1
|
Sikder P. A comprehensive review on the State of the Art in the research and development of poly-ether-ether-ketone (PEEK) biomaterial-based implants. Acta Biomater 2025; 191:29-52. [PMID: 39579846 DOI: 10.1016/j.actbio.2024.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/01/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Polyetheretherketone (PEEK) is a preferred high-performance polymer in the spine, orthopedic, and craniomaxillofacial implant industry. However, despite its commendable mechanical properties, its bioinert nature limits the implants from integrating with neighboring tissues, impacting the implant's long-term performance. To address this limitation, various kinds of surface functionalization techniques have been developed over the years. Noteworthy efforts have been made to incorporate bioactive fillers in the PEEK matrix to develop standalone bioactive composites. In personalized medicine, significant advances have been made in the 3D Printing of PEEK implants. 3D-printed PEEK implants are now being developed at Point-of-Care, significantly reducing manufacturing and logistic time. Given the recent clinical follow-up updates and advancements in PEEK-based implants, PEEK implants are witnessing an important phase in its history. Recognizing this vital phase, this paper aims to comprehensively review the advancements of PEEK implants over the past decade. The review starts with an overview of the clinical impact of varying PEEK implants, followed by PEEK's surface functionalization techniques and engineering of PEEK-based bioactive composites. Next, this review describes the advancements made in the 3D printing of PEEK implants and points out the essential considerations that should be considered when developing 3D-printed PEEK-based implants. Finally, the review ends with an estimated projection about the future of PEEK-based implants. Readers are expected to gain an all-encompassing and in-depth understanding of PEEK biomedical implants' past, present, and future, enabling researchers to advance the research and development of PEEK-based implants in the required direction. STATEMENT OF SIGNIFICANCE: PEEK is a preferred high-performance polymer in the implant industry, with notable benefits over metallic and ceramic implants, such as bone-matching stiffness and durability. Significant strides have been made in the last decade to make PEEK implants bioactive and utilize 3D Printing to develop patient-specific implants. Given the recent advancements in PEEK-based implants, this review aims to provide an all-encompassing and in-depth understanding of PEEK biomedical implants' past, present, and future. It will comprehensively discuss the know-how gained from the clinical follow-up, the strategies to address the limitations of PEEK implants, and the essential considerations in 3D Printing of PEEK implants. This review will enable researchers to advance the research and development of PEEK implants in the required direction.
Collapse
Affiliation(s)
- Prabaha Sikder
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH 44115, United States.
| |
Collapse
|
2
|
Chen R, Xu Z, Chen Q, Li H. Insufficient endplate-bone graft contact is a risk factor for high-grade cage subsidence occurring after lateral lumbar interbody fusion supplemented with lateral plate: An analysis of 121 cases. J Clin Neurosci 2024; 129:110818. [PMID: 39243444 DOI: 10.1016/j.jocn.2024.110818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/11/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Lateral lumbar interbody fusion (LLIF) is a minimally invasive fusion technique that can be performed with lateral plate. Insufficient contact between the endplate and bone graft may result in cage subsidence. This study aimed to investigate the potential risk factor for high-grade cage subsidence (HCS) occurring after LLIF supplemented with lateral plate. METHODS Between June 2017 and February 2023, 121 patients (48 males, 73 females; mean age 63.0 years; minimum follow-up period 12 months) undergoing LLIF supplemented with lateral plate were retrospectively reviewed. The incidence of HCS was assessed, and patients were categorized into HCS group or non-HCS group based on the occurrence of HCS. A revision surgery of posterior pedicle screw fixation was performed in patients with cage subsidence and complained with intolerable back pain or radicular symptoms. Comparative analyses were performed on demographic characteristics, surgical variables, and