1
|
Doron O, Wong T, Ablyazova F, Singha S, Cavallaro J, Ben-Shalom N, D'Amico RS, Harshan M, McKeown A, Zlochower A, Langer DJ, Boockvar JA. Results from a first-in-human phase I safety trial to evaluate the use of a vascularized pericranial/temporoparietal fascial flap to line the resection cavity following resection of newly diagnosed glioblastoma. J Neurooncol 2024; 168:225-235. [PMID: 38664311 PMCID: PMC11147875 DOI: 10.1007/s11060-024-04647-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/13/2024] [Indexed: 05/18/2024]
Abstract
PURPOSE The efficacy of systemic therapies for glioblastoma (GBM) remains limited due to the constraints of systemic toxicity and blood-brain barrier (BBB) permeability. Temporoparietal fascial flaps (TPFFs) and vascularized peri cranial flaps (PCF) are not restricted by the blood-brain barrier (BBB), as they derive their vascular supply from branches of the external carotid artery. Transposition of a vascularized TPFF or PCF along a GBM resection cavity may bring autologous tissue not restricted by the BBB in close vicinity to the tumor bed microenvironment, permit ingrowth of vascular channels fed by the external circulation, and offer a mechanism of bypassing the BBB. In addition, circulating immune cells in the vascularized flap may have better access to tumor-associated antigens (TAA) within the tumor microenvironment. We conducted a first-in-human Phase I trial assessing the safety of lining the resection cavity with autologous TPFF/PCF of newly diagnosed patients with GBM. METHODS 12 patients underwent safe, maximal surgical resection of newly diagnosed GBMs, followed by lining of the resection cavity with a pedicled, autologous TPFF or PCF. Safety was assessed by monitoring adverse events. Secondary analysis of efficacy was examined as the proportion of patients experiencing progression-free disease (PFS) as indicated by response assessment in neuro-oncology (RANO) criteria and overall survival (OS). The study was powered to determine whether a Phase II study was warranted based on these early results. For this analysis, subjects who were alive and had not progressed as of the date of the last follow-up were considered censored and all living patients who were alive as of the date of last follow-up were considered censored for overall survival. For simplicity, we assumed that a 70% PFS rate at 6 months would be considered an encouraging response and would make an argument for further investigation of the procedure. RESULTS Median age of included patients was 57 years (range 46-69 years). All patients were Isocitrate dehydrogenase (IDH) wildtype. Average tumor volume was 56.6 cm3 (range 14-145 cm3). Resection was qualified as gross total resection (GTR) of all of the enhancing diseases in all patients. Grade III or above adverse events were encountered in 3 patients. No Grade IV or V serious adverse events occurred in the immediate post-operative period including seizure, infection, stroke, or tumor growing along the flap. Disease progression at the site of the original tumor was identified in only 4 (33%) patients (median 23 months, range 8-25 months), 3 of whom underwent re-operation. Histopathological analyses of those implanted flaps and tumor bed biopsy at repeat surgery demonstrated robust immune infiltrates within the transplanted flap. Importantly, no patient demonstrated evidence of tumor infiltration into the implanted flap. At the time of this manuscript preparation, only 4/12 (33%) of patients have died. Based on the statistical considerations above and including all 12 patients 10/12 (83.3%) had 6-month PFS. The median PFS was 9.10 months, and the OS was 17.6 months. 4/12 (33%) of patients have been alive for more than two years and our longest surviving patient currently is alive at 60 months. CONCLUSIONS This pilot study suggests that insertion of pedicled autologous TPFF/PCF along a GBM resection cavity is safe and feasible. Based on the encouraging response rate in 6-month PFS and OS, larger phase II studies are warranted to assess and reproduce safety, feasibility, and efficacy. TRIAL REGISTRATION NUMBER AND DATE OF REGISTRATION FOR PROSPECTIVELY REGISTERED TRIALS: ClinicalTrials.gov ID NCT03630289, dated: 08/02/2018.
