head movement and cardiac functions. The implications of the micromotion-induced artefacts, and potential mitigation, are then considered for future closed-loop stimulation methods.
Collapse
Affiliation(s)
- Alceste Deli
- Department of Neurosurgery, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Robert Toth
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
| | - Mayela Zamora
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Alexander L. Green
- Department of Neurosurgery, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Timothy Denison
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH, UK
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
4
|
He Y, Zhang M, Huang C, Qin X, Zhang Z, Wang Y, Guo L, Zheng Q, Bao M, Tao Y, Wu B. Prevalence and treatment of typical and atypical headaches in patients with Chiari I malformation: A meta-analysis and literature review. Cephalalgia 2023; 43:3331024221131356. [PMID: 36694433 DOI: 10.1177/03331024221131356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE A meta-analysis was conducted to analyze the incidence of typical and atypical headaches and outcomes following various treatments in patients with Chiari I malformation. BACKGROUND Headache is the most common symptom of Chiari malformation, which can be divided into typical and atypical subgroups to facilitate management. Much controversy surrounds the etiology, prevalence and optimal therapeutic approach for both types of headaches. METHOD We identified relevant studies published before 30 July 2022, with an electronic search of numerous literature databases. The results of this study were reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. RESULT A total of 1913 Chiari malformation type I CIM patients were identified, 78% of whom presented with headache, within this group cephalgia was typical in 48% and atypical in 29% of patients, and migraine was the most common type of atypical headache. The ratio of typical/atypical headaches with international classification of headache disorders diagnosis was 1.53, and without international classification of headache disorders diagnosis was 1.56, respectively. The pooled improvement rates of typical headaches following conservative treatment, extradural decompression and intradural decompression were 69%, 88%, and 92%, respectively. The corresponding improvement rates for atypical headaches were 70%, 57.47%, and 69%, respectively. The complication rate in extradural decompression group was significantly lower than in intradural decompression group (RR, 0.31; 95% CI: 0.06-1.59, I2 = 50%, P = 0.14). Low reoperation rates were observed for refractory headaches in extradural decompression and intradural decompression groups (1%). CONCLUSION The International Classification of Headache Disorders can assist in screening atypical headaches. extradural decompression is preferred for typical headaches, while conservative therapy is optimal for atypical headaches. A definite correlation exists between atypical headaches and Chiari Malformation Type I patients with higher prevalence than in the general population. Importantly, decompression is effective in relieving headaches in this particular patient population.
Collapse
Affiliation(s)
- Yunsen He
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Mengjun Zhang
- Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, China.,Sichuan Provincial Center for Mental Health, Center of Psychosomatic Medicine of Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Caiquan Huang
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Xiaohong Qin
- Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, China.,Sichuan Provincial Center for Mental Health, Center of Psychosomatic Medicine of Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhou Zhang
- Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, China.,Department of Rehabilitation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yishuang Wang
- Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, China.,Department of Radiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lili Guo
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Qiang Zheng
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Mingbin Bao
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Ye Tao
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Bo Wu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
5
|
Three-Dimensional Constructive Interference in Steady State (3D CISS) Imaging and Clinical Applications in Brain Pathology. Biomedicines 2022; 10:biomedicines10112997. [PMID: 36428564 PMCID: PMC9687637 DOI: 10.3390/biomedicines10112997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Three-dimensional constructive interference in steady state (3D CISS) is a steady-state gradient-echo sequence in magnetic resonance imaging (MRI) that has been used in an increasing number of applications in the study of brain disease in recent years. Owing to the very high spatial resolution, the strong hyperintensity of the cerebrospinal fluid signal and the high contrast-to-noise ratio, 3D CISS can be employed in a wide range of scenarios, ranging from the traditional study of cranial nerves, the ventricular system, the subarachnoid cisterns and related pathology to more recently discussed applications, such as the fundamental role it can assume in the setting of acute ischemic stroke, vascular malformations, infections and several brain tumors. In this review, after briefly summarizing its fundamental physical principles, we examine in detail the various applications of 3D CISS in brain imaging, providing numerous representative cases, so as to help radiologists improve its use in imaging protocols in daily clinical practice.
