1
|
Jia S, Zhang L, Liu H, Wang R, Jin X, Wu L, Song X, Tan X, Ma X, Feng J, Zhu Q, Kang X, Qian Q, Sun X, Han B. Upgrading of nitrate to hydrazine through cascading electrocatalytic ammonia production with controllable N-N coupling. Nat Commun 2024; 15:8567. [PMID: 39362840 PMCID: PMC11450151 DOI: 10.1038/s41467-024-52825-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024] Open
Abstract
Nitrogen oxides (NOx) play important roles in the nitrogen cycle system and serve as renewable nitrogen sources for the synthesis of value-added chemicals driven by clean electricity. However, it is challenging to achieve selective conversion of NOx to multi-nitrogen products (e.g., N2H4) via precise construction of a single N-N bond. Herein, we propose a strategy for NOx-to-N2H4 under ambient conditions, involving electrochemical NOx upgrading to NH3, followed by ketone-mediated NH3 to N2H4. It can achieve an impressive overall NOx-to-N2H4 selectivity of 88.7%. We elucidate mechanistic insights into the ketone-mediated N-N coupling process. Diphenyl ketone (DPK) emerges as an optimal mediator, facilitating controlled N-N coupling, owing to its steric and conjugation effects. The acetonitrile solvent stabilizes and activates key imine intermediates through hydrogen bonding. Experimental results reveal that Ph2CN* intermediates formed on WO3 catalysts acted as pivotal monomers to drive controlled N-N coupling with high selectivity, facilitated by lattice-oxygen-mediated dehydrogenation. Additionally, both WO3 catalysts and DPK mediators exhibit favorable reusability, offering promise for green N2H4 synthesis.
Collapse
Affiliation(s)
- Shunhan Jia
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Libing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Hanle Liu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
- College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Ruhan Wang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiangyuan Jin
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Limin Wu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xinning Song
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xingxing Tan
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Xiaodong Ma
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Jiaqi Feng
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- College of Chemical Engineering and Environment, China University of Petroleum, 102249, Beijing, China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xinchen Kang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qingli Qian
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaofu Sun
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China.
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 200062, Shanghai, China.
| |
Collapse
|
2
|
Wu J, Wang S, Ji R, Kai D, Kong J, Liu S, Thitsartarn W, Tan BH, Chua MH, Xu J, Loh XJ, Yan Q, Zhu Q. In Situ Characterization Techniques for Electrochemical Nitrogen Reduction Reaction. ACS NANO 2024. [PMID: 39092833 DOI: 10.1021/acsnano.4c05956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The electrochemical reduction of nitrogen to produce ammonia is pivotal in modern society due to its environmental friendliness and the substantial influence that ammonia has on food, chemicals, and energy. However, the current electrochemical nitrogen reduction reaction (NRR) mechanism is still imperfect, which seriously impedes the development of NRR. In situ characterization techniques offer insight into the alterations taking place at the electrode/electrolyte interface throughout the NRR process, thereby helping us to explore the NRR mechanism in-depth and ultimately promote the development of efficient catalytic systems for NRR. Herein, we introduce the popular theories and mechanisms of the electrochemical NRR and provide an extensive overview on the application of various in situ characterization approaches for on-site detection of reaction intermediates and catalyst transformations during electrocatalytic NRR processes, including different optical techniques, X-ray-based techniques, electron microscopy, and scanning probe microscopy. Finally, some major challenges and future directions of these in situ techniques are proposed.
Collapse
Affiliation(s)
- Jing Wu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore
| | - Suxi Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Rong Ji
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Dan Kai
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Junhua Kong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Songlin Liu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Warintorn Thitsartarn
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Beng Hoon Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Ming Hui Chua
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Jianwei Xu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Material Science and Engineering, National University of Singapore, 9 Engineering Drive 1, #03-09 EA, Singapore 117575, Republic of Singapore
| | - Qingyu Yan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore
| | - Qiang Zhu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Republic of Singapore
| |
Collapse
|
3
|
Chen K, Shen P, Zhang N, Ma D, Chu K. Electrocatalytic NO Reduction to NH 3 on Mo 2C Nanosheets. Inorg Chem 2023; 62:653-658. [PMID: 36594725 DOI: 10.1021/acs.inorgchem.2c03714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Electrocatalytic reduction of NO to NH3 (NORR) emerges as a promising route for achieving harmful NO treatment and sustainable NH3 generation. In this work, we first report that Mo2C is an active and selective NORR catalyst. The developed Mo2C nanosheets deliver a high NH3 yield rate of 122.7 μmol h-1 cm-2 with an NH3 Faradaic efficiency of 86.3% at -0.4 V. Theoretical computations unveil that the surface-terminated Mo atoms on Mo2C can effectively activate NO, promote protonation energetics, and suppress proton adsorption, resulting in high NORR activity and selectivity of Mo2C.