Collapse
Affiliation(s)
- Omer Doron
- Department of Neurosurgery, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, 130 East 77Th Street New York,, New York, NY, 10075, USA
- Department of Biomedical Engineering, The Aldar and Iby Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Tamika Wong
- Department of Neurosurgery, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, 130 East 77Th Street New York,, New York, NY, 10075, USA
| | - Faina Ablyazova
- Department of Neurosurgery, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, 130 East 77Th Street New York,, New York, NY, 10075, USA
| | - Souvik Singha
- Department of Neurosurgery, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, 130 East 77Th Street New York,, New York, NY, 10075, USA
| | - Julianna Cavallaro
- Department of Neurosurgery, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, 130 East 77Th Street New York,, New York, NY, 10075, USA
| | - Netanel Ben-Shalom
- Department of Neurosurgery, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, 130 East 77Th Street New York,, New York, NY, 10075, USA
| | - Randy S D'Amico
- Department of Neurosurgery, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, 130 East 77Th Street New York,, New York, NY, 10075, USA
| | - Manju Harshan
- Department of Pathology, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, 130 East 77Th Street New York,, New York, NY, 10075, USA
| | - Amy McKeown
- Department of Neurosurgery, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, 130 East 77Th Street New York,, New York, NY, 10075, USA
| | - Avraham Zlochower
- Department of Radiology, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, 130 East 77Th Street New York,, New York, NY, 10075, USA
| | - David J Langer
- Department of Neurosurgery, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, 130 East 77Th Street New York,, New York, NY, 10075, USA
| | - John A Boockvar
- Department of Neurosurgery, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, 130 East 77Th Street New York,, New York, NY, 10075, USA.
| |
Collapse
|
2
|
Gao D, Chen X, Sun Q, Huang Y, Li H, Zhang M, Li J, Liu T, Wang B. Strategies of Total Auricular Reconstruction for Patients With Poor Skin Coverage at the Mastoid Area. EAR, NOSE & THROAT JOURNAL 2023:1455613231158905. [PMID: 36803207 DOI: 10.1177/01455613231158905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
OBJECTIVE Burns and injuries can lead to massive defects in the mastoid tissues, which increase the difficulty of ear reconstruction. It is crucial to choose an appropriate surgical method for these patients. Here, we introduce strategies for auricular reconstruction in patients without satisfactory mastoid tissues. METHODS From April 2020 to July 2021, 12 men and 4 women were admitted to our institution. Twelve patients were severely burned, 3 patients experienced car accidents, and 1 patient had a tumor on his ear. The temporoparietal fascia was used for ear reconstruction in 10 cases, and the upper arm flap was used in 6 cases. All of the ear frameworks were made of costal cartilage. RESULTS The location, size, and shape of both sides of the auricles were generally the same. Two patients needed further surgical repair because of cartilage exposure at the helix. All of the patients were satisfied with the outcome of the reconstructed ear. CONCLUSION For patients with ear deformity and poor skin coverage in the mastoid area, we can choose the temporoparietal fascia if the patient's available superficial temporal artery is longer than 10 cm. If not, we can choose the upper arm flap. The latter needs a five-stage operation, which is more time consuming and difficult than the former. Moreover, the expanded upper arm flap is thinner and has better elasticity than the temporoparietal fascia, so the shape of the reconstructed ear is better. We need to evaluate the condition of the affected tissue and choose the appropriate surgical method to achieve a good result.
Collapse
Affiliation(s)
- Dejin Gao
- Department of Ear Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xueying Chen
- Department of Ear Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qing Sun
- Department of Ear Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue Huang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - He Li
- Department of Ear Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingyu Zhang
- Department of Ear Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingjing Li
- Department of Ear Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tun Liu
- Department of Ear Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bingqing Wang
- Department of Ear Reconstruction, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Giotta Lucifero A, Luzzi S. Emerging immune-based technologies for high-grade gliomas. Expert Rev Anticancer Ther 2022; 22:957-980. [PMID: 35924820 DOI: 10.1080/14737140.2022.2110072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The selection of a tailored and successful strategy for high-grade gliomas (HGGs) treatment is still a concern. The abundance of aberrant mutations within the heterogenic genetic landscape of glioblastoma strongly influences cell expansion, proliferation, and therapeutic resistance. Identification of immune evasion pathways opens the way to novel immune-based strategies. This review intends to explore the emerging immunotherapies for HGGs. The immunosuppressive mechanisms related to the tumor microenvironment and future perspectives to overcome glioma immunity barriers are also debated. AREAS COVERED An extensive literature review was performed on the PubMed/Medline and ClinicalTrials.gov databases. Only highly relevant articles in English and published in the last 20 years were selected. Data about immunotherapies coming from preclinical and clinical trials were summarized. EXPERT OPINION The overall level of evidence about the efficacy and safety of immunotherapies for HGGs is noteworthy. Monoclonal antibodies have been approved as second-line treatment, while peptide vaccines, viral gene strategies, and adoptive technologies proved to boost a vivid antitumor immunization. Malignant brain tumor-treating fields are ever-changing in the upcoming years. Constant refinements and development of new routes of drug administration will permit to design of novel immune-based treatment algorithms thus improving the overall survival.