parameters related to endplate-bone graft contact between the two groups. Multivariable logistic regression analysis was employed to identify the potential risk factors associated with HCS. The receiver operating characteristic (ROC) analysis was used to calculate the cutoff values for the risk factors. Clinical outcomes were evaluated using Oswestry Disability Index (ODI), and radiographic fusion at the final follow-up was assessed based on the Bridwell grading system. RESULTS The HCS group comprised 12 patients, while the non-HCS group included 109 patients. The incidence of HCS occurring after LLIF supplemented with lateral plate was 9.9 %. Compared to non-HCS group, patients in HCS group had lower sagittal and coronal endplate-bone graft contact rates and larger cage-endplate angles. Low sagittal (OR, 1.099; 95 % CI, 1.033-1.169; P=0.003) and low coronal (OR, 1.149, 95 % CI, 1.061-1.243, P=0.001) endplate-bone graft contact rates were determined to be correlated with HCS. The cutoff value of the sagittal and coronal endplate-bone graft contact rate was 63.5 % and 60.9 %. Eleven (91.7 %) patients in HCS group underwent revision posterior pedicle screw fixation. Both HCS and non-HCS groups experienced significant improvements in ODI at the final follow-up, while there were no differences between groups. Ninety-five (87.2 %) patients in non-HCS group, and nine (81.8 %) of the 11 patients who underwent revision surgery in HCS group achieved radiographic fusion at the final follow-up. CONCLUSIONS The incidence of HCS occurring after LLIF supplemented with lateral plate was 9.9%. Insufficient endplate-bone graft contact is an important risk factor of HCS, and sagittal and coronal endplate-bone graft contact rates can be used as effective predictors for HCS.
Collapse
Affiliation(s)
- Ruijie Chen
- Department of Orthopedics Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhengkuan Xu
- Department of Orthopedics Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qixin Chen
- Department of Orthopedics Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Li
- Department of Orthopedics Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Daher M, Aoun M, Farhat C, Kreichati G, Kharrat K, Daniels AH, Sebaaly A. Titanium Cages versus Polyetheretherketone Cages in Interbody Fusions: A Meta-Analysis of Clinical and Radiographic Outcomes. World Neurosurg 2024; 193:15-25. [PMID: 39362592 DOI: 10.1016/j.wneu.2024.09.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND The most widely adopted materials for interbody fusion implants are titanium and polyetheretherketone (PEEK), both of which have potential advantages and disadvantages. Despite the differences between PEEK and titanium, there is no consensus on which material provides better clinical and radiological outcomes. Therefore, the purpose of this meta-analysis was to analyze the clinical and radiographic outcomes between the 2 cages. METHODS Four databases (PubMed, Cochrane, Embase, and Google Scholar) were queried since December 2001 up until December 2023. Clinical outcomes evaluated included rates of adverse events, radiographic outcomes, and patient-related outcomes. RESULTS Higher rates of subsidence and revision were reported in PEEK cages in the lumbar spine (P = 0.0006 and P = 0.006, respectively). In the cervical spine, no difference was observed between PEEK and titanium in any analysis. CONCLUSIONS In the lumbar spine, titanium cages were shown to have a lower rate of subsidence and revision compared with PEEK cages. In the cervical spine, the difference between cages did not reach statistical significance in any of the analyzed outcomes.
Collapse
Affiliation(s)
- Mohammad Daher
- Faculty of Medicine, Saint Joseph University, Beirut, Lebanon; Department of Orthopedic Surgery, Brown University, Providence, Rhode Island, USA
| | - Marven Aoun
- Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Charbel Farhat
- Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Gaby Kreichati
- Faculty of Medicine, Saint Joseph University, Beirut, Lebanon; Department of Orthopedic Surgery, Hotel Dieu de France Hospital, Beirut, Lebanon
| | - Khalil Kharrat
- Department of Orthopedic Surgery, Hotel Dieu de France Hospital, Beirut, Lebanon
| | - Alan H Daniels
- Department of Orthopedic Surgery, Brown University, Providence, Rhode Island, USA
| | - Amer Sebaaly
- Faculty of Medicine, Saint Joseph University, Beirut, Lebanon; Department of Orthopedic Surgery, Hotel Dieu de France Hospital, Beirut, Lebanon.
