1
|
Hu M, Zhang J, Wu J, Su P. Lead exposure induced lipid metabolism disorders by regulating the lipophagy process in microglia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125991-126008. [PMID: 38008839 DOI: 10.1007/s11356-023-31086-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/13/2023] [Indexed: 11/28/2023]
Abstract
Environmental lead (Pb) pollution is a worldwide public health problem and causes various diseases, especially neurodegenerative diseases. It is increasingly recognized that microglia-mediated neuroinflammation plays a crucial role in lead neurotoxicity, but the underlying mechanisms remain to be further explored. Recent studies indicated that cell metabolism, especially lipid metabolism, regulates many microglial functions, including cytokine secretion and phagocytosis. Whether lipid metabolism is involved in Pb-induced neuroinflammation is still unknown. In the current studies, we investigated the effects of Pb on microglial lipid metabolism by utilizing lipidomics. Histochemistry staining and oxygen consumption rate (OCR) were used to validate lipidomics results. Fenofibrate (FEN), a peroxisome proliferator-activated receptor-α (PPAR-α) agonist, was applied to investigate whether lipid metabolism regulation mitigated Pb's neuroinflammatory response. Microglial autophagic proteins were detected to investigate the role of lipophagy in Pb's effect on lipid metabolism. Our results showed that Pb exposure increased concentrations of various lipid metabolites and induced lipid metabolism disorders, especially in fatty acid metabolism. Pb caused lipid droplet (LD) accumulation and slightly enhanced fatty acid oxidation (FAO) in microglia. FEN pretreatment markedly inhibited Pb's effects on LDs and further mitigated Pb-induced inflammatory response by reducing pro-cytokines' expression and enhancing phagocytosis function. FEN intervention also inhibited Pb's neurotoxicity by improving cognition-related behaviors. Pb exposure induced an abnormal increase of autophagic proteins, but the FEN addition partially neutralized Pb's effects on autophagy. Our data indicate that the Pb-induced neuroinflammation is regulated by fatty acid metabolism via the lipophagy process. Therapies focusing on lipid metabolism regulation are powerful tactics in Pb toxicity prevention and treatment.
Collapse
Affiliation(s)
- Min Hu
- College of Urban and Environmental Sciences, Northwest University, No. 1 Xuefu Ave., Guodu Education and Hi-Tech Industries Zone, Xi'an, 710075, China
| | - Jianbin Zhang
- Department of Occupational and Environmental Health & Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, No.169, Changle West Road, Xi'an, 710032, China
| | - Jinxia Wu
- Department of Occupational and Environmental Health & Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, No.169, Changle West Road, Xi'an, 710032, China
| | - Peng Su
- Department of Occupational and Environmental Health & Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, No.169, Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
2
|
Zhang C, Xue P, Zhang H, Tan C, Zhao S, Li X, Sun L, Zheng H, Wang J, Zhang B, Lang W. Gut brain interaction theory reveals gut microbiota mediated neurogenesis and traditional Chinese medicine research strategies. Front Cell Infect Microbiol 2022; 12:1072341. [PMID: 36569198 PMCID: PMC9772886 DOI: 10.3389/fcimb.2022.1072341] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022] Open
Abstract
Adult neurogenesis is the process of differentiation of neural stem cells (NSCs) into neurons and glial cells in certain areas of the adult brain. Defects in neurogenesis can lead to neurodegenerative diseases, mental disorders, and other maladies. This process is directionally regulated by transcription factors, the Wnt and Notch pathway, the extracellular matrix, and various growth factors. External factors like stress, physical exercise, diet, medications, etc., affect neurogenesis and the gut microbiota. The gut microbiota may affect NSCs through vagal, immune and chemical pathways, and other pathways. Traditional Chinese medicine (TCM) has been proven to affect NSCs proliferation and differentiation and can regulate the abundance and metabolites produced by intestinal microorganisms. However, the underlying mechanisms by which these factors regulate neurogenesis through the gut microbiota are not fully understood. In this review, we describe the recent evidence on the role of the gut microbiota in neurogenesis. Moreover, we hypothesize on the characteristics of the microbiota-gut-brain axis based on bacterial phyla, including microbiota's metabolites, and neuronal and immune pathways while providing an outlook on TCM's potential effects on adult neurogenesis by regulating gut microbiota.
Collapse
Affiliation(s)
- Chenxi Zhang
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Peng Xue
- Medical School of Nantong University, Nantong University, Nantong, China
| | - Haiyan Zhang
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Chenxi Tan
- Department of Infection Control, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Shiyao Zhao
- Department of Nuclear Medicine, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Xudong Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lihui Sun
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Huihui Zheng
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Jun Wang
- The Academic Affairs Office, Qiqihar Medical University, Qiqihar, China
| | - Baoling Zhang
- Department of Operating Room, Qiqihar First Hospital, Qiqihar, China
| | - Weiya Lang
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China,*Correspondence: Weiya Lang,
| |
Collapse
|
3
|
Melatonin treatment improves cognitive deficits by altering inflammatory and neurotrophic factors in the hippocampus of obese mice. Physiol Behav 2022; 254:113919. [PMID: 35858673 DOI: 10.1016/j.physbeh.2022.113919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/09/2022] [Accepted: 07/15/2022] [Indexed: 01/10/2023]
Abstract
Overweight and obesity are associated with an increased risk of developing dementia and cognitive deficits. Neuroinflammation is one of the most important mechanisms behind cognitive impairment in obese patients. In recent years, the neuroendocrine hormone melatonin has been suggested to have therapeutic effects for memory decline in several neuropsychiatric and neurological conditions. However, the effects of melatonin on cognitive function under obesity conditions still need to be clarified. The purpose of this study was to determine whether melatonin treatment can improve cognitive impairment in obese mice. To this end, male C57BL6 mice were treated with a high-fat diet (HFD) for 20 weeks to induce obesity. The animal received melatonin for 8 weeks. Cognitive functions were evaluated using the Y maze, object recognition test, and the Morris water maze. We measured inflammatory cytokines including tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-17A, and brain-derived neurotrophic factor (BDNF) in the hippocampus of obese mice. Our results show that HFD-induced obesity significantly impaired working, spatial and recognition memory by increasing IFN-γ and IL-17A and decreasing BDNF levels in the hippocampus of mice. On the other hand, melatonin treatment effectively improved all cognitive impairments and reduced TNF-α, IFN-γ, and IL-17A and elevated BDNF levels in the hippocampus of obese mice. Taken together, this study suggests that melatonin treatment could have a beneficial role in the treatment of cognitive impairment in obesity.
Collapse
|