Collapse
|
6
|
Association of Cerebellar Tonsil Dynamic Motion and Outcomes in Pediatric Chiari I Malformation. World Neurosurg 2022; 168:e518-e529. [DOI: 10.1016/j.wneu.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
|
7
|
Spontaneous Resolution of Aberrant Cerebellar Tonsil Movement in a Patient with Improving Chiari I Malformation. Radiol Case Rep 2022; 17:3247-3250. [PMID: 35814813 PMCID: PMC9260449 DOI: 10.1016/j.radcr.2022.06.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 11/21/2022] Open
Abstract
Chiari malformation Type 1 (CMI) is traditionally characterized as a descent of the cerebellar tonsils more than 5mm below the foramen magnum. In some patients with CMI, there is aberrant pulsatile movement of the tonsils downward during cardiac systole which can affect cerebrospinal fluid (CSF) flow at the foramen magnum. Here, we present an 18-year-old female patient with CMI who presented with worsening symptoms of her CMI. Magnetic resonance imaging (MRI) at this time indicated an increase in cerebellar tonsil movement and decreased CSF flow at the foramen magnum. At her follow-up appointment, she had complete resolution of the aberrant motion of her tonsils and CSF flow returned to baseline without surgical intervention. Her symptoms also improved during this time, and she is now able to be followed by her primary care physician. The increased pulsatile movement of cerebellar tonsils in patients with CMI has been linked to diminished CSF flow at the foramen magnum and symptom severity. Spontaneous resolution of CMI is rare and has only ever been documented as ascension of the cerebellar tonsils. This case describes restoration of normal tonsil movement and baseline CSF flow corresponding with a resolution of symptoms where a complete resolution in tonsillar ectopia was not present.
Collapse
|
8
|
Valença MM, Valença MF, Andrade JR, Ribeiro ECDO, Bem Junior LS, Silva ACV, Mota RDCFV, Silva UAVD, Angelo Júnior JRL. Brainstem tumor as a cause of headache triggered by Valsalva maneuver. HEADACHE MEDICINE 2021. [DOI: 10.48208/headachemed.2021.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Expansive lesions of the posterior fossa or the malformation in the occipitocervical transition can cause headache triggered by Valsalva maneuver, usually of sudden onset and of significant intensity, which usually lasts for a short time. Brainstem tumor is rarely related to cause headache, hence the interest in documenting this patient's case in this article.
Collapse
|
9
|
Eppelheimer MS, Nwotchouang BST, Pahlavian SH, Barrow JW, Barrow DL, Amini R, Allen PA, Loth F, Oshinski JN. Cerebellar and Brainstem Displacement Measured with DENSE MRI in Chiari Malformation Following Posterior Fossa Decompression Surgery. Radiology 2021; 301:187-194. [PMID: 34313469 DOI: 10.1148/radiol.2021203036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Posterior fossa decompression (PFD) surgery is a treatment for Chiari malformation type I (CMI). The goals of surgery are to reduce cerebellar tonsillar crowding and restore posterior cerebral spinal fluid flow, but regional tissue biomechanics may also change. MRI-based displacement encoding with stimulated echoes (DENSE) can be used to assess neural tissue displacement. Purpose To assess neural tissue displacement by using DENSE MRI in participants with CMI before and after PFD surgery and examine associations between tissue displacement and symptoms. Materials and Methods In a prospective, HIPAA-compliant study of patients with CMI, midsagittal DENSE MRI was performed before and after PFD surgery between January 2017 and June 2020. Peak tissue displacement over the cardiac cycle was quantified in the cerebellum and brainstem, averaged over each structure, and compared