1
|
Chen JW, Valadka AB, Ross Bullock M, Carpenter KLH. Editorial: Cerebral microdialysis. Front Neurol 2023; 14:1266540. [PMID: 37609655 PMCID: PMC10441213 DOI: 10.3389/fneur.2023.1266540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/24/2023] Open
Affiliation(s)
- Jefferson W. Chen
- Department of Neurological Surgery, University of California, Irvine, Orange, CA, United States
| | - Alex B. Valadka
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - M. Ross Bullock
- Department of Neurological Surgery, University of Miami, Coral Gables, FL, United States
| | - Keri L. H. Carpenter
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
2
|
Bhargav AG, Domino JS, Alvarado AM, Tuchek CA, Akhavan D, Camarata PJ. Advances in computational and translational approaches for malignant glioma. Front Physiol 2023; 14:1219291. [PMID: 37405133 PMCID: PMC10315500 DOI: 10.3389/fphys.2023.1219291] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023] Open
Abstract
Gliomas are the most common primary brain tumors in adults and carry a dismal prognosis for patients. Current standard-of-care for gliomas is comprised of maximal safe surgical resection following by a combination of chemotherapy and radiation therapy depending on the grade and type of tumor. Despite decades of research efforts directed towards identifying effective therapies, curative treatments have been largely elusive in the majority of cases. The development and refinement of novel methodologies over recent years that integrate computational techniques with translational paradigms have begun to shed light on features of glioma, previously difficult to study. These methodologies have enabled a number of point-of-care approaches that can provide real-time, patient-specific and tumor-specific diagnostics that may guide the selection and development of therapies including decision-making surrounding surgical resection. Novel methodologies have also demonstrated utility in characterizing glioma-brain network dynamics and in turn early investigations into glioma plasticity and influence on surgical planning at a systems level. Similarly, application of such techniques in the laboratory setting have enhanced the ability to accurately model glioma disease processes and interrogate mechanisms of resistance to therapy. In this review, we highlight representative trends in the integration of computational methodologies including artificial intelligence and modeling with translational approaches in the study and treatment of malignant gliomas both at the point-of-care and outside the operative theater in silico as well as in the laboratory setting.
Collapse
Affiliation(s)
- Adip G. Bhargav
- Department of Neurological Surgery, University of Kansas Medical Center, Kansas City, KS, United States
| | - Joseph S. Domino
- Department of Neurological Surgery, University of Kansas Medical Center, Kansas City, KS, United States
| | - Anthony M. Alvarado
- Department of Neurological Surgery, Rush University Medical Center, Chicago, IL, United States
| | - Chad A. Tuchek
- Department of Neurological Surgery, University of Kansas Medical Center, Kansas City, KS, United States
| | - David Akhavan
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Bioengineering Program, University of Kansas Medical Center, Kansas City, KS, United States
| | - Paul J. Camarata
- Department of Neurological Surgery, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
3
|
Quantitative monitoring and modelling of retrodialysis drug delivery in a brain phantom. Sci Rep 2023; 13:1900. [PMID: 36732612 PMCID: PMC9894834 DOI: 10.1038/s41598-023-28915-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
A vast number of drug molecules are unable to cross the blood-brain barrier, which results in a loss of therapeutic opportunities when these molecules are administered by intravenous infusion. To circumvent the blood-brain barrier, local drug delivery devices have been developed over the past few decades such as reverse microdialysis. Reverse microdialysis (or retrodialysis) offers many advantages, such as a lack of net volume influx to the intracranial cavity and the ability to sample the tumour's micro-environment. However, the translation of this technique to efficient drug delivery has not been systematically studied. In this work, we present an experimental platform to evaluate the performance of microdialysis devices in reverse mode in a brain tissue phantom. The mass of model drug delivered is measured by computing absorbance fields from optical images. Concentration maps are reconstructed using a modern and open-source implementation of the inverse Abel transform. To illustrate our method, we assess the capability of a commercial probe in delivering methylene blue to a gel phantom. We find that the delivery rate can be described by classical microdialysis theory, except at low dialysate flow rates where it is impacted by gravity, and high flow rates where significant convection to the gel occurs. We also show that the flow rate has an important impact not only on the overall size of the drug plume, but also on its shape. The numerical tools developed for this study have been made freely available to ensure that the method presented can be used to rapidly and inexpensively optimise probe design and protocol parameters before proceeding to more in-depth studies.
