1
|
Zou X, Sheng Z, Jiang S, Hu J, Liu X, Chen L. Intraoperative identification of epileptogenic foci using handheld histopathologic endoscopy: a case report. J Neurol 2024; 272:39. [PMID: 39666119 DOI: 10.1007/s00415-024-12767-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 12/13/2024]
Affiliation(s)
- Xiang Zou
- Department of Neurosurgery, Huashan Hospital, National Center for Neurological Disorders, Fudan University, No. 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Zhiyuan Sheng
- Department of Neurosurgery, Huashan Hospital, National Center for Neurological Disorders, Fudan University, No. 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Shize Jiang
- Department of Neurosurgery, Huashan Hospital, National Center for Neurological Disorders, Fudan University, No. 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Jie Hu
- Department of Neurosurgery, Huashan Hospital, National Center for Neurological Disorders, Fudan University, No. 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Xiaoying Liu
- Department of Neurosurgery, Huashan Hospital, National Center for Neurological Disorders, Fudan University, No. 12 Wulumuqi Zhong Road, Shanghai, 200040, China.
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, National Center for Neurological Disorders, Fudan University, No. 12 Wulumuqi Zhong Road, Shanghai, 200040, China.
| |
Collapse
|
2
|
Macdonald-Laurs E, Warren AEL, Francis P, Mandelstam SA, Lee WS, Coleman M, Stephenson SEM, Barton S, D'Arcy C, Lockhart PJ, Leventer RJ, Harvey AS. The clinical, imaging, pathological and genetic landscape of bottom-of-sulcus dysplasia. Brain 2024; 147:1264-1277. [PMID: 37939785 DOI: 10.1093/brain/awad379] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/20/2023] [Accepted: 10/22/2023] [Indexed: 11/10/2023] Open
Abstract
Bottom-of-sulcus dysplasia (BOSD) is increasingly recognized as a cause of drug-resistant, surgically-remediable, focal epilepsy, often in seemingly MRI-negative patients. We describe the clinical manifestations, morphological features, localization patterns and genetics of BOSD, with the aims of improving management and understanding pathogenesis. We studied 85 patients with BOSD diagnosed between 2005-2022. Presenting seizure and EEG characteristics, clinical course, genetic findings and treatment response were obtained from medical records. MRI (3 T) and 18F-FDG-PET scans were reviewed systematically for BOSD morphology and metabolism. Histopathological analysis and tissue genetic testing were performed in 64 operated patients. BOSD locations were transposed to common imaging space to study anatomical location, functional network localization and relationship to normal MTOR gene expression. All patients presented with stereotyped focal seizures with rapidly escalating frequency, prompting hospitalization in 48%. Despite 42% patients having seizure remissions, usually with sodium channel blocking medications, most eventually became drug-resistant and underwent surgery (86% seizure-free). Prior developmental delay was uncommon but intellectual, language and executive dysfunction were present in 24%, 48% and 29% when assessed preoperatively, low intellect being associated with greater epilepsy duration. BOSDs were missed on initial MRI in 68%, being ultimately recognized following repeat MRI, 18F-FDG-PET or image postprocessing. MRI features were grey-white junction blurring (100%), cortical thickening (91%), transmantle band (62%), increased cortical T1 signal (46%) and increased subcortical FLAIR signal (26%). BOSD hypometabolism was present on 18F-FDG-PET in 99%. Additional areas of cortical malformation or grey matter heterotopia were present in eight patients. BOSDs predominated in frontal and pericentral cortex and related functional networks, mostly sparing temporal and occipital cortex, and limbic and visual networks. Genetic testing yielded pathogenic mTOR pathway variants in 63% patients, including somatic MTOR variants in 47% operated patients and germline DEPDC5 or NPRL3 variants in 73% patients with familial focal epilepsy. BOSDs tended to occur in regions where the healthy brain normally shows lower MTOR expression, suggesting these regions may be more vulnerable to upregulation of MTOR activity. Consistent with the existing literature, these results highlight (i) clinical features raising suspicion of BOSD; (ii) the role of somatic and germline mTOR pathway variants in patients with sporadic and familial focal epilepsy associated with BOSD; and (iii) the role of 18F-FDG-PET alongside high-field MRI in detecting subtle BOSD. The anatomical and functional distribution of BOSDs likely explain their seizure, EEG and cognitive manifestations and may relate to relative MTOR expression.