before and after surgery. Paired t tests and nonparametric Wilcoxon signed-rank tests were used to identify surgical changes in displacement, and Spearman correlations were determined between tissue displacement and presurgery symptoms. Results Twenty-three participants were included (mean age ± standard deviation, 37 years ± 10; 19 women). Spatially averaged (mean) peak tissue displacement demonstrated reductions of 46% (79/171 µm) within the cerebellum and 22% (46/210 µm) within the brainstem after surgery (P < .001). Maximum peak displacement, calculated within a circular 30-mm2 area, decreased by 64% (274/427 µm) in the cerebellum and 33% (100/300 µm) in the brainstem (P < .001). No significant associations were identified between tissue displacement and CMI symptoms (r < .74 and P > .012 for all; Bonferroni-corrected P = .0002). Conclusion Neural tissue displacement was reduced after posterior fossa decompression surgery, indicating that surgical intervention changes brain tissue biomechanics. For participants with Chiari malformation type I, no relationship was identified between presurgery tissue displacement and presurgical symptoms. © RSNA, 2021 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Maggie S Eppelheimer
- From the Conquer Chiari Research Center, Departments of Biomedical Engineering (M.S.E., B.S.T.N., F.L.) and Psychology (P.A.A.), University of Akron, 264 Wolf Ledges Pkwy, #211B, Akron, OH 44325; Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, Calif (S.H.P.); Mercer University School of Medicine, Savannah, Ga (J.W.B.); Departments of Neurosurgery (D.L.B.), Radiology (J.N.O.), and Imaging Sciences and Biomedical Engineering (J.N.O.), Emory University, Atlanta, Ga; and Department of Mechanical and Industrial Engineering, Department of Bioengineering, Northeastern University, Boston, Mass (R.A.)
| | - Blaise Simplice Talla Nwotchouang
- From the Conquer Chiari Research Center, Departments of Biomedical Engineering (M.S.E., B.S.T.N., F.L.) and Psychology (P.A.A.), University of Akron, 264 Wolf Ledges Pkwy, #211B, Akron, OH 44325; Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, Calif (S.H.P.); Mercer University School of Medicine, Savannah, Ga (J.W.B.); Departments of Neurosurgery (D.L.B.), Radiology (J.N.O.), and Imaging Sciences and Biomedical Engineering (J.N.O.), Emory University, Atlanta, Ga; and Department of Mechanical and Industrial Engineering, Department of Bioengineering, Northeastern University, Boston, Mass (R.A.)
| | - Soroush Heidari Pahlavian
- From the Conquer Chiari Research Center, Departments of Biomedical Engineering (M.S.E., B.S.T.N., F.L.) and Psychology (P.A.A.), University of Akron, 264 Wolf Ledges Pkwy, #211B, Akron, OH 44325; Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, Calif (S.H.P.); Mercer University School of Medicine, Savannah, Ga (J.W.B.); Departments of Neurosurgery (D.L.B.), Radiology (J.N.O.), and Imaging Sciences and Biomedical Engineering (J.N.O.), Emory University, Atlanta, Ga; and Department of Mechanical and Industrial Engineering, Department of Bioengineering, Northeastern University, Boston, Mass (R.A.)
| | - Jack W Barrow
- From the Conquer Chiari Research Center, Departments of Biomedical Engineering (M.S.E., B.S.T.N., F.L.) and Psychology (P.A.A.), University of Akron, 264 Wolf Ledges Pkwy, #211B, Akron, OH 44325; Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, Calif (S.H.P.); Mercer University School of Medicine, Savannah, Ga (J.W.B.); Departments of Neurosurgery (D.L.B.), Radiology (J.N.O.), and Imaging Sciences and Biomedical Engineering (J.N.O.), Emory University, Atlanta, Ga; and Department of Mechanical and Industrial Engineering, Department of Bioengineering, Northeastern University, Boston, Mass (R.A.)
