1
|
Song S, Li X, Xue X, Dong W, Li C. Progress in the Study of the Role and Mechanism of HTRA1 in Diseases Related to Vascular Abnormalities. Int J Gen Med 2024; 17:1479-1491. [PMID: 38650587 PMCID: PMC11034561 DOI: 10.2147/ijgm.s456912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
High temperature requirement A1 (HTRA1) is a member of the serine protease family, comprising four structural domains: IGFBP domain, Kazal domain, protease domain and PDZ domain. HTRA1 encodes a serine protease, a secreted protein that is widely expressed in the vasculature. HTRA1 regulates a wide range of physiological processes through its proteolytic activity, and is also involved in a variety of vascular abnormalities-related diseases. This article reviews the role of HTRA1 in the development of vascular abnormalities-related hereditary cerebral small vessel disease (CSVD), age-related macular degeneration (AMD), tumors and other diseases. Through relevant research advances to understand the role of HTRA1 in regulating signaling pathways or refolding, translocation, degradation of extracellular matrix (ECM) proteins, thus directly or indirectly regulating angiogenesis, vascular remodeling, and playing an important role in vascular homeostasis, further understanding the mechanism of HTRA1's role in vascular abnormality-related diseases is important for HTRA1 to be used as a therapeutic target in related diseases.
Collapse
Affiliation(s)
- Shina Song
- Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- Department of Geriatrics, General Hospital of TISCO, Taiyuan, People’s Republic of China
| | - Xiaofeng Li
- Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xuting Xue
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Wenping Dong
- Department of Geriatrics, General Hospital of TISCO, Taiyuan, People’s Republic of China
| | - Changxin Li
- Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| |
Collapse
|
2
|
Li YM, Jia W, Xin T, Fang YQ. Case report: Heterozygous mutation in HTRA1 causing typical cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy. Front Genet 2023; 14:1235650. [PMID: 37799144 PMCID: PMC10547585 DOI: 10.3389/fgene.2023.1235650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023] Open
Abstract
Background: Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL) is an autosomal recessive disorder characterized by baldness, recurrent ischemic stroke, lumbago, headache, and dementia which is closely related to homozygous mutations of the high-temperature requirement serine peptidase A1 (HTRA1) gene. Heterozygous mutations of HTRA1 are usually considered to be non-pathogenic. Although it has been revealed that only a few patients with heterozygous mutations could present some manifestations, their clinical symptoms were atypical, milder, and always with a lower frequency of extra-neurological features. Here, a rare patient with heterozygous mutation of HTRA1 who had all typical features of CARASIL as well as severe clinical symptoms and rapid progression was initially reported in our study. Case presentation: A 43-year-old female patient presented with a gradual onset of headache and cognitive decline. As time progressed, her headache intensified and symptoms of dementia began to manifest gradually. During her early years, she had thinning hair and subsequently experienced two occurrences of ischemic strokes in her thirties. Furthermore, she also had a history of lumbago and urinary retention before visiting our hospital. The patient's magnetic resonance imaging revealed the presence of widespread white matter lesions, infarctions, and microbleeds, in addition to lumbar disc herniation and degenerative lesions. The observed clinical characteristics had a strong correlation with CARASIL, and the patient was diagnosed with a heterozygous missense mutation of 905G>A (Arg302Gln) in the HTRA1 gene. The patient has been under continuous follow-up for a duration exceeding 3 years subsequent to her release from the hospital. She underwent cystostomy, and symptoms of bulbar paralysis developed in a progressive way. Currently, there has been a notable decrease in motor function and activities of daily living, resulting in the individual being confined to bed for a duration exceeding 1 year. Conclusion: This case suggests that patients carrying a heterozygous mutation in G905A may also have typical clinical features of CARASIL, which allows us to have a more comprehensive understanding of CARASIL.