| |
Collapse
|
4
|
Aguirre AO, Soliman MAR, Kuo CC, Kassay A, Parmar G, Kruk MD, Quiceno E, Khan A, Lim J, Hess RM, Mullin JP, Pollina J. Defining cage subsidence in anterior, oblique, and lateral lumbar spine fusion approaches: a systematic review of the literature. Neurosurg Rev 2024; 47:332. [PMID: 39009745 DOI: 10.1007/s10143-024-02551-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024]
Abstract
One of the most common complications of lumbar fusions is cage subsidence, which leads to collapse of disc height and reappearance of the presenting symptomology. However, definitions of cage subsidence are inconsistent, leading to a variety of subsidence calculation methodologies and thresholds. To review previously published literature on cage subsidence in order to present the most common methods for calculating and defining subsidence in the anterior lumbar interbody fusion (ALIF), oblique lateral interbody fusion (OLIF), and lateral lumbar interbody fusion (LLIF) approaches. A search was completed in PubMed and Embase with inclusion criteria focused on identifying any study that provided descriptions of the method, imaging modality, or subsidence threshold used to calculate the presence of cage subsidence. A total of 69 articles were included in the final analysis, of which 18 (26.1%) reported on the ALIF approach, 22 (31.9%) on the OLIF approach, and 31 (44.9%) on the LLIF approach, 2 of which reported on more than one approach. ALIF articles most commonly calculated the loss of disc height over time with a subsidence threshold of > 2 mm. Most OLIF articles calculated the total amount of cage migration into the vertebral bodies, with a threshold of > 2 mm. LLIF was the only approach in which most articles applied the same method for calculation, namely, a grading scale for classifying the loss of disc height over time. We recommend future articles adhere to the most common methodologies presented here to ensure accuracy and generalizability in reporting cage subsidence.
Collapse
Affiliation(s)
- Alexander O Aguirre
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 100 High Street, Suite B4, Buffalo, NY, 14203, USA
- Department of Neurosurgery, Buffalo General Medical Center, Kaleida Health, Buffalo, NY, USA
| | - Mohamed A R Soliman
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 100 High Street, Suite B4, Buffalo, NY, 14203, USA
- Department of Neurosurgery, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Cathleen C Kuo
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Andrea Kassay
- Division of Neurosurgery, University of Toronto, Toronto, ON, Canada
| | - Gaganjot Parmar
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Marissa D Kruk
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Esteban Quiceno
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 100 High Street, Suite B4, Buffalo, NY, 14203, USA
- Department of Neurosurgery, Buffalo General Medical Center, Kaleida Health, Buffalo, NY, USA
| | - Asham Khan
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 100 High Street, Suite B4, Buffalo, NY, 14203, USA
- Department of Neurosurgery, Buffalo General Medical Center, Kaleida Health, Buffalo, NY, USA
| | - Jaims Lim
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 100 High Street, Suite B4, Buffalo, NY, 14203, USA
- Department of Neurosurgery, Buffalo General Medical Center, Kaleida Health, Buffalo, NY, USA
| | - Ryan M Hess
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 100 High Street, Suite B4, Buffalo, NY, 14203, USA
- Department of Neurosurgery, Buffalo General Medical Center, Kaleida Health, Buffalo, NY, USA
| | - Jeffrey P Mullin
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 100 High Street, Suite B4, Buffalo, NY, 14203, USA
- Department of Neurosurgery, Buffalo General Medical Center, Kaleida Health, Buffalo, NY, USA
| | - John Pollina
- Department of Neurosurgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 100 High Street, Suite B4, Buffalo, NY, 14203, USA.
- Department of Neurosurgery, Buffalo General Medical Center, Kaleida Health, Buffalo, NY, USA.