| | - Daniel L Barrow
- From the Conquer Chiari Research Center, Departments of Biomedical Engineering (M.S.E., B.S.T.N., F.L.) and Psychology (P.A.A.), University of Akron, 264 Wolf Ledges Pkwy, #211B, Akron, OH 44325; Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, Calif (S.H.P.); Mercer University School of Medicine, Savannah, Ga (J.W.B.); Departments of Neurosurgery (D.L.B.), Radiology (J.N.O.), and Imaging Sciences and Biomedical Engineering (J.N.O.), Emory University, Atlanta, Ga; and Department of Mechanical and Industrial Engineering, Department of Bioengineering, Northeastern University, Boston, Mass (R.A.)
| | - Rouzbeh Amini
- From the Conquer Chiari Research Center, Departments of Biomedical Engineering (M.S.E., B.S.T.N., F.L.) and Psychology (P.A.A.), University of Akron, 264 Wolf Ledges Pkwy, #211B, Akron, OH 44325; Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, Calif (S.H.P.); Mercer University School of Medicine, Savannah, Ga (J.W.B.); Departments of Neurosurgery (D.L.B.), Radiology (J.N.O.), and Imaging Sciences and Biomedical Engineering (J.N.O.), Emory University, Atlanta, Ga; and Department of Mechanical and Industrial Engineering, Department of Bioengineering, Northeastern University, Boston, Mass (R.A.)
| | - Philip A Allen
- From the Conquer Chiari Research Center, Departments of Biomedical Engineering (M.S.E., B.S.T.N., F.L.) and Psychology (P.A.A.), University of Akron, 264 Wolf Ledges Pkwy, #211B, Akron, OH 44325; Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, Calif (S.H.P.); Mercer University School of Medicine, Savannah, Ga (J.W.B.); Departments of Neurosurgery (D.L.B.), Radiology (J.N.O.), and Imaging Sciences and Biomedical Engineering (J.N.O.), Emory University, Atlanta, Ga; and Department of Mechanical and Industrial Engineering, Department of Bioengineering, Northeastern University, Boston, Mass (R.A.)
| | - Francis Loth
- From the Conquer Chiari Research Center, Departments of Biomedical Engineering (M.S.E., B.S.T.N., F.L.) and Psychology (P.A.A.), University of Akron, 264 Wolf Ledges Pkwy, #211B, Akron, OH 44325; Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, Calif (S.H.P.); Mercer University School of Medicine, Savannah, Ga (J.W.B.); Departments of Neurosurgery (D.L.B.), Radiology (J.N.O.), and Imaging Sciences and Biomedical Engineering (J.N.O.), Emory University, Atlanta, Ga; and Department of Mechanical and Industrial Engineering, Department of Bioengineering, Northeastern University, Boston, Mass (R.A.)
| | - John N Oshinski
- From the Conquer Chiari Research Center, Departments of Biomedical Engineering (M.S.E., B.S.T.N., F.L.) and Psychology (P.A.A.), University of Akron, 264 Wolf Ledges Pkwy, #211B, Akron, OH 44325; Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, Calif (S.H.P.); Mercer University School of Medicine, Savannah, Ga (J.W.B.); Departments of Neurosurgery (D.L.B.), Radiology (J.N.O.), and Imaging Sciences and Biomedical Engineering (J.N.O.), Emory University, Atlanta, Ga; and Department of Mechanical and Industrial Engineering, Department of Bioengineering, Northeastern University, Boston, Mass (R.A.)