Collapse
Affiliation(s)
- Yu-Ming Li
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Wei Jia
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Tao Xin
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Neurosurgery, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
- Post-Doctoral Scientific Research Station, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yu-Qing Fang
- Post-Doctoral Scientific Research Station, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| |
Collapse
|
3
|
Xu SY, Li HJ, Li S, Ren QQ, Liang JL, Li CX. Heterozygous Pathogenic and Likely Pathogenic Symptomatic HTRA1 Variant Carriers in Cerebral Small Vessel Disease. Int J Gen Med 2023; 16:1149-1162. [PMID: 37016629 PMCID: PMC10066890 DOI: 10.2147/ijgm.s404813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
High temperature requirement serine peptidase A1 (HTRA1) related cerebral small vessel disease (CSVD) includes both symptomatic heterozygous HTRA1 variant carrier and cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL) patients. Presently, most reported symptomatic heterozygous HTRA1 variant carrier cases are sporadic family reports with a lack of specific characteristics. Additionally, the molecular mechanism of heterozygous HTRA1 gene variants is unclear. We conducted this review to collect symptomatic carriers of heterozygous HTRA1 gene variants reported as of 2022, analyzed all pathogenicity according to American College of Medical Genetics and Genomics (ACMG) variant classification, and summarized the cases with pathogenic and likely pathogenic HTRA1 variants gender characteristics, age of onset, geographical distribution, initial symptoms, clinical manifestations, imaging signs, HTRA1 gene variant information and to speculate its underlying pathogenic mechanisms. In this review, we summarized the following characteristics of pathogenic and likely pathogenic symptomatic HTRA1 variant carriers: to date, the majority of reported symptomatic HTRA1 carriers are in European and Asian countries, particularly in China which was found to have the highest number of reported cases. The age of first onset is mostly concentrated in the fourth and fifth decades. The heterozygous HTRA1 gene variants were mostly missense variants. The two variant sites, 166-182 aa and 274-302 aa, were the most concentrated. Clinicians need to pay attention to de novo data and functional data, which may affect the pathogenicity analysis. The decrease in HtrA1 protease activity is currently the most important explanation for the genetic pathogenesis.
Collapse
Affiliation(s)
- Sui-Yi Xu
- Department of Neurology, Headache Center, The First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Hui-Juan Li
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, People’s Republic of China
| | - Shun Li
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, People’s Republic of China
| | - Qian-Qian Ren
- Department of Neurology, Headache Center, The First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Jian-Lin Liang
- Department of Neurology, Headache Center, The First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Chang-Xin Li
- Department of Neurology, Headache Center, The First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- Correspondence: Chang-Xin Li, Department of Neurology, The First Hospital of Shanxi Medical University, Jiefangnan 85 Road, Taiyuan, Shanxi Province, 030001, People’s Republic of China, Tel +86 15103513579, Email
| |
Collapse
|
4
|
Zhou H, Jiao B, Ouyang Z, Wu Q, Shen L, Fang L. Report of two pedigrees with heterozygous HTRA1 variants-related cerebral small vessel disease and literature review. Mol Genet Genomic Med 2022; 10:e2032. [PMID: 35946346 PMCID: PMC9544214 DOI: 10.1002/mgg3.2032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/11/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biallelic HTRA1 pathogenic variants are associated with autosomal recessive cerebral arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL). Recent studies have indicated that heterozygous HTRA1 variants are related to autosomal dominant hereditary cerebral small vessel disease (CSVD). However, few studies have assessed heterozygous HTRA1 carriers or the genotype-phenotype correlation. METHODS The clinical data of two unrelated Chinese Han families with CSVD were collected. Panel sequencing was used to search for pathogenic genes, Sanger sequencing was used for verification, three-dimensional protein models were constructed, and pathogenicity was analyzed. Published HTRA1-related phenotypes included in PubMed up to September 2021 were extensively reviewed, and the patients' genetic and clinical characteristics were summarized. RESULTS We report a novel heterozygous variant c.920T>C p.L307P in the HTRA1, whose main clinical and neuroimaging phenotypes are stroke and gait disturbance. We report another patient with the previously reported pathogenic variant HTRA1 c.589C>T p.R197X characterized by early cognitive decline. A literature review indicated that compared with CARASIL, HTRA1-related autosomal dominant hereditary CSVD has a later onset age, milder clinical symptoms, fewer extraneurological symptoms, and slower progression, indicating a milder CARASIL phenotype. In addition, HTRA1 heterozygous variants were related to a higher proportion of vascular risk factors (p < .001) and male sex (p = .022). CONCLUSION These findings broaden the known mutational spectrum and possible clinical phenotype of HTRA1. Considering the semidominant characteristics of HTRA1-related phenotypes, we recommend that all members of HTRA1 variant families undergo genetic screening and clinical follow-up if carrying pathogenic variants.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Ziyu Ouyang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qihui Wu