Collapse
|
4
|
S V, Kajal K, Mondal S, Wahan SK, Das Kurmi B, Das Gupta G, Patel P. Novel VEGFR-2 Kinase Inhibitors as Anticancer Agents: A Review Focusing on SAR and Molecular Docking Studies (2016-2021). Chem Biodivers 2023; 20:e202200847. [PMID: 36721068 DOI: 10.1002/cbdv.202200847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/11/2023] [Indexed: 02/02/2023]
Abstract
Cancer growth, annexation, and metastatic spread are all aided by the formation of new blood vessels (angiogenesis). The commencement of the VEGF pathway leads to signal transduction that enhances endothelial cell survival, relocation, and divergence from pre-existing vasculature. The ability of solid malignancies to bloom and spread depends critically on their ability to establish their independent blood circulation (tumor angiogenesis). VEGFR is a major receptor tyrosine kinase that regulates angiogenesis, cell growth, and metastasis, diminishing apoptosis, cytoskeletal function, and other biological processes VEGFR has proven to be a remarkable focus for a variety of anticancer medicines in clinical studies. This Review explores the development of anti-VEGF-based antiangiogenic therapies having different scaffolds. This review had focused on SAR and docking studies of previously reported molecules.
Collapse
Affiliation(s)
- Vishakha S
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Kumari Kajal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Sitanshu Mondal
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Simranpreet K Wahan
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, 142001, Punjab, India
| |
Collapse
|
5
|
Sharma H, McGinnis JP, Kabotyanski KE, Gopinath SP, Goodman JC, Robertson C, Cruz Navarro J. Cerebral microdialysis and glucopenia in traumatic brain injury: A review. Front Neurol 2023; 14:1017290. [PMID: 36779054 PMCID: PMC9911651 DOI: 10.3389/fneur.2023.1017290] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
Traditionally, intracranial pressure (ICP) and partial brain tissue oxygenation (PbtO2) have been the primary invasive intracranial measurements used to guide management in patients with severe traumatic brain injury (TBI). After injury however, the brain develops an increased metabolic demand which may require an increment in the oxidative metabolism of glucose. Simultaneously, metabolic, and electrical dysfunction can lead to an inability to meet these demands, even in the absence of ischemia or increased intracranial pressure. Cerebral microdialysis provides the ability to accurately measure local concentrations of various solutes including lactate, pyruvate, glycerol and glucose. Experimental and clinical data demonstrate that such measurements of cellular metabolism can yield critical missing information about a patient's physiologic state and help limit secondary damage. Glucose management in traumatic brain injury is still an unresolved question. As cerebral glucose metabolism may be uncoupled from systemic glucose levels due to the metabolic dysfunction, measurement of cerebral extracellular glucose concentrations could provide more predictive information and prove to be a better biomarker to avoid secondary injury of at-risk brain tissue. Based on data obtained from cerebral microdialysis, specific interventions such as ICP-directed therapy, blood glucose increment, seizure control, and/or brain oxygen optimization can be instituted to minimize or prevent secondary insults. Thus, microdialysis measurements of parenchymal metabolic function provides clinically valuable information that cannot be obtained by other monitoring adjuncts in the standard ICU setting.
Collapse
Affiliation(s)
- Himanshu Sharma
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States,*Correspondence: Himanshu Sharma ✉
| | - John P. McGinnis
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | | | - Shankar P. Gopinath
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Jerry C. Goodman
- Department of Pathology, Baylor College of Medicine, Houston, TX, United States
| | - Claudia Robertson
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Jovany Cruz Navarro
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States,Department of Anesthesiology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
6
|
Pharmacokinetic Study of Triptolide Nanocarrier in Transdermal Drug Delivery System-Combination of Experiment and Mathematical Modeling. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020553. [PMID: 36677610 PMCID: PMC9866283 DOI: 10.3390/molecules28020553] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 01/01/2023] [Indexed: 01/09/2023]
Abstract
Compared with traditional oral and injection administration, the transdermal administration of traditional Chinese medicine has distinctive characteristics and advantages, which can avoid the "first pass effect" of the liver and the destruction of the gastrointestinal tract, maintain a stable blood concentration, and prolong drug action time. However, the basic theory and technology research in transdermal drug delivery are relatively limited at present, especially regarding research on new carriers of transdermal drug delivery and pharmacokinetic studies of the skin, which has become a bottleneck of transdermal drug delivery development. Triptolide is one of the main active components of Tripterygium wilfordii, which displays activities against mouse models of polycystic kidney disease and pancreatic cancer but its physical properties and severe toxicity limit its therapeutic potential. Due to the previously mentioned advantages of transdermal administration, in this study, we performed a detail analysis of the pharmacokinetics of a new transdermal triptolide delivery system. Triptolide nanoemulsion gels were prepared and served as new delivery systems, and the ex vivo characteristics were described. The metabolic characteristics of the different triptolide transdermal drug delivery formulations were investigated via skin-blood synchronous microdialysis combined with LC/MS. A multiscale modeling framework, molecular dynamics and finite element modeling were adopted to simulate the transport process of triptolide in the skin and to explore the pharmacokinetics and mathematical patterns. This study shows that the three-layer model can be used for transdermal drug delivery system drug diffusion research. Therefore, it is profitable for transdermal drug delivery system design and the optimization of the dosage form. Based on the drug concentration of the in vivo microdialysis measurement technology, the diffusion coefficient of drugs in the skin can be more accurately measured, and the numerical results can be verified. Therefore, the microdialysis technique combined with mathematical modeling provides a very good platform for the further study of transdermal delivery systems. This research will provide a new technology and method for the study of the pharmacokinetics of traditional Chinese medicine transdermal drug delivery. It has important theoretical and practical significance in clarifying the metabolic transformation of percutaneous drug absorption and screening for appropriate drugs and dosage forms of transdermal drug delivery.