| |
Collapse
|
10
|
Nwotchouang BST, Eppelheimer MS, Pahlavian SH, Barrow JW, Barrow DL, Qiu D, Allen PA, Oshinski JN, Amini R, Loth F. Regional Brain Tissue Displacement and Strain is Elevated in Subjects with Chiari Malformation Type I Compared to Healthy Controls: A Study Using DENSE MRI. Ann Biomed Eng 2021; 49:1462-1476. [PMID: 33398617 PMCID: PMC8482962 DOI: 10.1007/s10439-020-02695-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/17/2020] [Indexed: 12/26/2022]
Abstract
While the degree of cerebellar tonsillar descent is considered the primary radiologic marker of Chiari malformation type I (CMI), biomechanical forces acting on the brain tissue in CMI subjects are less studied and poorly understood. In this study, regional brain tissue displacement and principal strains in 43 CMI subjects and 25 controls were quantified using a magnetic resonance imaging (MRI) methodology known as displacement encoding with stimulated echoes (DENSE). Measurements from MRI were obtained for seven different brain regions-the brainstem, cerebellum, cingulate gyrus, corpus callosum, frontal lobe, occipital lobe, and parietal lobe. Mean displacements in the cerebellum and brainstem were found to be 106 and 64% higher, respectively, for CMI subjects than controls (p < .001). Mean compression and extension strains in the cerebellum were 52 and 50% higher, respectively, in CMI subjects (p < .001). Brainstem mean extension strain was 41% higher in CMI subjects (p < .001), but no significant difference in compression strain was observed. The other brain structures revealed no significant differences between CMI and controls. These findings demonstrate that brain tissue displacement and strain in the cerebellum and brainstem might represent two new biomarkers to distinguish between CMI subjects and controls.
Collapse
Affiliation(s)
| | - Maggie S Eppelheimer
- Conquer Chiari Research Center, Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325-3903, USA
| | | | - Jack W Barrow
- Department of Radiology, University of Tennessee, Knoxville, TN, USA
| | - Daniel L Barrow
- Department of Neurosurgery, Emory University, Atlanta, GA, USA
| | - Deqiang Qiu
- Radiology & Imaging Sciences and Biomedical Engineering, Emory University School of Medicine, Atlanta, USA
| | - Philip A Allen
- Conquer Chiari Research Center, Department of Psychology, The University of Akron, Akron, OH, USA
| | - John N Oshinski
- Radiology & Imaging Sciences and Biomedical Engineering, Emory University School of Medicine, Atlanta, USA
| | - Rouzbeh Amini
- Department of Mechanical and Industrial Engineering, Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Francis Loth
- Conquer Chiari Research Center, Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325-3903, USA
- Department of Mechanical Engineering, The University of Akron, Akron, OH, USA
| |
Collapse
|
11
|
Terem I, Dang L, Champagne A, Abderezaei J, Pionteck A, Almadan Z, Lydon AM, Kurt M, Scadeng M, Holdsworth SJ. 3D amplified MRI (aMRI). Magn Reson Med 2021; 86:1674-1686. [PMID: 33949713 PMCID: PMC8252598 DOI: 10.1002/mrm.28797] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/18/2021] [Accepted: 03/17/2021] [Indexed: 12/17/2022]
Abstract
Purpose Amplified MRI (aMRI) has been introduced as a new method of detecting and visualizing pulsatile brain motion in 2D. Here, we improve aMRI by introducing a novel 3D aMRI approach. Methods 3D aMRI was developed and tested for its ability to amplify sub‐voxel motion in all three directions. In addition, 3D aMRI was qualitatively compared to 2D aMRI on multi‐slice and 3D (volumetric) balanced steady‐state free precession cine data and phase contrast (PC‐MRI) acquired on healthy volunteers at 3T. Optical flow maps and 4D animations were produced from volumetric 3D aMRI data. Results 3D aMRI exhibits better image quality and fewer motion artifacts compared to 2D aMRI. The tissue motion was seen to match that of PC‐MRI, with the predominant brain tissue displacement occurring in the cranial‐caudal direction. Optical flow maps capture the brain tissue motion and display the physical change in shape of the ventricles by the relative movement of the surrounding tissues. The 4D animations show the complete brain tissue and cerebrospinal fluid (CSF) motion, helping to highlight the “piston‐like” motion of the ventricles. Conclusions Here, we introduce a novel 3D aMRI approach that enables one to visualize amplified cardiac‐ and CSF‐induced brain motion in striking detail. 3D aMRI captures brain motion with better image quality than 2D aMRI and supports a larger amplification factor. The optical flow maps and 4D animations of 3D aMRI may open up exciting applications for neurological diseases that affect the biomechanics of the brain and brain fluids.