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Liangjuan Fang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| |
Collapse
|
5
|
Chuanfen L, Xiaoling W, Wen J, Bingzhen C, Min W. HtrA1L364P leads to cognitive dysfunction and vascular destruction through TGF-β/Smad signaling pathway in CARASIL model mice. Brain Behav 2022; 12:e2691. [PMID: 35841197 PMCID: PMC9392535 DOI: 10.1002/brb3.2691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/30/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022] Open
Abstract
AIMS Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL) is a life-threatening, inherited, nonhypertensive arteriole disease of the brain. Therapeutic strategy for CARASIL is limited because its pathogenesis is not clear. We previously reported the first family with CARASIL in China, which involves a high-temperature requirement serine protease gene mutation (HtrA1L364P ). Based on this previous study, we constructed a CARASIL mouse model (Mut-hHtrA1L364P mouse, hereinafter referred to as Mut). This paper aimed to systematically study the behavior, pathology, and molecular biology of Mut mice and explore the pathogenesis and possible therapeutic strategies of CARASIL. METHODS Food maze and water maze experiments were used in the behavioral studies. Pathological studies were carried out by arteriole labeling staining and electron microscopy. The mRNA and protein expression levels of the key factors of TGF-β/Smad signaling pathway (TGF-β, Smad2, Smad3, and Smad4) in the brain of the model mice were detected by immunohistochemistry, real-time quantitative polymerase chain reaction (RT-PCR), and Western blot assay. RESULTS The food maze and water maze experiment data showed significant differences between the Mut and wild-type (WT) mice in the first time to find food, the time to contact the escape table for the first time, and the number of times to travel in the escape table quadrant (p < 0.001). The results of vascular labeling staining showed that some small arteries in the brain of Mut mice lost normal structure. The results of electron microscopy showed that the cell morphologies in the cortex and hippocampus of Mut mice were abnormal; the number of synapses was reduced; the walls of capillaries, venules, and arterioles thickened; lumen stenosis and other abnormal phenomenon occurred; and lipofuscin deposition and autophagosomes were found in the hippocampus. Immunohistochemistry, RT-PCR, and Western Blot results showed that the mRNA and protein expression levels of TGF-β, Smad2, and Smad3 in the brain of Mut mice increased to different degrees. CONCLUSIONS The most significant innovation of this study is the first study on the pathogenesis of CARASIL disease using model animals. The Mut mice can well simulate the pathogenesis of CARASIL in behavioral and pathological aspects. The TGF-β/Smad signaling pathway, which is involved in the pathogenesis of CARASIL, is abnormally upregulated in the brain of Mut mice.
Collapse
Affiliation(s)
- Li Chuanfen
- Shandong Normal University, College of Physical Education Sports Human Science LaboratoryJinanShandongChina
| | - Wang Xiaoling
- Neurology DepartmentPLA 960th HospitalJinanShandongChina
| | - Jing Wen
- Shandong Normal University, College of Physical Education Sports Human Science LaboratoryJinanShandongChina
| | - Cao Bingzhen
- Neurology DepartmentPLA 960th HospitalJinanShandongChina
| | - Wang Min
- Shandong Normal University, College of Physical Education Sports Human Science LaboratoryJinanShandongChina
| |
Collapse
|
6
|
Sun D, Tian F, Zhang S, Zhang M. A new Chinese family with HTRA1 mutation associated with CARASIL. Neurol Sci 2022; 43:4577-4579. [PMID: 35441934 DOI: 10.1007/s10072-022-06071-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/11/2022] [Indexed: 01/04/2023]
Affiliation(s)
- Dongren Sun
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Fafa Tian
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Shiyu Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
7
|
Whittaker E, Thrippleton S, Chong LYW, Collins VG, Ferguson AC, Henshall DE, Lancastle E, Wilkinson T, Wilson B, Wilson K, Sudlow C, Wardlaw J, Rannikmäe K. Systematic Review of Cerebral Phenotypes Associated With Monogenic Cerebral Small-Vessel Disease. J Am Heart Assoc 2022; 11:e025629. [PMID: 35699195 PMCID: PMC9238640 DOI: 10.1161/jaha.121.025629] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022]
Abstract