| |
Collapse
|
5
|
Duan Y, Feng D, Li T, Wang Y, Jiang L, Huang Y. Comparison of Lumbar Interbody Fusion with 3D-Printed Porous Titanium Cage Versus Polyetheretherketone Cage in Treating Lumbar Degenerative Disease: A Systematic Review and Meta-Analysis. World Neurosurg 2024; 183:144-156. [PMID: 38145654 DOI: 10.1016/j.wneu.2023.12.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
OBJECTIVE To compare the safety and radiological effectiveness of lumbar interbody fusion with a 3D-printed porous titanium (3D-PPT) cage versus a polyetheretherketone (PEEK) cage for the treatment of lumbar degenerative disease. METHODS This study was registered at PROSPERO (CRD42023461511). We systematically searched the PubMed, Embase, and Web of Science databases for related studies from inception to September 3, 2023. Review Manager 5.3 was used to conduct this meta-analysis. The reoperation rate, complication rate, fusion rate, and subsidence rate were assessed using relative risk and 95% confidence intervals. RESULTS Ten articles reporting 9 studies comparing lumbar interbody fusion with 3D-PPT cages versus PEEK cages for the treatment of lumbar degenerative disease were included. The subsidence rate at the 1-year follow-up in the 3D-PPT cage was significantly lower than that in the PEEK cage. The fusion rate in the 3D-PPT cage was significantly higher than that in the PEEK cage at the 6-month follow-up. No significant difference was identified between the 2 groups at the 12-month follow-up. No significant difference was identified between the 2 groups in terms of the complication rate and reoperation rate. There was a trend toward a lower complication rate and reoperation rate with the 3D-PPT cage. CONCLUSIONS Compared with the PEEK cage, the 3D-PPT cage may be a safer implant. The 3D-PPT cage was associated with a higher fusion rate and lower subsidence rate. The 3D-PPT cage may accelerate the intervertebral fusion process, improve the quality of fusion and prevent the occurrence of subsidence.
Collapse
Affiliation(s)
- Yuchen Duan
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Dagang Feng
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Tong Li
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Yiran Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Leiming Jiang
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Yong Huang
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China.
| |
Collapse
|
6
|
Zhong Y, Wang Y, Zhou H, Wang Y, Gan Z, Qu Y, Hua R, Chen Z, Chu G, Liu Y, Jiang W. Biomechanical study of two-level oblique lumbar interbody fusion with different types of lateral instrumentation: a finite element analysis. Front Med (Lausanne) 2023; 10:1183683. [PMID: 37457575 PMCID: PMC10345158 DOI: 10.3389/fmed.2023.1183683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Objective The aim of this study was to verify the biomechanical properties of a newly designed angulated lateral plate (mini-LP) suited for two-level oblique lumbar interbody fusion (OLIF). The mini-LP is placed through the lateral ante-psoas surgical corridor, which reduces the operative time and complications associated with prolonged anesthesia and placement in the prone position. Methods A three-dimensional nonlinear finite element (FE) model of an intact L1-L5 lumbar spine was constructed and validated. The intact model was modified to generate a two-level OLIF surgery model augmented with three types of lateral fixation (stand-alone, SA; lateral rod screw, LRS; miniature lateral plate, mini-LP); the operative segments were L2-L3 and L3-L4. By applying a 500 N follower load and 7.5 Nm directional moment (flexion-extension, lateral bending, and axial rotation), all models were used to simulate human spine movement. Then, we extracted the range of motion (ROM), peak contact force of the bony endplate (PCFBE), peak equivalent stress of the cage (PESC), peak equivalent stress of fixation (PESF), and stress contour plots. Results When compared with the intact model, the SA model achieved the least reduction in ROM to surgical segments in all motions. The ROM of the mini-LP model was slightly smaller than that of the LRS model. There were no significant differences in surgical segments (L1-L2, L4-L5) between all surgical models and the intact model. The PCFBE and PESC of the LRS and the mini-LP fixation models were lower than those of the SA model. However, the differences in PCFBE or PESC between the LRS- and mini-LP-based models were not significant. The fixation stress of the LRS- and mini-LP-based models was significantly lower than the yield strength under all loading conditions. In addition, the variances in the PESF in the LRS- and mini-LP-based models were not obvious. Conclusion Our biomechanical FE analysis indicated that LRS or mini-LP fixation can both provide adequate biomechanical stability for two-level OLIF through a single incision. The newly designed mini-LP model seemed to be superior in installation convenience, and equally good outcomes were achieved with both LRS and mini-LP for two-level OLIF.
