1
|
Chung KY, Uddin A, Page ZA. Record release of tetramethylguanidine using a green light activated photocage for rapid synthesis of soft materials. Chem Sci 2023; 14:10736-10743. [PMID: 37829029 PMCID: PMC10566505 DOI: 10.1039/d3sc04130a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/06/2023] [Indexed: 10/14/2023] Open
Abstract
Photocages have enabled spatiotemporally governed organic materials synthesis with applications ranging from tissue engineering to soft robotics. However, the reliance on high energy UV light to drive an often inefficient uncaging process limits their utility. These hurdles are particularly evident for more reactive cargo, such as strong organobases, despite their attractive potential to catalyze a range of chemical transformations. Herein, two metal-free boron dipyrromethene (BODIPY) photocages bearing tetramethylguanidine (TMG) cargo are shown to induce rapid and efficient polymerizations upon exposure to a low intensity green LED. A suite of spectroscopic characterization tools were employed to identify the underlying uncaging and polymerization mechanisms, while also determining reaction quantum efficiencies. The results are directly compared to state-of-the-art TMG-bearing ortho-nitrobenzyl and coumainylmethyl photocages, finding that the present BODIPY derivatives enable step-growth polymerizations that are >10× faster than the next best performing photocage. As a final demonstration, the inherent multifunctionality of the present BODIPY platform in releasing radicals from one half of the molecule and TMG from the other is leveraged to prepare polymers with starkly disparate physical properties. The present findings are anticipated to enable new applications of photocages in both small-molecule photochemistry for medicine and advanced manufacturing of next generation soft materials.
Collapse
Affiliation(s)
- Kun-You Chung
- Department of Chemistry, The University of Texas at Austin Austin Texas 78712 USA
| | - Ain Uddin
- Department of Chemistry, The University of Texas at Austin Austin Texas 78712 USA
| | - Zachariah A Page
- Department of Chemistry, The University of Texas at Austin Austin Texas 78712 USA
| |
Collapse
|
2
|
Shrestha P, Kand D, Weinstain R, Winter AH. meso-Methyl BODIPY Photocages: Mechanisms, Photochemical Properties, and Applications. J Am Chem Soc 2023; 145:17497-17514. [PMID: 37535757 DOI: 10.1021/jacs.3c01682] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
meso-methyl BODIPY photocages have recently emerged as an exciting new class of photoremovable protecting groups (PPGs) that release leaving groups upon absorption of visible to near-infrared light. In this Perspective, we summarize the development of these PPGs and highlight their critical photochemical properties and applications. We discuss the absorption properties of the BODIPY PPGs, structure-photoreactivity studies, insights into the photoreaction mechanism, the scope of functional groups that can be caged, the chemical synthesis of these structures, and how substituents can alter the water solubility of the PPG and direct the PPG into specific subcellular compartments. Applications that exploit the unique optical and photochemical properties of BODIPY PPGs are also discussed, from wavelength-selective photoactivation to biological studies to photoresponsive organic materials and photomedicine.
Collapse
Affiliation(s)
- Pradeep Shrestha
- Department of Chemistry, Iowa State University, Ames, Iowa 50010, United States
| | - Dnyaneshwar Kand
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Roy Weinstain
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Arthur H Winter
- Department of Chemistry, Iowa State University, Ames, Iowa 50010, United States
| |
Collapse
|
3
|
Chung KY, Page ZA. Boron-Methylated Dipyrromethene as a Green Light Activated Type I Photoinitiator for Rapid Radical Polymerizations. J Am Chem Soc 2023; 145:17912-17918. [PMID: 37540781 DOI: 10.1021/jacs.3c05373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Unimolecular (Type I) radical photoinitiators (PIs) have transformed the chemical manufacturing industry by enabling (stereo)lithography for microelectronics and emergent 3D printing technologies. However, the reliance on high energy UV-violet light (≤420 nm) restricts the end-use applications. Herein, boron-methylated dipyrromethene (methylated-BODIPY) is shown to act as a highly efficient Type I radical PI upon irradiation with low energy green light. Using a low intensity (∼4 mW/cm2) light emitting diode centered at 530 nm and a low PI concentration (0.3 mol %), acrylic-based resins were polymerized to maximum conversion in ∼10 s. Under equivalent conditions (wavelength, intensity, and PI concentration), state-of-the-art visible light PIs Ivocerin and Irgacure 784 show no appreciable polymerization. Spectroscopic characterization suggests that homolytic β-scission at the boron-carbon bond results in radical formation, which is further facilitated by accessing long-lived triplet excited states through installment of bromine. Alkylated-BODIPYs represent a new modular visible light PI platform with exciting potential to enable next generation manufacturing and biomedical applications where a spectrally discrete, low energy, and thus benign light source is required.
Collapse
Affiliation(s)
- Kun-You Chung
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zachariah A Page
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
4
|
Oh XY, Nguyen TM, Ye E, Luo HK, Singh PND, Loh XJ, Truong VX. Visible Light Degradable Acridine-Containing Polyurethanes in an Aqueous Environment. ACS Macro Lett 2023:690-696. [PMID: 37172115 DOI: 10.1021/acsmacrolett.3c00158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Light degradable polymers hold significant promise in a wide range of applications including the fabrication of optically recyclable materials, responsive coatings and adhesives, and controlled drug delivery. Here, we report the synthesis of polyurethanes that can be degraded under irradiation of visible light (≤450 nm) from commercial LED (3-15 W) light sources. The photolysis occurs in an aqueous environment via photocleavage of an acridine moiety incorporated within the backbone of the polymer chains. Analysis of the quantum yield as a function of wavelength reveals highly efficient photoreactivity at up to 440 nm activation, which is red-shifted compared to the UV-vis absorbance of the chromophore. The potential of our chemical system in biomaterials is demonstrated by the fabrication of an in situ forming hydrogel that can be degraded by visible light.
Collapse
Affiliation(s)
- Xin Yi Oh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Republic of Singapore
| | - Tuan Minh Nguyen
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Enyi Ye
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Republic of Singapore
| | - He-Kuan Luo
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Pradeep N D Singh
- Department of Chemistry, Indian Institute of Technology (IIT), Kharagpur, West Bengal 721302, India
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Vinh Xuan Truong
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| |
Collapse
|