1
|
Ji W, Liu M, Li Y, Liu L, Wang Y, Duan F, Su C, Li H, Cao R, Yin J, Wei M, Jiang Z, Cao H. Zwitterionic Nanochannels in Covalent Organic Framework Membranes for Improved Flux and Antifouling Property. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405113. [PMID: 39440668 DOI: 10.1002/smll.202405113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Zwitterionic membranes demonstrate excellent antifouling property in water purification. The covalent organic frameworks (COFs), due to the ordered channels and abundant organic functional groups, have distinct superiority in constructing zwitterionic surfaces.Here, the zwitterionic COF membrane is prepared with precise framework structures and uniform charge distribution. The negatively charged 4,4'-diaminobiphenyl-2,2'-sisulphonic acid sodium (SA) and positively charged ethidium bromide (EB) fragments are used to react with 1,3,5-triformylphloroglucinol (TP) at the gas-liquid interface to prepare zwitterionic COF membrane. The complementary charged fragments in the inter-layer and inner-layer facilitate the formation of continuous and tight hydration layer on the membrane surface and pore walls to resist the adsorption of pollutants. The zwitterionic COF membrane effectively resists both negatively charged bovine serum albumin and positively charged lysozyme pollutants with flux recovery ratio (FRR) of 97% and 85%, respectively. Furthermore, the regular nano-channels and balanced interactions between water and surface/pore walls of the zwitterionic membrane result in outstanding permeability of up to 146 L m-2 h-1 bar-1 and excellent dye/salt separation selectivity. The water permeation and antifouling mechanism of membranes are elucidated by experimental and molecular dynamics calculation. Zwitterionic COF membranes can find promising applications in preparing high-performance antifouling membranes.
Collapse
Affiliation(s)
- Wenyan Ji
- Department of Chemistry, Tianjin University, Tianjin, 300072, China
- National Engineering Research Center of green recycling for strategic metal resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Ming Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yuping Li
- National Engineering Research Center of green recycling for strategic metal resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Chemistry & Chemical Engineering Data Center, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lulu Liu
- National Engineering Research Center of green recycling for strategic metal resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuhan Wang
- Department of Chemistry, Tianjin University, Tianjin, 300072, China
| | - Feng Duan
- National Engineering Research Center of green recycling for strategic metal resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Chemistry & Chemical Engineering Data Center, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chunlei Su
- National Engineering Research Center of green recycling for strategic metal resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Chemistry & Chemical Engineering Data Center, Chinese Academy of Sciences, Beijing, 100190, China
| | - Haibo Li
- National Engineering Research Center of green recycling for strategic metal resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Chemistry & Chemical Engineering Data Center, Chinese Academy of Sciences, Beijing, 100190, China
| | - Renqiang Cao
- National Engineering Research Center of green recycling for strategic metal resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Chemistry & Chemical Engineering Data Center, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jingya Yin
- National Engineering Research Center of green recycling for strategic metal resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Mingjie Wei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Hongbin Cao
- Department of Chemistry, Tianjin University, Tianjin, 300072, China
- National Engineering Research Center of green recycling for strategic metal resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
- Chemistry & Chemical Engineering Data Center, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
2
|
Gan B, Peng LE, Liu W, Zhang L, Wang LA, Long L, Guo H, Song X, Yang Z, Tang CY. Ultra-permeable silk-based polymeric membranes for vacuum-driven nanofiltration. Nat Commun 2024; 15:8656. [PMID: 39368977 PMCID: PMC11455960 DOI: 10.1038/s41467-024-53042-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024] Open
Abstract
Nanofiltration (NF) membranes are commonly supplied in spiral-wound modules, resulting in numerous drawbacks for practical applications (e.g., high operating pressure/pressure drop/costs). Vacuum-driven NF could be a promising and low-cost alternative by utilizing simple components and operating under an ultra-low vacuum pressure (<1 bar). Nevertheless, existing commercial membranes are incapable of achieving practically relevant water flux in such a system. Herein, we fabricated a silk-based membrane with a crumpled and defect-free rejection layer, showing water permeance of 96.2 ± 10 L m-2 h-1 bar-1 and a Na2SO4 rejection of 96.0 ± 0.6% under cross-flow filtration mode. In a vacuum-driven system, the membrane demonstrates a water flux of 56.8 ± 7.1 L m-2 h-1 at a suction pressure of 0.9 bar and high removal rate against various contaminants. Through analysis, silk-based ultra-permeable membranes may offer close to 80% reduction in specific energy consumption and greenhouse gas emissions compared to a commercial benchmark, holding great promise for advancing a more energy-efficient and greener water treatment process and paving the avenue for practical application in real industrial settings.