Collapse
Affiliation(s)
- Itamar Terem
- Department of Electrical Engineering, Stanford University, Stanford, California, USA.,Department of Structural Biology, Stanford University, Stanford, California, USA
| | - Leo Dang
- Department of Anatomy and Medical Imaging & Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Mātai Medical Research Institute, Gisborne-Tairāwhiti, New Zealand
| | - Allen Champagne
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Javid Abderezaei
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, USA
| | - Aymeric Pionteck
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, USA
| | - Zainab Almadan
- Department of Anatomy and Medical Imaging & Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Anna-Maria Lydon
- Centre for Advanced MRI, University of Auckland, Auckland, New Zealand
| | - Mehmet Kurt
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, USA.,Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Miriam Scadeng
- Department of Anatomy and Medical Imaging & Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Mātai Medical Research Institute, Gisborne-Tairāwhiti, New Zealand.,Department of Radiology, University of California, San Diego, California, USA
| | - Samantha J Holdsworth
- Department of Anatomy and Medical Imaging & Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Mātai Medical Research Institute, Gisborne-Tairāwhiti, New Zealand
| |
Collapse
|
12
|
Ibrahimy A, Huang CWC, Bezuidenhout AF, Allen PA, Bhadelia RA, Loth F. Association Between Resistance to Cerebrospinal Fluid Flow Near the Foramen Magnum and Cough-Associated Headache in Adult Chiari Malformation Type I. J Biomech Eng 2021; 143:051003. [PMID: 33454731 PMCID: PMC8086178 DOI: 10.1115/1.4049788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 12/18/2020] [Indexed: 01/03/2023]
Abstract
Cough-associated headaches (CAHs) are thought to be distinctive for Chiari malformation type I (CMI) patients and have been shown to be related to the motion of cerebrospinal fluid (CSF) near the foramen magnum (FM). We used computational fluid dynamics (CFD) to compute patient-specific resistance to CSF motion in the spinal canal for CMI patients to determine its accuracy in predicting CAH. Fifty-one symptomatic CMI patients with cerebellar tonsillar position (CTP) ≥ 5 mm were included in this study. The patients were divided into two groups based on their symptoms (CAH and non-CAH) by review of the neurosurgical records. CFD was utilized to simulate CSF motion, and the integrated longitudinal impedance (ILI) was calculated for all patients. A receiver operating characteristic (ROC) curve was evaluated for its accuracy in predicting CAH. The ILI for CMI patients with CAH (776 dyn/cm5, 288-1444 dyn/cm5; median, interquartile range) was significantly larger compared to non-CAH (285 dyn/cm5, 187-450 dyn/cm5; p = 0.001). The ILI was more accurate in predicting CAH in CMI patients than the CTP when the comparison was made using the area under the ROC curve (AUC) (0.77 and 0.70, for ILI and CTP, respectively). ILI ≥ 750 dyn/cm5 had a sensitivity of 50% and a specificity of 95% in predicting CAH. ILI is a parameter that is used to assess CSF blockage in the spinal canal and can predict patients with and without CAH with greater accuracy than CTP.
Collapse
Affiliation(s)
- Alaaddin Ibrahimy
- Department of Mechanical Engineering, The University of Akron, 302 E Buchtel Avenue, Akron, OH 44325
| | - Chi-Wen Christina Huang
- Department of Radiology, Wan Fang Hospital, Taipei Medical University, No. 250, Wuxing Street, Xinyi District, Taipei City 110, Taiwan
| | - Abraham F. Bezuidenhout
- Beth Israel Deaconess Medical Center, Department of Radiology, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215
| | - Philip A. Allen
- Department of Psychology, The University of Akron, 302 E Buchtel Avenue, Akron, OH 44325
| | - Rafeeque A. Bhadelia
- Beth Israel Deaconess Medical Center, Department of Radiology, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215
| | - Francis Loth
- Department of Mechanical Engineering, The University of Akron, 302 E Buchtel Avenue, Akron, OH 44325
| |
Collapse
|