Collapse
Affiliation(s)
- Yuan Zhong
- Department of Orthopaedic Surgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, China
| | - Yujie Wang
- Department of Orthopaedic Surgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, China
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Hong Zhou
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yudong Wang
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Ziying Gan
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Yimeng Qu
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Runjia Hua
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Zhaowei Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Genglei Chu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Yijie Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Weimin Jiang
- Department of Orthopaedic Surgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, China
- Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
7
|
Patel NA, O’Bryant S, Rogers CD, Boyett CK, Chakravarti S, Gendreau J, Brown NJ, Pennington ZA, Hatcher NB, Kuo C, Diaz-Aguilar LD, Pham MH. Three-Dimensional-Printed Titanium Versus Polyetheretherketone Cages for Lumbar Interbody Fusion: A Systematic Review of Comparative In Vitro, Animal, and Human Studies. Neurospine 2023; 20:451-463. [PMID: 37401063 PMCID: PMC10323354 DOI: 10.14245/ns.2346244.122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/04/2023] [Accepted: 04/19/2023] [Indexed: 07/05/2023] Open
Abstract
Interbody fusion is a workhorse technique in lumbar spine surgery that facilities indirect decompression, sagittal plane realignment, and successful bony fusion. The 2 most commonly employed cage materials are titanium (Ti) alloy and polyetheretherketone (PEEK). While Ti alloy implants have superior osteoinductive properties they more poorly match the biomechanical properties of cancellous bones. Newly developed 3-dimensional (3D)-printed porous titanium (3D-pTi) address this disadvantage and are proposed as a new standard for lumbar interbody fusion (LIF) devices. In the present study, the literature directly comparing 3D-pTi and PEEK interbody devices is systematically reviewed with a focus on fusion outcomes and subsidence rates reported in the in vitro, animal, and human literature. A systematic review directly comparing outcomes of PEEK and 3D-pTi interbody spinal cages was performed. PubMed, Embase, and Cochrane Library databases were searched according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines. Mean Newcastle-Ottawa Scale score for cohort studies was 6.4. A total of 7 eligible studies were included, comprising a combination of clinical series, ovine animal data, and in vitro biomechanical studies. There was a total population of 299 human and 59 ovine subjects, with 134 human (44.8%) and 38 (64.4%) ovine models implanted with 3D-pTi cages. Of the 7 studies, 6 reported overall outcomes in favor of 3D-pTi compared to PEEK, including subsidence and osseointegration, while 1 study reported neutral outcomes for device related revision and reoperation rate. Though limited data are available, the current literature supports 3D-pTi interbodies as offering superior fusion outcomes relative to PEEK interbodies for LIF without increasing subsidence or reoperation risk. Histologic evidence suggests 3D-Ti to have superior osteoinductive properties that may underlie these superior outcomes, but additional clinical investigation is merited.
Collapse
Affiliation(s)
- Neal A. Patel
- School of Medicine, Mercer University, Columbus, GA, USA
| | | | | | | | - Sachiv Chakravarti
- Department of Biomedical Engineering, Johns Hopkins Whiting School of Engineering, Baltimore, MD, USA
| | - Julian Gendreau
- Department of Biomedical Engineering, Johns Hopkins Whiting School of Engineering, Baltimore, MD, USA
| | - Nolan J. Brown
- Department of Neurosurgery, University of California Irvine, Orange, CA, USA
| | | | | | - Cathleen Kuo
- Department of Neurosurgery, University of Buffalo, Buffalo, NY, USA
| | | | - Martin H. Pham
- Department of Neurosurgery, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
8
|
Liu Y, Wu H, Bao S, Huang H, Tang Z, Dong H, Liu J, Chen S, Wang N, Wu Z, Zhang Z, Shi L, Li X, Guo Z. Clinical application of 3D-printed biodegradable lumbar interbody cage (polycaprolactone/β-tricalcium phosphate) for posterior lumbar interbody fusion. J Biomed Mater Res B Appl Biomater 2023; 111:1398-1406. [PMID: 36883804 DOI: 10.1002/jbm.b.35244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023]
Abstract
