1
|
David TI, Pestov NB, Korneenko TV, Barlev NA. Non-Immunoglobulin Synthetic Binding Proteins for Oncology. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1232-1247. [PMID: 37770391 DOI: 10.1134/s0006297923090043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 09/30/2023]
Abstract
Extensive application of technologies like phage display in screening peptide and protein combinatorial libraries has not only facilitated creation of new recombinant antibodies but has also significantly enriched repertoire of the protein binders that have polypeptide scaffolds without homology to immunoglobulins. These innovative synthetic binding protein (SBP) platforms have grown in number and now encompass monobodies/adnectins, DARPins, lipocalins/anticalins, and a variety of miniproteins such as affibodies and knottins, among others. They serve as versatile modules for developing complex affinity tools that hold promise in both diagnostic and therapeutic settings. An optimal scaffold typically has low molecular weight, minimal immunogenicity, and demonstrates resistance against various challenging conditions, including proteolysis - making it potentially suitable for peroral administration. Retaining functionality under reducing intracellular milieu is also advantageous. However, paramount to its functionality is the scaffold's ability to tolerate mutations across numerous positions, allowing for the formation of a sufficiently large target binding region. This is achieved through the library construction, screening, and subsequent expression in an appropriate system. Scaffolds that exhibit high thermodynamic stability are especially coveted by the developers of new SBPs. These are steadily making their way into clinical settings, notably as antagonists of oncoproteins in signaling pathways. This review surveys the diverse landscape of SBPs, placing particular emphasis on the inhibitors targeting the oncoprotein KRAS, and highlights groundbreaking opportunities for SBPs in oncology.
Collapse
Affiliation(s)
- Temitope I David
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
- Laboratory of Molecular Oncology, Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Nikolay B Pestov
- Institute of Biomedical Chemistry, Moscow, 119121, Russia.
- Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy of Sciences, Moscow, 108819, Russia
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Tatyana V Korneenko
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - Nikolai A Barlev
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
- Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Russian Academy of Sciences, Moscow, 108819, Russia
- Institute of Cytology Russian Academy of Sciences, St.-Petersburg, 194064, Russia
- School of Medicine, Nazarbayev University, Astana, 010000, Kazakhstan
| |
Collapse
|
2
|
Antonouli S, Di Nisio V, Messini C, Daponte A, Rajender S, Anifandis G. A comprehensive review and update on human fertility cryopreservation methods and tools. Front Vet Sci 2023; 10:1151254. [PMID: 37143497 PMCID: PMC10151698 DOI: 10.3389/fvets.2023.1151254] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/29/2023] [Indexed: 05/06/2023] Open
Abstract
The broad conceptualization of fertility preservation and restoration has become already a major concern in the modern western world since a large number of individuals often face it in the everyday life. Driven by different health conditions and/or social reasons, a variety of patients currently rely on routinely and non-routinely applied assisted reproductive technologies, and mostly on the possibility to cryopreserve gametes and/or gonadal tissues for expanding their reproductive lifespan. This review embraces the data present in human-focused literature regarding the up-to-date methodologies and tools contemporarily applied in IVF laboratories' clinical setting of the oocyte, sperm, and embryo cryopreservation and explores the latest news and issues related to the optimization of methods used in ovarian and testicular tissue cryopreservation.
Collapse
Affiliation(s)
- Sevastiani Antonouli
- Department of Clinical Chemistry, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Valentina Di Nisio
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Christina Messini
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece
| | - Alexandros Daponte
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece
| | - Singh Rajender
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India
| | - George Anifandis
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece
| |
Collapse
|