• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4619601)   Today's Articles (1482)   Subscriber (49403)
For: Bhat AP, Reale ER, del Cerro M, Smith KC, Cusick RD. Reducing impedance to ionic flux in capacitive deionization with Bi-tortuous activated carbon electrodes coated with asymmetrically charged polyelectrolytes. Water Res X 2019;3:100027. [PMID: 31193985 PMCID: PMC6549939 DOI: 10.1016/j.wroa.2019.100027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 05/30/2023]
Number Cited by Other Article(s)
1
Cheng HC, Chen PA, Peng CY, Liu SH, Wang HP. Sulfonated GO coated carbon electrodes with cation-selective functions for enhanced capacitive deionization of saltwater. ENVIRONMENTAL TECHNOLOGY 2024;45:1770-1780. [PMID: 36469603 DOI: 10.1080/09593330.2022.2153748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
2
Tan G, Wan S, Mei SC, Gong B, Qian C, Chen JJ. Boosted brackish water desalination and water softening by facilely designed MnO2/hierarchical porous carbon as capacitive deionization electrode. WATER RESEARCH X 2023;19:100182. [PMID: 37215310 PMCID: PMC10199261 DOI: 10.1016/j.wroa.2023.100182] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/30/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
3
Reale ER, Regenwetter L, Agrawal A, Dardón B, Dicola N, Sanagala S, Smith KC. Low porosity, high areal-capacity Prussian blue analogue electrodes enhance salt removal and thermodynamic efficiency in symmetric Faradaic deionization with automated fluid control. WATER RESEARCH X 2021;13:100116. [PMID: 34505051 PMCID: PMC8414176 DOI: 10.1016/j.wroa.2021.100116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/21/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
4
McNair R, Cseri L, Szekely G, Dryfe R. Asymmetric Membrane Capacitive Deionization Using Anion-Exchange Membranes Based on Quaternized Polymer Blends. ACS APPLIED POLYMER MATERIALS 2020;2:2946-2956. [PMID: 32905369 PMCID: PMC7469241 DOI: 10.1021/acsapm.0c00432] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
5
Wang L, Liang Y, Zhang L. Enhancing Performance of Capacitive Deionization with Polyelectrolyte-Infiltrated Electrodes: Theory and Experimental Validation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020;54:5874-5883. [PMID: 32216292 DOI: 10.1021/acs.est.9b07692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
6
Enabling fast charging of lithium-ion batteries through secondary- /dual- pore network: Part I - Analytical diffusion model. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136034] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
7
Enabling fast charging of lithium-ion batteries through secondary-/dual- pore network: Part II - numerical model. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136013] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
8
Salamat Y, Hidrovo CH. Significance of the micropores electro-sorption resistance in capacitive deionization systems. WATER RESEARCH 2020;169:115286. [PMID: 31734390 DOI: 10.1016/j.watres.2019.115286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/12/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
9
Hand S, Guest JS, Cusick RD. Technoeconomic Analysis of Brackish Water Capacitive Deionization: Navigating Tradeoffs between Performance, Lifetime, and Material Costs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019;53:13353-13363. [PMID: 31657552 DOI: 10.1021/acs.est.9b04347] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
10
Reale ER, Shrivastava A, Smith KC. Effect of conductive additives on the transport properties of porous flow-through electrodes with insulative particles and their optimization for Faradaic deionization. WATER RESEARCH 2019;165:114995. [PMID: 31450221 DOI: 10.1016/j.watres.2019.114995] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/12/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA