1
|
Zedde M, Grisendi I, Assenza F, Napoli M, Moratti C, Pavone C, Bonacini L, Di Cecco G, D’Aniello S, Stoenoiu MS, Persu A, Valzania F, Pascarella R. RNF213 Polymorphisms in Intracranial Artery Dissection. Genes (Basel) 2024; 15:725. [PMID: 38927660 PMCID: PMC11203323 DOI: 10.3390/genes15060725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
The ring finger protein 213 gene (RNF213) is involved in several vascular diseases, both intracranial and systemic ones. Some variants are common in the Asian population and are reported as a risk factor for moyamoya disease, intracranial stenosis and intracranial aneurysms. Among intracranial vascular diseases, both moyamoya disease and intracranial artery dissection are more prevalent in the Asian population. We performed a systematic review of the literature, aiming to assess the rate of RNF213 variants in patients with spontaneous intracranial dissections. Four papers were identified, providing data on 53 patients with intracranial artery dissection. The rate of RNF213 variants is 10/53 (18.9%) and it increases to 10/29 (34.5%), excluding patients with vertebral artery dissection. All patients had the RNF213 p.Arg4810Lys variant. RNF213 variants seems to be involved in intracranial dissections in Asian cohorts. The small number of patients, the inclusion of only patients of Asian descent and the small but non-negligible coexistence with moyamoya disease familiarity might be limiting factors, requiring further studies to confirm these preliminary findings and the embryological interpretation.
Collapse
Affiliation(s)
- Marialuisa Zedde
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (I.G.); (F.A.); (F.V.)
| | - Ilaria Grisendi
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (I.G.); (F.A.); (F.V.)
| | - Federica Assenza
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (I.G.); (F.A.); (F.V.)
| | - Manuela Napoli
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (M.N.); (C.M.); (C.P.); (L.B.); (G.D.C.); (S.D.); (R.P.)
| | - Claudio Moratti
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (M.N.); (C.M.); (C.P.); (L.B.); (G.D.C.); (S.D.); (R.P.)
| | - Claudio Pavone
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (M.N.); (C.M.); (C.P.); (L.B.); (G.D.C.); (S.D.); (R.P.)
| | - Lara Bonacini
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (M.N.); (C.M.); (C.P.); (L.B.); (G.D.C.); (S.D.); (R.P.)
| | - Giovanna Di Cecco
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (M.N.); (C.M.); (C.P.); (L.B.); (G.D.C.); (S.D.); (R.P.)
| | - Serena D’Aniello
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (M.N.); (C.M.); (C.P.); (L.B.); (G.D.C.); (S.D.); (R.P.)
| | - Maria Simona Stoenoiu
- Department of Internal Medicine, Rheumatology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Alexandre Persu
- Division of Cardiology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, 1200 Brussels, Belgium;
- Pole of Cardiovascular Research, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Franco Valzania
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (I.G.); (F.A.); (F.V.)
| | - Rosario Pascarella
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (M.N.); (C.M.); (C.P.); (L.B.); (G.D.C.); (S.D.); (R.P.)
| |
Collapse
|
2
|
Zhou H, Jing J, Pu Y, Li W, Meng X, Wang A, Zuo Y, Xu Z, Xu Q, Suo Y, Li H, Wang Y. Detailed phenotype of RNF213 p.R4810K variant identified by the Chinese patients with acute ischaemic stroke or transient ischaemic attack. Stroke Vasc Neurol 2023; 8:503-510. [PMID: 37137523 PMCID: PMC10800262 DOI: 10.1136/svn-2022-002276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/03/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND AND PURPOSE The ring finger protein 213 gene (RNF213) p.R4810K variant increased the risk of acute ischaemic stroke (AIS) attributable to intracranial arterial stenosis (ICAS) in the Japanese and Korean populations. In this study, we aimed to examine the prevalence of the RNF213 p.R4810K variant in Chinese patients with AIS or transient ischaemic attack and identify the phenotype of the carriers. METHODS We analysed data from the Third China National Stroke Registry. All included participants were divided into two groups by carrier status of the p.R4810K variant. The aetiological classification was conducted according to the Trial of Org 10172 in Acute Stroke Treatment (TOAST) criteria. The presence of ICAS and extracranial arterial stenosis (ECAS) was defined as 50%-99% stenosis or occlusion of any intracranial and extracranial artery. Logistic regression models and Cox regression models were used to evaluate the association of the p.R4810K variant with TOAST classification, stenosis phenotypes and clinical outcomes. RESULTS A total of 10 381 patients were enrolled, among which 56 (0.5%) had the heterozygote GA genotype for p.R4810K. The variant carriers were younger (p=0.01), and more likely to suffer from peripheral vascular disease (p=0.04). The p.R4810K variant was associated with large-artery atherosclerosis (LAA) (adjusted OR=1.94, 95% CI 1.13 to 3.33), anterior circulation stenosis (adjusted OR=2.12, 95% CI 1.23 to 3.65) and ECAS (adjusted OR=2.29, 95% CI 1.16 to 4.51). Nevertheless, the p.R4810K variant was not associated with recurrence, poor functional outcome and mortality at 3 months and 1 year. CONCLUSIONS The RNF213 p.R4810K variant was associated with LAA, anterior circulation stenosis and ECAS in Chinese patients. Given the low carrying rate and only 1-year follow-up information, caution should be taken to interpret our findings in no statistically significant association between the p.R4810K variant and stroke prognosis in Chinese patients.