Background Cerebral small-vessel disease (cSVD) is an important cause of stroke and vascular dementia. Most cases are multifactorial, but an emerging minority have a monogenic cause. While NOTCH3 is the best-known gene, several others have been reported. We aimed to summarize the cerebral phenotypes associated with these more recent cSVD genes. Methods and Results We performed a systematic review (PROSPERO [International Prospective Register of Systematic Reviews]: CRD42020196720), searching Medline/Embase (conception to July 2020) for any language publications describing COL4A1/2, TREX1, HTRA1, ADA2, or CTSA pathogenic variant carriers. We extracted data about individuals' characteristics and clinical and vascular radiological cerebral phenotypes. We summarized phenotype frequencies per gene, comparing patterns across genes. We screened 6485 publications including 402, and extracted data on 390 individuals with COL4A1, 123 with TREX1, 44 with HTRA1 homozygous, 41 with COL4A2, 346 with ADA2, 82 with HTRA1 heterozygous, and 14 with CTSA. Mean age ranged from 15 (ADA2) to 59 years (HTRA1 heterozygotes). Clinical phenotype frequencies varied widely: stroke, 9% (TREX1) to 52% (HTRA1 heterozygotes); cognitive features, 0% (ADA2) to 64% (HTRA1 homozygotes); and psychiatric features, 0% (COL4A2; ADA2) to 57% (CTSA). Among individuals with neuroimaging, vascular radiological phenotypes appeared common, ranging from 62% (ADA2) to 100% (HTRA1 homozygotes; CTSA). White matter lesions were the most common pathology, except in ADA2 and COL4A2 cases, where ischemic and hemorrhagic lesions dominated, respectively. Conclusions There appear to be differences in cerebral manifestations across cSVD genes. Vascular radiological changes were more common than clinical neurological phenotypes, and present in the majority of individuals with reported neuroimaging. However, these results may be affected by age and biases inherent to case reports. In the future, better characterization of associated phenotypes, as well as insights from population-based studies, should improve our understanding of monogenic cSVD to inform genetic testing, guide clinical management, and help unravel underlying disease mechanisms.
Collapse
Affiliation(s)
- Ed Whittaker
- Medical SchoolUniversity of EdinburghEdinburghUnited Kingdom
| | | | | | | | - Amy C. Ferguson
- Centre for Medical InformaticsUsher InstituteUniversity of EdinburghEdinburghUnited Kingdom
| | - David E. Henshall
- Centre for Medical InformaticsUsher InstituteUniversity of EdinburghEdinburghUnited Kingdom
| | - Emily Lancastle
- Medical SchoolUniversity of EdinburghEdinburghUnited Kingdom
| | - Tim Wilkinson
- Centre for Medical InformaticsUsher InstituteUniversity of EdinburghEdinburghUnited Kingdom
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Blair Wilson
- NHS Greater Glasgow and ClydeGlasgowUnited Kingdom
| | | | - Cathie Sudlow
- Centre for Medical InformaticsUsher InstituteUniversity of EdinburghEdinburghUnited Kingdom
- BHF Data Science CentreLondonUnited Kingdom
| | - Joanna Wardlaw
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- UK Dementia Research Institute CentreUniversity of EdinburghEdinburghUnited Kingdom
| | - Kristiina Rannikmäe
- Centre for Medical InformaticsUsher InstituteUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
8
|
Coste T, Hervé D, Neau JP, Jouvent E, Ba F, Bergametti F, Lamy M, Cogez J, Derache N, Schneckenburger R, Grelet M, Gollion C, Lanotte L, Lauer V, Layet V, Urbanczyk C, Didic M, Raynouard I, Delaval L, Dassa J, Florea A, Badiu C, Nguyen K, Tournier-Lasserve E. Heterozygous HTRA1 nonsense or frameshift mutations are pathogenic. Brain 2021; 144:2616-2624. [PMID: 34270682 DOI: 10.1093/brain/awab271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/12/2022] Open
Abstract
Heterozygous missense HTRA1 mutations have been associated with an autosomal dominant cerebral small vessel disease (CSVD) whereas the pathogenicity of heterozygous HTRA1 stop codon variants is unclear. We performed a targeted high throughput sequencing of all known CSVD genes, including HTRA1, in 3853 unrelated consecutive CSVD patients referred for molecular diagnosis. The frequency of heterozygous HTRA1 mutations leading to a premature stop codon in this patient cohort was compared with their frequency in large control databases. An analysis of HTRA1 mRNA was performed in several stop codon carrier patients. Clinical and neuroimaging features were characterized in all probands. Twenty unrelated patients carrying a heterozygous HTRA1 variant leading to a premature stop codon were identified. A highly significant difference was observed when comparing our patient cohort with control databases: gnomAD v3.1.1 [P = 3.12 × 10-17, odds ratio (OR) = 21.9], TOPMed freeze 5 (P = 7.6 × 10-18, OR = 27.1) and 1000 Genomes (P = 1.5 × 10-5). Messenger RNA analysis performed in eight patients showed a degradation of the mutated allele strongly suggesting a haploinsufficiency. Clinical and neuroimaging features are similar to those previously reported in heterozygous missense mutation carriers, except for penetrance, which seems lower. Altogether, our findings strongly suggest that heterozygous HTRA1 stop codons are pathogenic through a haploinsufficiency mechanism. Future work will help to estimate their penetrance, an important information for genetic counselling.