Collapse
Affiliation(s)
- Emma Macdonald-Laurs
- Department of Neurology, The Royal Children's Hospital, Parkville, Victoria 3052Australia
- Department of Neuroscience, Murdoch Children's Research Institute, Parkville 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
| | - Aaron E L Warren
- Department of Neuroscience, Murdoch Children's Research Institute, Parkville 3052, Australia
- Department of Medicine (Austin Health), The University of Melbourne, Heidelberg 3084, Australia
| | - Peter Francis
- Department of Medical Imaging, The Royal Children's Hospital, Parkville 3052, Australia
| | - Simone A Mandelstam
- Department of Neuroscience, Murdoch Children's Research Institute, Parkville 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
- Department of Medical Imaging, The Royal Children's Hospital, Parkville 3052, Australia
| | - Wei Shern Lee
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
- Department of Genomic Medicine, Bruce Lefroy Centre, Murdoch Children's Research Institute, Parkville 3052, Australia
| | - Matthew Coleman
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
- Department of Genomic Medicine, Bruce Lefroy Centre, Murdoch Children's Research Institute, Parkville 3052, Australia
| | - Sarah E M Stephenson
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
- Department of Genomic Medicine, Bruce Lefroy Centre, Murdoch Children's Research Institute, Parkville 3052, Australia
| | - Sarah Barton
- Department of Neurology, The Royal Children's Hospital, Parkville, Victoria 3052Australia
- Department of Neuroscience, Murdoch Children's Research Institute, Parkville 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
| | - Colleen D'Arcy
- Department of Pathology, The Royal Children's Hospital, Parkville 3052, Australia
| | - Paul J Lockhart
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
- Department of Genomic Medicine, Bruce Lefroy Centre, Murdoch Children's Research Institute, Parkville 3052, Australia
| | - Richard J Leventer
- Department of Neurology, The Royal Children's Hospital, Parkville, Victoria 3052Australia
- Department of Neuroscience, Murdoch Children's Research Institute, Parkville 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
| | - A Simon Harvey
- Department of Neurology, The Royal Children's Hospital, Parkville, Victoria 3052Australia
- Department of Neuroscience, Murdoch Children's Research Institute, Parkville 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
| |
Collapse
|
3
|
Kas A, Rozenblum L, Pyatigorskaya N. Clinical Value of Hybrid PET/MR Imaging: Brain Imaging Using PET/MR Imaging. Magn Reson Imaging Clin N Am 2023; 31:591-604. [PMID: 37741643 DOI: 10.1016/j.mric.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Hybrid PET/MR imaging offers a unique opportunity to acquire MR imaging and PET information during a single imaging session. PET/MR imaging has numerous advantages, including enhanced diagnostic accuracy, improved disease characterization, and better treatment planning and monitoring. It enables the immediate integration of anatomic, functional, and metabolic imaging information, allowing for personalized characterization and monitoring of neurologic diseases. This review presents recent advances in PET/MR imaging and highlights advantages in clinical practice for neuro-oncology, epilepsy, and neurodegenerative disorders. PET/MR imaging provides valuable information about brain tumor metabolism, perfusion, and anatomic features, aiding in accurate delineation, treatment response assessment, and prognostication.
Collapse
Affiliation(s)
- Aurélie Kas
- Department of Nuclear Medicine, Pitié-Salpêtrière Hospital, APHP Sorbonne Université, Paris, France; Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, LIB, Paris F-75006, France.
| | - Laura Rozenblum
- Department of Nuclear Medicine, Pitié-Salpêtrière Hospital, APHP Sorbonne Université, Paris, France; Sorbonne Université, INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, LIB, Paris F-75006, France
| | - Nadya Pyatigorskaya
- Neuroradiology Department, Pitié-Salpêtrière Hospital, APHP Sorbonne Université, Paris, France; Sorbonne Université, UMR S 1127, CNRS UMR 722, Institut du Cerveau, Paris, France
| |
Collapse
|