Collapse
Affiliation(s)
- Hongyu Zhou
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jing Jing
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Tiantan Neuroimaging Center of Excellence, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuehua Pu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wei Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Monogenic Disease Diagnosis Center for Neurological Disorders and Precision Medicine Research Center for Neurological Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xia Meng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Anxin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yingting Zuo
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zhe Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of excellence for Omics Research (CORe), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qin Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yue Suo
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Tiantan Neuroimaging Center of Excellence, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of excellence for Omics Research (CORe), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Zheng B, Luo X, Zhou J, Huang X, Li M, Zheng H, Yuan Y, Wang J. Case report: Acute ischemic stroke caused by intracranial artery dissection in a patient with skull fractures. Front Neurol 2022; 13:963396. [DOI: 10.3389/fneur.2022.963396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
The intracranial artery dissection (IAD) is an uncommon but life-threatening disease. The IAD would develop a significant cerebral infarction due to unrecognized contrecoup brain injury. We report a 53-year-old man fell to develop blunt cerebrovascular injuries (BCVIs) more than 2 months ago. During his rehabilitation, he often had a transient left headache and underwent short-term right limb weakness twice, but he did not care. He was hospitalized again because of suffering right limb weakness for more than 4 h. The brain computed tomography angiography (CTA) showed subtotal occlusion of the left middle cerebral artery M1 segment, and the vascular morphology displayed the IAD. The patient was then treated with balloon dilation and a self-expanding stent. This case highlights that IAD may show delayed onset with no initial typical symptom. By early detecting of abnormal signs and symptoms, serious traumatic brain injury may be avoided.
Collapse
|
4
|
Ring finger protein 213 c.14576G>A mutation is not involved in internal carotid artery and middle cerebral artery dysplasia. Sci Rep 2021; 11:22163. [PMID: 34773068 PMCID: PMC8589854 DOI: 10.1038/s41598-021-01623-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/01/2021] [Indexed: 11/11/2022] Open
Abstract
The ring finger protein 213 (RNF213) susceptibility gene has been detected in more than 80% of Japanese and Korean patients with moyamoya disease (MMD), a bilateral internal carotid artery (ICA) occlusion. Furthermore, RNF213 has been detected in more than 20% of East Asians with atherosclerotic ICA stenosis. In this study, we evaluated the frequency of RNF213 mutations in congenital occlusive lesions of the ICA system. This case series was conducted jointly at four university hospitals. Patients with a family history of MMD, quasi-MMD, or related diseases were excluded. Ten patients were diagnosed with abnormal ICA or middle cerebral artery (MCA) angiogenesis. Patients with neurofibromatosis were excluded. Finally, nine patients with congenital vascular abnormalities were selected; of these, five had ICA deficiency and four had twig-like MCA. The RNF213 c.14576G > A mutation was absent in all patients. Therefore, the RNF213 c.14576G > A mutation may not be associated with ICA and MCA congenital dysplasia—rare vascular anomalies making it difficult to study a large number of cases. However, an accumulation of cases is required for accurate determination. The results of this study may help differentiate congenital vascular diseases from MMD.
Collapse
|