Collapse
Affiliation(s)
- Alice Giotta Lucifero
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Sabino Luzzi
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy.,Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
4
|
Doron O, Chen T, Wong T, Tucker A, Costantino P, Andrews R, Langer DJ, Boockvar J. Cranial transposition and revascularization of autologous omentum: a novel surgical technique for resection of recurrent glioblastoma multiforme. Neurosurg Rev 2022; 45:2481-2487. [PMID: 35325296 DOI: 10.1007/s10143-022-01767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/04/2022] [Accepted: 03/02/2022] [Indexed: 11/30/2022]
Abstract
Glioblastoma multiforme (GBM) patients continue to suffer a poor prognosis. The blood brain barrier (BBB) comprises one of the obstacles for therapy, creating a barrier that decreases the bioavailability of chemotherapeutic agents in the central nervous system. Previously, a vascularized temporoparietal fascial scalp flap (TPFF) lining the resection cavity was introduced in a trial conducted in our institution, in newly-diagnosed GBM patients in an attempt to bypass the BBB after initial resection. In this paper, we report on a new technique to bypass the BBB after re-resection and potentially to allow tumor antigens to be surveilled by the immune system. The study aims to assess the feasibility of performing a cranial transposition and revascularization of autologous omentum after re-resection of GBM. Laparoscopically harvested omental free flap was transposed to the resection cavity by a team consisting of neurosurgeons, otolaryngologists, and general surgeons. This was done as part of a single center, single arm, open-label, phase I study. Autologous abdominal omental tissue was harvested laparoscopically on its vascularized pedicle in 2 patients, transposed as a free flap, revascularized using external carotid artery, and carefully laid into the tumor resection cavity. Patients did well postoperatively returning to baseline activities. Graft viability was confirmed by cerebral angiogram. Omental cranial transposition of a laparoscopically harvested, vascularized flap, into the cavity of re-resected GBM patients is feasible and safe in the short term. Further studies are needed to ascertain whether such technique can improve progression free survival and overall survival in these patients.
Collapse
Affiliation(s)
- Omer Doron
- Department of Neurosurgery, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, 130 East 77th Street, 3rd Floor Black Hall Building, New York, NY, 10075, USA.,Department of Biomedical Engineering, The Aldar and Iby Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Tom Chen
- Department of Surgery, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, 130 East 77th Street, New York, NY, 10075, USA
| | - Tamika Wong
- Department of Neurosurgery, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, 130 East 77th Street, 3rd Floor Black Hall Building, New York, NY, 10075, USA
| | - Amy Tucker
- Department of Neurosurgery, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, 130 East 77th Street, 3rd Floor Black Hall Building, New York, NY, 10075, USA
| | - Peter Costantino
- Department of Otolaryngology, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, 130 East 77th Street, New York, NY, 10075, USA
| | - Robert Andrews
- Department of Surgery, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, 130 East 77th Street, New York, NY, 10075, USA
| | - David J Langer
- Department of Neurosurgery, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, 130 East 77th Street, 3rd Floor Black Hall Building, New York, NY, 10075, USA
| | - John Boockvar
- Department of Neurosurgery, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, 130 East 77th Street, 3rd Floor Black Hall Building, New York, NY, 10075, USA.