Collapse
Affiliation(s)
- Kai Chen
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Peng Shen
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Nana Zhang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Dongwei Ma
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
| | - Ke Chu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
4
|
Li X, Shen P, Li X, Ma D, Chu K. Sub-nm RuO x Clusters on Pd Metallene for Synergistically Enhanced Nitrate Electroreduction to Ammonia. ACS NANO 2023; 17:1081-1090. [PMID: 36630658 DOI: 10.1021/acsnano.2c07911] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The electrochemical nitrate reduction to ammonia reaction (NO3RR) has emerged as an appealing route for achieving both wastewater treatment and ammonia production. Herein, sub-nm RuOx clusters anchored on a Pd metallene (RuOx/Pd) are reported as a highly effective NO3RR catalyst, delivering a maximum NH3-Faradaic efficiency of 98.6% with a corresponding NH3 yield rate of 23.5 mg h-1 cm-2 and partial a current density of 296.3 mA cm-2 at -0.5 V vs RHE. Operando spectroscopic characterizations combined with theoretical computations unveil the synergy of RuOx and Pd to enhance the NO3RR energetics through a mechanism of hydrogen spillover and hydrogen-bond interactions. In detail, RuOx activates NO3- to form intermediates, while Pd dissociates H2O to generate *H, which spontaneously migrates to the RuOx/Pd interface via a hydrogen spillover process. Further hydrogen-bond interactions between spillovered *H and intermediates makes spillovered *H desorb from the RuOx/Pd interface and participate in the intermediate hydrogenation, contributing to the enhanced activity of RuOx/Pd for NO3--to-NH3 conversion.
Collapse
Affiliation(s)
- Xiaotian Li
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
| | - Peng Shen
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
| | - Xingchuan Li
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
| | - Dongwei Ma
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Ke Chu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
| |
Collapse
|
5
|
Lv Z, Hao L, Yao Z, Li W, Robertson AW, Sun Z. Rigorous Assessment of Cl - -Based Anolytes on Electrochemical Ammonia Synthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204205. [PMID: 36253143 PMCID: PMC9685447 DOI: 10.1002/advs.202204205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Many challenges in the electrochemical synthesis of ammonia have been recognized with most effort focused on delineating false positives resulting from unidentified sources of nitrogen. However, the influence of oxidizing anolytes on the crossover and oxidization of ammonium during the electrolysis reaction remains unexplored. Here it is reported that the use of analytes containing halide ions (Cl- and Br- ) can rapidly convert the ammonium into N2 , which further intensifies the crossover of ammonium. Moreover, the extent of migration and oxidation of ammonium is found to be closely associated with external factors, such as applied potentials and the concentration of Cl- . These findings demonstrate the profound impact of oxidizing anolytes on the electrochemical synthesis of ammonia. Based on these results, many prior reported ammonia yield rates are calibrated. This work emphasizes the significance of avoiding selection of anolytes that can oxidize ammonium, which is believed to promote further progress in electrochemical nitrogen fixation.