A novel 3D-printed biodegradable cage composed of polycaprolactone (PCL) and beta-tricalcium phosphate (β-TCP) in a mass ratio of 50:50, with stable resorption patterns and mechanical strength has been developed for lumbar interbody fusion. This is a prospective cohort study to evaluate the short- and mid-term safety and efficacy of this biodegradable cage in posterior lumbar interbody fusion (PLIF) surgery. This was a prospective single-arm pilot clinical trial in 22 patients with a follow-up time of 1, 3, 6, and 12 months, postoperatively. Clinical outcomes were assessed using the Japanese Orthopedic Association Back Pain Evaluation Questionnaire (JOABPEQ) and Visual analogue scale (VAS) for leg pain and low back pain. Radiological examination included X-ray, CT scan, and three-dimensional reconstruction to evaluate surgical indications, intervertebral space height (ISH), intervertebral bone fusion and cage degradation. A total of 22 patients was included, with an average age of 53.5 years. Among 22 patients, one patient lost to follow-up and one patient withdrew from the clinical trial because of cage retropulsion. The remaining 20 patients showed significant improvement in clinical and imaging outcomes compared to the preoperative period. The overall mean VAS for back decreased from 5.85 ± 0.99 preoperatively to 1.15 ± 0.86 at the 12-month follow-up (p < .001); the VAS for leg decreased from 5.75 ± 1.11 to 1.05 ± 0.76 (p < .001); the JOA score improved from 13.8 ± 2.64 to 26.45 ± 2.46 (p < .001). The mean intervertebral space height (ISH) increased from 11.01 ± 1.75 mm preoperatively to 12.67 ± 1.89 mm at the 12-month follow-up and the bone fusion reached 95.2% (20/21 disc segments). Partial resorption (inferior to 50% compared with the initial cage size) were found in all cages (21/21). The clinical and radiological assessments showed that the application of 3D-printed biodegradable PCL/β-TCP cages in PLIF yielded satisfactory results at the 12-month follow-up. In the future, long-term clinical observations and controlled clinical trials are required to further validate the safety and efficacy of this novel cage.
Collapse
Affiliation(s)
- Yichao Liu
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Hao Wu
- Department of Orthopaedics, Tangdu Hospital
- , Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Shusen Bao
- Department of Orthopaedics, Tangdu Hospital
- , Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Hai Huang
- Department of Orthopaedics, Tangdu Hospital
- , Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Zhen Tang
- Department of Orthopaedics, Tangdu Hospital
- , Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Hui Dong
- Department of Orthopaedics, Tangdu Hospital
- , Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Jiaqi Liu
- Student Brigade of Basic Medicine School, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Shengxiu Chen
- Student Brigade of Basic Medicine School, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Ning Wang
- Department of Orthopaedics, Tangdu Hospital
- , Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Zhigang Wu
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Zhiyong Zhang
- Center of Translational Research in Regenerative Medicine, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Lei Shi
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Xiaokang Li
- Department of Orthopaedics, Tangdu Hospital
- , Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Zheng Guo
- Department of Orthopaedics, Tangdu Hospital
- , Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
9
|
Effect of Interbody Implants on the Biomechanical Behavior of Lateral Lumbar Interbody Fusion: A Finite Element Study. J Funct Biomater 2023; 14:jfb14020113. [PMID: 36826912 PMCID: PMC9962522 DOI: 10.3390/jfb14020113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/30/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Porous titanium interbody scaffolds are growing in popularity due to their appealing advantages for bone ingrowth. This study aimed to investigate the biomechanical effects of scaffold materials in both normal and osteoporotic lumbar spines using a finite element (FE) model. Four scaffold materials were compared: Ti6Al4V (Ti), PEEK, porous titanium of 65% porosity (P65), and porous titanium of 80% porosity (P80). In addition, the range of motion (ROM), endplate stress, scaffold stress, and pedicle screw stress were calculated and compared. The results showed that the ROM decreased by more than 96% after surgery, and the solid Ti scaffold provided the lowest ROM (1.2-3.4% of the intact case) at the surgical segment among all models. Compared to solid Ti, PEEK decreased the scaffold stress by 53-66 and the endplate stress by 0-33%, while porous Ti decreased the scaffold stress by 20-32% and the endplate stress by 0-32%. Further, compared with P65, P80 slightly increased the ROM (<0.03°) and pedicle screw stress (<4%) and decreased the endplate stress by 0-13% and scaffold stress by approximately 18%. Moreover, the osteoporotic lumbar spine provided higher ROMs, endplate stresses, scaffold stresses, and pedicle screw stresses in all motion modes. The porous Ti scaffolds may offer an alternative for lateral lumbar interbody fusion.
Collapse
|
10
|
Segi N, Nakashima H, Shinjo R, Kagami Y, Machino M, Ito S, Ouchida J, Morishita K, Oishi R, Yamauchi I, Imagama S. Vertebral Endplate Concavity in Lateral Lumbar Interbody Fusion: Tapered 3D-Printed Porous Titanium Cage versus Squared PEEK Cage. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020372. [PMID: 36837573 PMCID: PMC9967078 DOI: 10.3390/medicina59020372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
Background and Objectives: To prevent postoperative problems in extreme lateral interbody fusion (XLIF), it is critical that the vertebral endplate not be injured. Unintentional endplate injuries may depend on the cage. A novel porous titanium cage for XLIF has improved geometry with a tapered tip and smooth surface. We hypothesized that this new cage should lead to fewer endplate injuries. Materials and Methods: This retrospective study included 32 patients (mean 74.1 ± 6.7 years, 22 females) who underwent anterior and posterior combined surgery with XLIF for lumbar degenerative disease or adult spinal deformity from January 2018 to June 2022. A tapered 3D porous titanium cage (3DTi; 11 patients) and a squared PEEK cage (sPEEK; 21 patients) were used. Spinal alignment values were measured on X-ray images. Vertebral endplate concavity (VEC) was defined as concavity ≥ 1 mm of the endplate on computed tomography (CT) images, which were evaluated preoperatively and at 1 week and 3 months postoperatively. Results: There were no significant differences in the patient demographic data and preoperative and 3-month postoperative spinal alignments between the groups. A 3DTi was used for 25 levels and an sPEEK was used for 38 levels. Preoperative local lordotic angles were 4.3° for 3DTi vs. 4.7° for sPEEK (p = 0.90), which were corrected to 12.3° and 9.1° (p = 0.029), respectively. At 3 months postoperatively, the angles were 11.6° for 3DTi and 8.2° for sPEEK (p = 0.013). VEC was present in 2 levels (8.0%) for 3DTi vs. 17 levels (45%) for sPEEK (p = 0.002). After 3 months postoperatively, none of the 3DTi had VEC progression; however, eight (21%) levels in sPEEK showed VEC progression (p = 0.019). Conclusions: The novel 3DTi cage reduced endplate injuries by reducing the endplate load during cage insertion.
Collapse
Affiliation(s)
- Naoki Segi
- Department of Orthopedic Surgery, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya 466-8560, Japan
- Department of Orthopedic Surgery, Anjo Kosei Hospital, 28 Higashihirokute, Anjo 446-8602, Japan
| | - Hiroaki Nakashima
- Department of Orthopedic Surgery, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya 466-8560, Japan
- Correspondence: ; Tel.: +81-52-741-2111
| | - Ryuichi Shinjo
- Department of Orthopedic Surgery, Anjo Kosei Hospital, 28 Higashihirokute, Anjo 446-8602, Japan
| | - Yujiro Kagami
- Department of Orthopedic Surgery, Anjo Kosei Hospital, 28 Higashihirokute, Anjo 446-8602, Japan
| | - Masaaki Machino
- Department of Orthopedic Surgery, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya 466-8560, Japan
| | - Sadayuki Ito
- Department of Orthopedic Surgery, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya 466-8560, Japan
| | - Jun Ouchida
- Department of Orthopedic Surgery, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya 466-8560, Japan
| | - Kazuaki Morishita
- Department of Orthopedic Surgery, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya 466-8560, Japan
| | - Ryotaro Oishi
- Department of Orthopedic Surgery, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya 466-8560, Japan
| | - Ippei Yamauchi
- Department of Orthopedic Surgery, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya 466-8560, Japan
| | - Shiro Imagama
- Department of Orthopedic Surgery, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa-ku, Nagoya 466-8560, Japan
| |
Collapse
|
11
|
Hughes A. Answer to the "Letter to the Editor of S. Barik, et al. concerning "Development of a decision-making pathway for utilizing standalone lateral lumbar interbody fusion" by Adl Amini D, et al. (Eur Spine J [2022]; 31:1611-1620). EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2022; 31:3786. [PMID: 36227367 DOI: 10.1007/s00586-022-07395-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Alexander Hughes
- Spinal Surgery, Hospital for Special Surgery, Spine Care Institute, 535 East 70th Street, New York, NY, 10021, USA.