Collapse
|
7
|
The Extension of the LeiCNS-PK3.0 Model in Combination with the "Handshake" Approach to Understand Brain Tumor Pathophysiology. Pharm Res 2022; 39:1343-1361. [PMID: 35258766 PMCID: PMC9246813 DOI: 10.1007/s11095-021-03154-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 12/10/2021] [Indexed: 12/22/2022]
Abstract
Micrometastatic brain tumor cells, which cause recurrence of malignant brain tumors, are often protected by the intact blood–brain barrier (BBB). Therefore, it is essential to deliver effective drugs across not only the disrupted blood-tumor barrier (BTB) but also the intact BBB to effectively treat malignant brain tumors. Our aim is to predict pharmacokinetic (PK) profiles in brain tumor regions with the disrupted BTB and the intact BBB to support the successful drug development for malignant brain tumors. LeiCNS-PK3.0, a comprehensive central nervous system (CNS) physiologically based pharmacokinetic (PBPK) model, was extended to incorporate brain tumor compartments. Most pathophysiological parameters of brain tumors were obtained from literature and two missing parameters of the BTB, paracellular pore size and expression level of active transporters, were estimated by fitting existing data, like a “handshake”. Simultaneous predictions were made for PK profiles in extracellular fluids (ECF) of brain tumors and normal-appearing brain and validated on existing data for six small molecule anticancer drugs. The LeiCNS-tumor model predicted ECF PK profiles in brain tumor as well as normal-appearing brain in rat brain tumor models and high-grade glioma patients within twofold error for most data points, in combination with estimated paracellular pore size of the BTB and active efflux clearance at the BTB. Our model demonstrated a potential to predict PK profiles of small molecule drugs in brain tumors, for which quantitative information on pathophysiological alterations is available, and contribute to the efficient and successful drug development for malignant brain tumors.
Collapse
|
8
|
Ingle RG, Zeng S, Jiang H, Fang WJ. Current development of bioanalytical sample preparation techniques in pharmaceuticals. J Pharm Anal 2022; 12:517-529. [PMID: 36105159 PMCID: PMC9463481 DOI: 10.1016/j.jpha.2022.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/23/2022] [Accepted: 03/14/2022] [Indexed: 12/03/2022] Open
Abstract
Sample preparation is considered as the bottleneck step in bioanalysis because each biological matrix has its own unique challenges and complexity. Competent sample preparation to extract the desired analytes and remove redundant components is a crucial step in each bioanalytical approach. The matrix effect is a key hurdle in bioanalytical sample preparation, which has gained extensive consideration. Novel sample preparation techniques have advantages over classical techniques in terms of accuracy, automation, ease of sample preparation, storage, and shipment and have become increasingly popular over the past decade. Our objective is to provide a broad outline of current developments in various bioanalytical sample preparation techniques in chromatographic and spectroscopic examinations. In addition, how these techniques have gained considerable attention over the past decade in bioanalytical research is mentioned with preferred examples. Modern trends in bioanalytical sample preparation techniques, including sorbent-based microextraction techniques, are primarily emphasized. Bioanalytical sampling techniques are described with suitable applications in pharmaceuticals. The pros and cons of each bioanalytical sampling techniques are described. Relevant biological matrices are outlined.