Collapse
Affiliation(s)
- Bowen Gan
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Lu Elfa Peng
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Wenyu Liu
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Lingyue Zhang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Li Ares Wang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Li Long
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Hao Guo
- Institute of Environment and Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Xiaoxiao Song
- Centre for Membrane and Water Science and Technology, Ocean College, Zhejiang University of Technology, Hangzhou, China
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
3
|
Wu B, Song Z, Xiang Y, Sun H, Yao H, Chen J. Desalination Performance of MoS 2 Membranes with Different Single-Pore Sizes: A Molecular Dynamics Simulation Study. ACS OMEGA 2024; 9:22851-22857. [PMID: 38826545 PMCID: PMC11137718 DOI: 10.1021/acsomega.4c01208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 06/04/2024]
Abstract
Utilizing molecular dynamics simulations, we examined how varying pore sizes affect the desalination capabilities of MoS2 membranes while keeping the total pore area constant. The total pore area within a MoS2 nanosheet was maintained at 200 Å2, and the single-pore areas were varied, approximately 20, 30, 40, 50, and 60 Å2. By comparing the water flux and ion rejection rates, we identified the optimal single-pore area for MoS2 membrane desalination. Our simulation results revealed that as the single-pore area expanded, the water flux increased, the velocity of water molecules passing the pores accelerated, the energy barrier decreased, and the number of water molecules within the pores rose, particularly between 30 and 40 Å2. Balancing water flux and rejection rates, we found that a MoS2 membrane with a single-pore area of 40 Å2 offered the most effective water treatment performance. Furthermore, the ion rejection rate of MoS2 membranes was lower for ions with lower valences. This was attributed to the fact that higher-valence ions possess greater masses and radii, leading to slower transmembrane rates and higher transmembrane energy barriers. These insights may serve as theoretical guidance for future applications of MoS2 membranes in water treatment.
Collapse
Affiliation(s)
- Bin Wu
- College
of Mathematics and Computer Science, College of Optical, Mechanical
and Electrical Engineering, Zhejiang A&F
University, Lin’an, Hangzhou 311300, China
| | - Zailing Song
- College
of Mathematics and Computer Science, College of Optical, Mechanical
and Electrical Engineering, Zhejiang A&F
University, Lin’an, Hangzhou 311300, China
| | - Yuanyi Xiang
- Radiation
Monitoring Technical Center of Ministry of Ecology and Environment,
State Environmental Protection Key Laboratory of Radiation Monitoring, Key Laboratory of Radiation Monitoring of Zhejiang
Province, Hangzhou 310012, China
| | - Haili Sun
- Zhejiang
GuoFu Environmental Technology Co., Ltd, Hangzhou 311300, China
| | - Haiyun Yao
- Radiation
Monitoring Technical Center of Ministry of Ecology and Environment,
State Environmental Protection Key Laboratory of Radiation Monitoring, Key Laboratory of Radiation Monitoring of Zhejiang
Province, Hangzhou 310012, China
| | - Junlang Chen
- College
of Mathematics and Computer Science, College of Optical, Mechanical
and Electrical Engineering, Zhejiang A&F
University, Lin’an, Hangzhou 311300, China
| |
Collapse
|
4
|
Sarkar P, Wu C, Yang Z, Tang CY. Empowering ultrathin polyamide membranes at the water-energy nexus: strategies, limitations, and future perspectives. Chem Soc Rev 2024; 53:4374-4399. [PMID: 38529541 DOI: 10.1039/d3cs00803g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Membrane-based separation is one of the most energy-efficient methods to meet the growing need for a significant amount of fresh water. It is also well-known for its applications in water treatment, desalination, solvent recycling, and environmental remediation. Most typical membranes used for separation-based applications are thin-film composite membranes created using polymers, featuring a top selective layer generated by employing the interfacial polymerization technique at an aqueous-organic interface. In the last decade, various manufacturing techniques have been developed in order to create high-specification membranes. Among them, the creation of ultrathin polyamide membranes has shown enormous potential for achieving a significant increase in the water permeation rate, translating into major energy savings in various applications. However, this great potential of ultrathin membranes is greatly hindered by undesired transport phenomena such as the geometry-induced "funnel effect" arising from the substrate membrane, severely limiting the actual permeation rate. As a result, the separation capability of ultrathin membranes is still not fully unleashed or understood, and a critical assessment of their limitations and potential solutions for future studies is still lacking. Here, we provide a summary of the latest developments in the design of ultrathin polyamide membranes, which have been achieved by controlling the interfacial polymerization process and utilizing a number of novel manufacturing processes for ionic and molecular separations. Next, an overview of the in-depth assessment of their limitations resulting from the substrate membrane, along with potential solutions and future perspectives will be covered in this review.