| |
Collapse
|
5
|
Shahzadi A, Abrams M, Khatri D, D'Amico R, Langer D, Boockvar JA. Commentary: Intraoperative Seizure Detection During Active Resection of Glioblastoma Through a Novel Hollow Circular Electrocorticography Array. Oper Neurosurg (Hagerstown) 2021; 21:E571-E572. [PMID: 34624891 DOI: 10.1093/ons/opab360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 08/13/2021] [Indexed: 11/14/2022] Open
Affiliation(s)
- Andia Shahzadi
- Department of Neurosurgery, Wyckoff Heights Medical Center, Brooklyn, New York, USA
| | - Madeline Abrams
- Department of Neurosurgery, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, New York, USA
| | - Deepak Khatri
- Department of Neurosurgery, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, New York, USA
| | - Randy D'Amico
- Department of Neurosurgery, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, New York, USA
| | - David Langer
- Department of Neurosurgery, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, New York, USA
| | - John A Boockvar
- Department of Neurosurgery, Lenox Hill Hospital, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, New York, USA
| |
Collapse
|
6
|
Patel NV, Wong T, Fralin SR, Li M, McKeown A, Gruber D, D'Amico RS, Patsalides A, Tsiouris A, Stefanov DG, Flores O, Zlochower A, Filippi CG, Ortiz R, Langer DJ, Boockvar JA. Repeated superselective intraarterial bevacizumab after blood brain barrier disruption for newly diagnosed glioblastoma: a phase I/II clinical trial. J Neurooncol 2021; 155:117-124. [PMID: 34601657 DOI: 10.1007/s11060-021-03851-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/18/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE Pre-clinical evidence suggests bevacizumab (BV) depletes the GBM peri-vascular cancer-stem cell niche. This phase I/II study assesses the safety and efficacy of repeated doses of superselective intra-arterial cerebral infusion (SIACI) of BV after blood-brain barrier disruption (BBBD). METHODS Date of surgery was day 0. Evaluated patients received repeated SIACI bevacizumab (15 mg/kg) with BBBD at days 30 ± 7, 120 ± 7, and 210 ± 7 along with 6 weeks of standard chemoradiation. Response assessment in neuro-oncology criteria and the Kaplan-Meier product-limit method was used to evaluate progression free and overall survival (PFS and OS, respectively). RESULTS Twenty-three patients with a median age of 60.5 years (SD = 12.6; 24.7-78.3) were included. Isocitrate dehydrogenase mutation was found in 1/23 (4%) patients. MGMT status was available for 11/23 patients (7 unmethylated; 3 methylated; 1 inconclusive). Median tumor volume was 24.0 cm3 (SD = 31.1, 1.7-48.3 cm3). Median PFS was 11.5 months (95% CI 7.7-25.9) with 6, 12, 24 and 60 month PFS estimated to be 91.3% (95% CI 69.5-97.8), 47.4% (26.3-65.9), 32.5% (14.4-52.2) and 5.4% (0.4-21.8), respectively. Median OS was 23.1 months (95% CI 12.2-36.9) with 12, 24, and 36 month OS as 77.3% (95% CI 53.6-89.9), 45.0% (22.3-65.3) and 32.1% (12.5-53.8), respectively. CONCLUSIONS Repeated dosing of IA BV after BBBD offers an encouraging outcome in terms of PFS and OS. Phase III trials are warranted to determine whether repeated IA BV combined with Stupp protocol is superior to Stupp protocol alone for newly diagnosed GBM.
Collapse
Affiliation(s)
- Nitesh V Patel
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY, USA.
| | - Tamika Wong
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY, USA
| | - Sherese R Fralin
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY, USA
| | - Mona Li
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY, USA
| | - Amy McKeown
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY, USA
| | - Deborah Gruber
- Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY, USA
| | - Randy S D'Amico
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY, USA
| | - Athos Patsalides
- Department of Radiology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA
| | - Apostolos Tsiouris
- Department of Radiology, Weill Cornell Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | - Dimitre G Stefanov
- Biostatistics Unit, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Oscar Flores
- Department of Radiology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA
| | - Avraham Zlochower
- Department of Radiology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA
| | | | - Rafael Ortiz
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY, USA
| | - David J Langer
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY, USA
| | - John A Boockvar
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, NY, USA
| |
Collapse
|
7
|
Dadario NB, Khatri D, Reichman N, Nwagwu CD, D'Amico RS. 5-Aminolevulinic Acid-Shedding Light on Where to Focus. World Neurosurg 2021; 150:9-16. [PMID: 33684574 DOI: 10.1016/j.wneu.2021.02.118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Surgical management of gliomas is predicated on "safe maximal resection" across all histopathologic grades because progression-free survival and overall survival are positively affected by the increasing extent of resection. Administration of the prodrug 5-aminolevulinic acid (5-ALA) induces tumor fluorescence with high specificity and sensitivity for malignant high-grade glioma (HGG). Fluorescence-guided surgery (FGS) using 5-ALA improves the extent of resection in the contrast-enhancing and nonenhancing tumor components in HGG. It has also shown preliminary usefulness in other central nervous system tumors, but with certain limitations. METHODS We review and discuss the state of 5-ALA FGS for central nervous system tumors and identify the limitations in its use as a guide for future clinical optimization. RESULTS 5-ALA FGS provides maximum clinical benefits in the treatment of newly diagnosed glioblastoma. 5-ALA fluorescence specificity is limited in low-grade glioma, recurrent HGG, and non-glial tumors. Several promising intraoperative adjuncts to 5-ALA FGS have been developed to expand its indications and improve the clinical efficacy and usefulness of 5-ALA FGS. CONCLUSIONS 5-ALA FGS improves the clinical outcomes in HGG. However, further optimization of the diagnostic performance and clinical use of 5-ALA FGS is necessary for low-grade glioma and recurrent HGG tumors. Neurosurgical oncology will benefit from the novel use of advanced technologies and intraoperative visualization techniques outlined in this review, such as machine learning, hand-held fibe-optic probes, augmented reality, and three-dimensional exoscope assistance, to optimize the clinical usefulness and operative outcomes of 5-ALA FGS.