Collapse
Affiliation(s)
- Thibault Coste
- AP-HP, Service de Génétique Moléculaire Neurovasculaire, Hôpital Saint-Louis, France
- Université de Paris, INSERM UMR-1141 Neurodiderot, Paris F-75019, France
| | - Dominique Hervé
- Université de Paris, INSERM UMR-1141 Neurodiderot, Paris F-75019, France
- AP-HP, CERVCO, Service de Neurologie, Hôpital Lariboisière, France
| | - Jean Philippe Neau
- Centre Hospitalier Universitaire de Poitiers, Service de Neurologie, Poitiers, France
| | - Eric Jouvent
- Université de Paris, INSERM UMR-1141 Neurodiderot, Paris F-75019, France
- AP-HP, CERVCO, Service de Neurologie, Hôpital Lariboisière, France
| | - Fatoumata Ba
- AP-HP, Service de Génétique Moléculaire Neurovasculaire, Hôpital Saint-Louis, France
| | | | - Matthias Lamy
- Centre Hospitalier Universitaire de Poitiers, Service de Neurologie, Poitiers, France
| | - Julien Cogez
- Centre Hospitalier Universitaire de Caen, Service de Neurologie, Caen, France
| | - Nathalie Derache
- Centre Hospitalier Universitaire de Caen, Service de Neurologie, Caen, France
| | | | - Maude Grelet
- Centre Hospitalier Intercommunal de Toulon- La Seyne sur mer, Service de Génétique Médicale, Toulon, France
| | - Cédric Gollion
- Centre Hospitalier Universitaire de Toulouse, Service de Neurologie, Toulouse, France
| | - Livia Lanotte
- Hôpital De Hautepierre, Service de Neurologie, Strasbourg, France
| | - Valérie Lauer
- Hôpital De Hautepierre, Unité Neuro-Vasculaire, Strasbourg, France
| | - Valérie Layet
- Groupe Hospitalier Du havre, Service de Génétique Médicale, Le Havre, France
| | - Cédric Urbanczyk
- Centre Hospitalier Départemental La Roche-Sur-Yon, Service de Neurologie, La Roche-Sur-Yon, France
| | - Mira Didic
- APHM, Hôpital Timone Adultes, Service de Neurologie et Neuropsychologie, Marseille, France
- Aix Marseille Université, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Igor Raynouard
- Fondation Adolphe de Rothschild, Service de Neurologie, Paris, France
| | - Laure Delaval
- AP-HP, Hôpital Bichat, Service de Médecine Interne, France
| | - Jérémie Dassa
- Centre Hospitalier Emile Roux, Service de Neurologie, Le Puy-en-Velay, France
| | - Alexandru Florea
- Centre Hospitalier Marie Madeleine, Service de Neurologie, Forbach, France
| | - Carmen Badiu
- Centre Hospitalier Metz-Thionville, Service de Neurologie, Metz, France
| | - Karine Nguyen
- APHM, Hôpital Timone Adultes, Département de Génétique, Marseille, France
| | - Elisabeth Tournier-Lasserve
- AP-HP, Service de Génétique Moléculaire Neurovasculaire, Hôpital Saint-Louis, France
- Université de Paris, INSERM UMR-1141 Neurodiderot, Paris F-75019, France
| |
Collapse
|
9
|
Overview of Human HtrA Family Proteases and Their Distinctive Physiological Roles and Unique Involvement in Diseases, Especially Cancer and Pregnancy Complications. Int J Mol Sci 2021; 22:ijms221910756. [PMID: 34639128 PMCID: PMC8509474 DOI: 10.3390/ijms221910756] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/27/2021] [Accepted: 10/02/2021] [Indexed: 12/25/2022] Open
Abstract
The mammalian high temperature requirement A (HtrA) proteins are a family of evolutionarily conserved serine proteases, consisting of four homologs (HtrA1-4) that are involved in many cellular processes such as growth, unfolded protein stress response and programmed cell death. In humans, while HtrA1, 2 and 3 are widely expressed in multiple tissues with variable levels, HtrA4 expression is largely restricted to the placenta with the protein released into maternal circulation during pregnancy. This limited expression sets HtrA4 apart from the rest of the family. All four HtrAs are active proteases, and their specific cellular and physiological roles depend on tissue type. The dysregulation of HtrAs has been implicated in many human diseases such as cancer, arthritis, neurogenerative ailments and reproductive disorders. This review first discusses HtrAs broadly and then focuses on the current knowledge of key molecular characteristics of individual human HtrAs, their similarities and differences and their reported physiological functions. HtrAs in other species are also briefly mentioned in the context of understanding the human HtrAs. It then reviews the distinctive involvement of each HtrA in various human diseases, especially cancer and pregnancy complications. It is noteworthy that HtrA4 expression has not yet been reported in any primary tumour samples, suggesting an unlikely involvement of this HtrA in cancer. Collectively, we accentuate that a better understanding of tissue-specific regulation and distinctive physiological and pathological roles of each HtrA will improve our knowledge of many processes that are critical for human health.