Collapse
Affiliation(s)
- Zengxiang Lv
- State Key Laboratory of Organic‐Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Leiduan Hao
- State Key Laboratory of Organic‐Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Zhibo Yao
- State Key Laboratory of Organic‐Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Weixiang Li
- State Key Laboratory of Organic‐Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029P. R. China
| | | | - Zhenyu Sun
- State Key Laboratory of Organic‐Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029P. R. China
| |
Collapse
|
6
|
Hui X, Wang L, Yao Z, Hao L, Sun Z. Recent progress of photocatalysts based on tungsten and related metals for nitrogen reduction to ammonia. Front Chem 2022; 10:978078. [PMID: 36072702 PMCID: PMC9441816 DOI: 10.3389/fchem.2022.978078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/15/2022] [Indexed: 11/22/2022] Open
Abstract
Photocatalytic nitrogen reduction reaction (NRR) to ammonia holds a great promise for substituting the traditional energy-intensive Haber–Bosch process, which entails sunlight as an inexhaustible resource and water as a hydrogen source under mild conditions. Remarkable progress has been achieved regarding the activation and solar conversion of N2 to NH3 with the rapid development of emerging photocatalysts, but it still suffers from low efficiency. A comprehensive review on photocatalysts covering tungsten and related metals as well as their broad ranges of alloys and compounds is lacking. This article aims to summarize recent advances in this regard, focusing on the strategies to enhance the photocatalytic performance of tungsten and related metal semiconductors for the NRR. The fundamentals of solar-to-NH3 photocatalysis, reaction pathways, and NH3 quantification methods are presented, and the concomitant challenges are also revealed. Finally, we cast insights into the future development of sustainable NH3 production, and highlight some potential directions for further research in this vibrant field.
Collapse
Affiliation(s)
| | | | | | | | - Zhenyu Sun
- *Correspondence: Leiduan Hao, ; Zhenyu Sun,
| |
Collapse
|
7
|
Chen Z, Liu C, Sun L, Wang T. Progress of Experimental and Computational Catalyst Design for Electrochemical Nitrogen Fixation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zhe Chen
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
- Department of Chemistry, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province 310027, China
| | - Chunli Liu
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| | - Tao Wang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| |
Collapse
|
8
|
Shen P, Li X, Luo Y, Guo Y, Zhao X, Chu K. High-Efficiency N 2 Electroreduction Enabled by Se-Vacancy-Rich WSe 2-x in Water-in-Salt Electrolytes. ACS NANO 2022; 16:7915-7925. [PMID: 35451836 DOI: 10.1021/acsnano.2c00596] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Electrocatalytic nitrogen reduction reaction (NRR) is a promising approach for renewable NH3 production, while developing the NRR electrocatalysis systems with both high activity and selectivity remains a significant challenge. Herein, we combine catalyst and electrolyte engineering to achieve a high-efficiency NRR enabled by a Se-vacancy-rich WSe2-x catalyst in water-in-salt electrolyte (WISE). Extensive characterizations, theoretical calculations, and in situ X-ray photoelectron/Raman spectroscopy reveal that WISE ensures suppressed H2 evolution, improved N2 affinity on the catalyst surface, as well as an enhanced π-back-donation ability of active sites, thereby promoting both activity and selectivity for the NRR. As a result, an excellent faradaic efficiency of 62.5% and NH3 yield of 181.3 μg h-1 mg-1 is achieved with WSe2-x in 12 m LiClO4, which is among the highest NRR performances reported to date.
Collapse
Affiliation(s)
- Peng Shen
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xingchuan Li
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yaojing Luo
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yali Guo
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xiaolin Zhao
- National Engineering Laboratory for Electric Vehicles, Beijing Institute of Technology, Beijing 100081, China
| | - Ke Chu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
9
|
Yang P, Guo H, Zhang F, Zhou Y, Niu X. 电催化合成氨反应原位表征技术研究进展. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Li H, Chen S, He M, Jin J, Zhu K, Peng F, Gao F. Self-supported V-doped NiO electrocatalyst achieving a high ammonia yield of 30.55 μg h −1 cm −2 under ambient conditions. NEW J CHEM 2022. [DOI: 10.1039/d2nj02867k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vanadium doped nickel oxide grows on nickel foam exhibits a splendid NH3 yield and a high faradaic efficiency.
Collapse
Affiliation(s)
- Heen Li
- Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Shuheng Chen
- Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Maoyue He
- Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Jing Jin
- Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Kunling Zhu
- Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Fei Peng
- Analyses and Testing Center, Hebei Normal University of Science and Technology, Qinhuangdao 066000, P. R. China
| | - Faming Gao
- Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, P. R. China
| |
Collapse
|