Collapse
|
9
|
Liu R, Feng ZY, Li D, Jin B, Yan Lan, Meng LY. Recent trends in carbon-based microelectrodes as electrochemical sensors for neurotransmitter detection: A review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Dahchour A, Ward RJ. Changes in Brain Dopamine Extracellular Concentration after Ethanol Administration; Rat Microdialysis Studies. Alcohol Alcohol 2021; 57:165-175. [PMID: 34693981 DOI: 10.1093/alcalc/agab072] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 11/14/2022] Open
Abstract
AIMS The purpose of this review is to evaluate microdialysis studies where alterations in the dopaminergic system have been evaluated after different intoxication states, in animals showing preference or not for alcohol, as well as during alcohol withdrawal. METHODS Ethanol administration induces varying alterations in dopamine microdialysate concentrations, thereby modulating the functional output of the dopaminergic system. RESULTS Administration of low doses of ethanol, intraperitoneally, intravenously, orally or directly into the nucleus accumbens, NAc, increases mesolimbic dopamine, transmission, as shown by increases in dopamine content. Chronic alcohol administration to rats, which show alcohol-dependent behaviour, induced little change in basal dopamine microdialysis content. In contrast, reduced basal dopamine content occurred after ethanol withdrawal, which might be the stimulus to induce alcohol cravings and consumption. Intermittent alcohol consumption did not identify any consistent changes in dopamine transmission. Animals which have been selectively or genetically bred for alcohol preference did not show consistent changes in basal dopamine content although, exhibited a significant ethanol-evoked dopamine response by comparison to non-preference animals. CONCLUSIONS Microdialysis has provided valuable information about ethanol-evoked dopamine release in the different animal models of alcohol abuse. Acute ethanol administration increases dopamine transmission in the rat NAc whereas chronic ethanol consumption shows variable results which might reflect whether the rat is prior to or experiencing ethanol withdrawal. Ethanol withdrawal significantly decreases the extracellular dopamine content. Such changes in dopamine surges will contribute to both drug dependence, e.g. susceptibility to drug withdrawal, and addiction, by compromising the ability to react to normal dopamine fluctuations.
Collapse
Affiliation(s)
- Abdelkader Dahchour
- Department of Biology, Faculty of Sciences, Clinical Neurosciences Laboratory, Faulty of medicine and Pharmacy. Sidi Mohamed Ben Abdellah University, Imouzzer Road, Fez 30000, Morocco
| | - Roberta J Ward
- Centre for Neuroinflammation & Neurodegeneration, Division of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
11
|
Peruzzi P, Valdes PQ, Aghi MK, Berger M, Chiocca EA, Golby AJ. The Evolving Role of Neurosurgical Intervention for Central Nervous System Tumors. Hematol Oncol Clin North Am 2021; 36:63-75. [PMID: 34565649 DOI: 10.1016/j.hoc.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Since its inception, greater than a century ago, neurosurgery has represented the fundamental trait-d'union between clinical management, scientific investigation, and therapeutic advancements in the field of brain tumors. During the years, oncological neurosurgery has evolved as a self-standing subspecialty, due to technical progress, equipment improvement, evolution of therapeutic paradigms, and the progressively crucial role that it plays in the execution of complex therapeutic strategies and modern clinical trials.
Collapse
Affiliation(s)
- Pierpaolo Peruzzi
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, MA 02115, USA.
| | - Pablo Q Valdes
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, MA 02115, USA
| | - Manish K Aghi
- Department of Neurological Surgery, University of California San Francisco, 505 Parnassus Avenue, San Francisco, CA 94117, USA
| | - Mitchel Berger
- Department of Neurological Surgery, University of California San Francisco, 505 Parnassus Avenue, San Francisco, CA 94117, USA
| | - Ennio Antonio Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, MA 02115, USA
| | - Alexandra J Golby
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, MA 02115, USA; Department of Radiology, Brigham and Women's Hospital/Harvard Medical School, Hale Building for Transformative Medicine, 60 Fenwood Road, Boston, MA 02115, USA
| |
Collapse
|
12
|
Naseri Kouzehgarani G, Feldsien T, Engelhard HH, Mirakhur KK, Phipps C, Nimmrich V, Clausznitzer D, Lefebvre DR. Harnessing cerebrospinal fluid circulation for drug delivery to brain tissues. Adv Drug Deliv Rev 2021; 173:20-59. [PMID: 33705875 DOI: 10.1016/j.addr.2021.03.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 12/31/2022]
Abstract
Initially thought to be useful only to reach tissues in the immediate vicinity of the CSF circulatory system, CSF circulation is now increasingly viewed as a viable pathway to deliver certain therapeutics deeper into brain tissues. There is emerging evidence that this goal is achievable in the case of large therapeutic proteins, provided conditions are met that are described herein. We show how fluid dynamic modeling helps predict infusion rate and duration to overcome high CSF turnover. We posit that despite model limitations and controversies, fluid dynamic models, pharmacokinetic models, preclinical testing, and a qualitative understanding of the glymphatic system circulation can be used to estimate drug penetration in brain tissues. Lastly, in addition to highlighting landmark scientific and medical literature, we provide practical advice on formulation development, device selection, and pharmacokinetic modeling. Our review of clinical studies suggests a growing interest for intra-CSF delivery, particularly for targeted proteins.
Collapse
|