Collapse
|
10
|
Hsu CL, Iwanowski P, Hsu CH, Kozubski W. Genetic diseases mimicking multiple sclerosis. Postgrad Med 2021; 133:728-749. [PMID: 34152933 DOI: 10.1080/00325481.2021.1945898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory neurodegenerative disorder manifesting as gradual or progressive loss of neurological functions. Most patients present with relapsing-remitting disease courses. Extensive research over recent decades has expounded our insights into the presentations and diagnostic features of MS. Groups of genetic diseases, CADASIL and leukodystrophies, for example, have been frequently misdiagnosed with MS due to some overlapping clinical and radiological features. The delayed identification of these diseases in late adulthood can lead to severe neurological complications. Herein we discuss genetic diseases that have the potential to mimic multiple sclerosis, with highlights on clinical identification and practicing pearls that may aid physicians in recognizing MS-mimics with genetic background in clinical settings.
Collapse
Affiliation(s)
- Chueh Lin Hsu
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Piotr Iwanowski
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Chueh Hsuan Hsu
- Department of Neurology, China Medical University, Taichung, Taiwan
| | - Wojciech Kozubski
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
11
|
Ho WM, Wu YY, Chen YC. Genetic Variants behind Cardiovascular Diseases and Dementia. Genes (Basel) 2020; 11:genes11121514. [PMID: 33352859 PMCID: PMC7766236 DOI: 10.3390/genes11121514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular diseases (CVDs) and dementia are the leading causes of disability and mortality. Genetic connections between cardiovascular risk factors and dementia have not been elucidated. We conducted a scoping review and pathway analysis to reveal the genetic associations underlying both CVDs and dementia. In the PubMed database, literature was searched using keywords associated with diabetes mellitus, hypertension, dyslipidemia, white matter hyperintensities, cerebral microbleeds, and covert infarctions. Gene lists were extracted from these publications to identify shared genes and pathways for each group. This included high penetrance genes and single nucleotide polymorphisms (SNPs) identified through genome wide association studies. Most risk SNPs to both diabetes and dementia participate in the phospholipase C enzyme system and the downstream nositol 1,4,5-trisphosphate and diacylglycerol activities. Interestingly, AP-2 (TFAP2) transcription factor family and metabolism of vitamins and cofactors were associated with genetic variants that were shared by white matter hyperintensities and dementia, and by microbleeds and dementia. Variants shared by covert infarctions and dementia were related to VEGF ligand-receptor interactions and anti-inflammatory cytokine pathways. Our review sheds light on future investigations into the causative relationships behind CVDs and dementia, and can be a paradigm of the identification of dementia treatments.
Collapse
Affiliation(s)
- Wei-Min Ho
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan; (W.-M.H.); (Y.-Y.W.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yah-Yuan Wu
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan; (W.-M.H.); (Y.-Y.W.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yi-Chun Chen
- Department of Neurology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan; (W.-M.H.); (Y.-Y.W.)
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence: ; Tel.: +886-3-3281200 (ext. 8433)
| |
Collapse
|