Collapse
Affiliation(s)
- Nicholas B Dadario
- Department of Neurological Surgery, Lenox Hill Hospital/Northwell Health, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, New York, USA; Rutgers Robert Wood Johnson School of Medicine, Rutgers University, New Brunswick, New Jersey, USA
| | - Deepak Khatri
- Department of Neurological Surgery, Lenox Hill Hospital/Northwell Health, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, New York, USA
| | - Noah Reichman
- Department of Neurological Surgery, Lenox Hill Hospital/Northwell Health, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, New York, USA
| | - Chibueze D Nwagwu
- Department of Neurological Surgery, Lenox Hill Hospital/Northwell Health, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, New York, USA
| | - Randy S D'Amico
- Department of Neurological Surgery, Lenox Hill Hospital/Northwell Health, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, New York, USA.
| |
Collapse
|
8
|
Giotta Lucifero A, Luzzi S. Against the Resilience of High-Grade Gliomas: The Immunotherapeutic Approach (Part I). Brain Sci 2021; 11:brainsci11030386. [PMID: 33803885 PMCID: PMC8003180 DOI: 10.3390/brainsci11030386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
The resilience of high-grade gliomas (HGGs) against conventional chemotherapies is due to their heterogeneous genetic landscape, adaptive phenotypic changes, and immune escape mechanisms. Innovative immunotherapies have been developed to counteract the immunosuppressive capability of gliomas. Nevertheless, further research is needed to assess the efficacy of the immuno-based approach. The aim of this study is to review the newest immunotherapeutic approaches for glioma, focusing on the drug types, mechanisms of action, clinical pieces of evidence, and future challenges. A PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis)-based literature search was performed on PubMed/Medline and ClinicalTrials.gov databases using the keywords “active/adoptive immunotherapy,” “monoclonal antibodies,” “vaccine,” and “engineered T cell.”, combined with “malignant brain tumor”, “high-grade glioma.” Only articles written in English published in the last 10 years were selected, filtered based on best relevance. Active immunotherapies include systemic temozolomide, monoclonal antibodies, and vaccines. In several preclinical and clinical trials, adoptive immunotherapies, including T, natural killer, and natural killer T engineered cells, have been shown to be potential treatment options for relapsing gliomas. Systemic temozolomide is considered the backbone for newly diagnosed HGGs. Bevacizumab and rindopepimut are promising second-line treatments. Adoptive immunotherapies have been proven for relapsing tumors, but further evidence is needed.
Collapse
Affiliation(s)
- Alice Giotta Lucifero
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Sabino Luzzi
- Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy;
- Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Correspondence:
| |
Collapse
|
9
|
Convection Enhanced Delivery of Topotecan for Gliomas: A Single-Center Experience. Pharmaceutics 2020; 13:pharmaceutics13010039. [PMID: 33396668 PMCID: PMC7823846 DOI: 10.3390/pharmaceutics13010039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/24/2020] [Accepted: 12/24/2020] [Indexed: 12/24/2022] Open
Abstract
A key limitation to glioma treatment involves the blood brain barrier (BBB). Convection enhanced delivery (CED) is a technique that uses a catheter placed directly into the brain parenchyma to infuse treatments using a pressure gradient. In this manuscript, we describe the physical principles behind CED along with the common pitfalls and methods for optimizing convection. Finally, we highlight our institutional experience using topotecan CED for the treatment of malignant glioma.
Collapse
|