Collapse
Affiliation(s)
- Pulak Sarkar
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Chenyue Wu
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
5
|
Yeszhanov AB, Korolkov IV, Güven O, Melnikova GB, Dosmagambetova SS, Borissenko AN, Nurkassimov AK, Kassymzhanov MT, Zdorovets MV. Effect of hydrophobized PET TeMs membrane pore-size on saline water treatment by direct contact membrane distillation. RSC Adv 2024; 14:4034-4042. [PMID: 38288145 PMCID: PMC10823361 DOI: 10.1039/d3ra07475g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024] Open
Abstract
This paper describes the desalination process by membrane distillation (MD) using track-etched membranes (TeMs). Hydrophobic track-etched membranes based on poly(ethylene terephthalate) (PET TeMs) with pore diameters from 700 to 1300 nm were prepared by UV-initiated graft polymerization of lauryl methacrylate (LMA) inside the nanochannels. Modified PET TeMs were investigated by Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and contact wetting angle (CA) measurements. Hydrophobic PET TeMs were tested for treating saline solutions of different concentrations by the direct contact membrane distillation (DCMD) method. The influence of membrane pore diameter and salt solution concentration on the water flux and rejection degree were investigated. Membranes with CA 94 ± 4° were tested in the direct contact membrane distillation (DCMD) of 7.5-30 g L-1 saline solution. Hydrophobic membranes with large pore sizes showed water fluxes in the range of 1.88 to 11.70 kg m-2 h-1 with salt rejection values of up to 91.4%.
Collapse
Affiliation(s)
- Arman B Yeszhanov
- The Institute of Nuclear Physics of the Republic of Kazakhstan 050032 Almaty Kazakhstan
- Laboratory of Engineering Profile, L. N. Gumilyov Eurasian National University 010008 Astana Kazakhstan
| | - Ilya V Korolkov
- The Institute of Nuclear Physics of the Republic of Kazakhstan 050032 Almaty Kazakhstan
- Laboratory of Engineering Profile, L. N. Gumilyov Eurasian National University 010008 Astana Kazakhstan
| | - Olgun Güven
- Department of Chemistry, Hacettepe University 06800 Ankara Turkey
| | - Galina B Melnikova
- A. V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus 220072 Minsk Belarus
| | - Saule S Dosmagambetova
- Laboratory of Engineering Profile, L. N. Gumilyov Eurasian National University 010008 Astana Kazakhstan
| | | | - A K Nurkassimov
- JSC "Park of Nuclear Technologies" Kurchatova Str. 18/1 Kurchatov Kazakhstan
| | | | - Maxim V Zdorovets
- The Institute of Nuclear Physics of the Republic of Kazakhstan 050032 Almaty Kazakhstan
- Laboratory of Engineering Profile, L. N. Gumilyov Eurasian National University 010008 Astana Kazakhstan
| |
Collapse
|
6
|
Long L, Peng LE, Zhou S, Gan Q, Li X, Jiang J, Han J, Zhang X, Guo H, Tang CY. NaHCO 3 addition enhances water permeance and Ca/haloacetic acids selectivity of nanofiltration membranes for drinking water treatment. WATER RESEARCH 2023; 242:120255. [PMID: 37356158 DOI: 10.1016/j.watres.2023.120255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
The existence of disinfection by-products such as haloacetic acids (HAAs) in drinking water severely threatens water safety and public health. Nanofiltration (NF) is a promising strategy to remove HAAs for clean water production. However, NF often possesses overhigh rejection of essential minerals such as calcium. Herein, we developed highly selective NF membranes with tailored surface charge and pore size for efficient rejection of HAAs and high passage of minerals. The NF membranes were fabricated through interfacial polymerization (IP) with NaHCO3 as an additive. The NaHCO3-tailored NF membranes exhibited high water permeance up to ∼24.0 L m - 2 h - 1 bar-1 (more than doubled compared with the control membrane) thanks to the formation of stripe-like features and enlarged pore size. Meanwhile, the tailored membranes showed enhanced negative charge, which benefitted their rejection of HAAs and passage of Ca and Mg. The higher rejection of HAAs (e.g., > 90%) with the lower rejection of minerals (e.g., < 30% for Ca) allowed the NF membranes to achieve higher minerals/HAAs selectivity, which was significantly higher than those of commercially available NF membranes. The simultaneously enhanced membrane performance and higher minerals/HAAs selectivity would greatly boost water production efficiency and water quality. Our findings provide a novel insight to tailor the minerals/micropollutants selectivity of NF membranes for highly selective separation in membrane-based water treatment.
Collapse
Affiliation(s)
- Li Long
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Lu Elfa Peng
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Shenghua Zhou
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Qimao Gan
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xianhui Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jingyi Jiang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science & Technology, Clean Water Bay, Kowloon, Hong Kong SAR, China
| | - Jiarui Han
- Department of Civil and Environmental Engineering, The Hong Kong University of Science & Technology, Clean Water Bay, Kowloon, Hong Kong SAR, China
| | - Xiangru Zhang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science & Technology, Clean Water Bay, Kowloon, Hong Kong SAR, China
| | - Hao Guo
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Chuyang Y Tang
- Membrane-based Environmental & Sustainable Technology Group, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|