| |
Collapse
|
12
|
王 彦, 周 英, 柴 旭, 禚 汉. [Application of three-dimensional printed porous titanium alloy cage and poly-ether-ether-ketone cage in posterior lumbar interbody fusion]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:1126-1131. [PMID: 36111476 PMCID: PMC9626292 DOI: 10.7507/1002-1892.202204011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 01/24/2023]
Abstract
Objective To compare the effectiveness between three-dimensional (3D) printed porous titanium alloy cage (3D Cage) and poly-ether-ether-ketone cage (PEEK Cage) in the posterior lumbar interbody fusion (PLIF). Methods A total of 66 patients who were scheduled to undergo PLIF between January 2018 and June 2019 were selected as the research subjects, and were divided into the trial group (implantation of 3D Cage, n=33) and the control group (implantation of PEEK Cage, n=33) according to the random number table method. Among them, 1 case in the trial group did not complete the follow-up exclusion study, and finally 32 cases in the trial group and 33 cases in the control group were included in the statistical analysis. There was no significant difference in gender, age, etiology, disease duration, surgical segment, and preoperative Japanese Orthopaedic Association (JOA) score between the two groups (P>0.05). The operation time, intraoperative blood loss, complications, JOA score, intervertebral height loss, and interbody fusion were recorded and compared between the two groups. Results The operations of two groups were completed successfully. There was 1 case of dural rupture complicated with cerebrospinal fluid leakage during operation in the trial group, and no complication occurred in the other patients of the two groups. All incisions healed by first intention. There was no significant difference in operation time and intraoperative blood loss between groups (P>0.05). All patients were followed up 12-24 months (mean, 16.7 months). The JOA scores at 1 year after operation in both groups significantly improved when compared with those before operation (P<0.05); there was no significant difference between groups (P>0.05) in the difference between pre- and post-operation and the improvement rate of JOA score at 1 year after operation. X-ray film reexamination showed that there was no screw loosening, screw rod fracture, Cage collapse, or immune rejection in the two groups during follow-up. At 3 months and 1 year after operation, the rate of intervertebral height loss was significantly lower in the trial group than in the control group (P<0.05). At 3 and 6 months after operation, the interbody fusion rating of trial group was significantly better in the trial group than in the control group (P<0.05); and at 1 year after operation, there was no significant difference between groups (P>0.05). Conclusion There is no significant difference between 3D Cage and PEEK Cage in PLIF, in terms of operation time, intraoperative blood loss, complications, postoperative neurological recovery, and final intervertebral fusion. But the former can effectively reduce vertebral body subsidence and accelerate intervertebral fusion.
Collapse
Affiliation(s)
- 彦金 王
- 河南中医药大学洛阳平乐正骨学院(郑州 450046)Luoyang Pingle Orthopedic Graduate School, Henan University of Chinese Medicine, Zhengzhou Henan, 450046, P. R. China
| | - 英杰 周
- 河南中医药大学洛阳平乐正骨学院(郑州 450046)Luoyang Pingle Orthopedic Graduate School, Henan University of Chinese Medicine, Zhengzhou Henan, 450046, P. R. China
| | - 旭斌 柴
- 河南中医药大学洛阳平乐正骨学院(郑州 450046)Luoyang Pingle Orthopedic Graduate School, Henan University of Chinese Medicine, Zhengzhou Henan, 450046, P. R. China
| | - 汉杰 禚
- 河南中医药大学洛阳平乐正骨学院(郑州 450046)Luoyang Pingle Orthopedic Graduate School, Henan University of Chinese Medicine, Zhengzhou Henan, 450046, P. R. China
| |
Collapse
|