1
|
Dmour I. Absorption enhancement strategies in chitosan-based nanosystems and hydrogels intended for ocular delivery: Latest advances for optimization of drug permeation. Carbohydr Polym 2024; 343:122486. [PMID: 39174104 DOI: 10.1016/j.carbpol.2024.122486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024]
Abstract
Ophthalmic diseases can be presented as acute diseases like allergies, ocular infections, etc., or chronic ones that can be manifested as a result of systemic disorders, like diabetes mellitus, thyroid, rheumatic disorders, and others. Chitosan (CS) and its derivatives have been widely investigated as nanocarriers in the delivery of drugs, genes, and many biological products. The biocompatibility and biodegradability of CS made it a good candidate for ocular delivery of many ingredients, including immunomodulating agents, antibiotics, ocular hypertension medications, etc. CS-based nanosystems have been successfully reported to modulate ocular diseases by penetrating biological ocular barriers and targeting and controlling drug release. This review provides guidance to drug delivery formulators on the most recently published strategies that can enhance drug permeation to the ocular tissues in CS-based nanosystems, thus improving therapeutic effects through enhancing drug bioavailability. This review will highlight the main ocular barriers to drug delivery observed in the nano-delivery system. In addition, the CS physicochemical properties that contribute to formulation aspects are discussed. It also categorized the permeation enhancement strategies that can be optimized in CS-based nanosystems into four aspects: CS-related physicochemical properties, formulation components, fabrication conditions, and adopting a novel delivery system like implants, inserts, etc. as described in the published literature within the last ten years. Finally, challenges encountered in CS-based nanosystems and future perspectives are mentioned.
Collapse
Affiliation(s)
- Isra Dmour
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan.
| |
Collapse
|
2
|
Khalil A, Barras A, Boukherroub R, Tseng CL, Devos D, Burnouf T, Neuhaus W, Szunerits S. Enhancing paracellular and transcellular permeability using nanotechnological approaches for the treatment of brain and retinal diseases. NANOSCALE HORIZONS 2023; 9:14-43. [PMID: 37853828 DOI: 10.1039/d3nh00306j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Paracellular permeability across epithelial and endothelial cells is, in large part, regulated by apical intercellular junctions also referred to as tight junctions (TJs). These junctions contribute to the spatial definition of different tissue compartments within organisms, separating them from the outside world as well as from inner compartments, with their primary physiological role of maintaining tissue homeostasis. TJs restrict the free, passive diffusion of ions and hydrophilic small molecules through paracellular clefts and are important for appropriate cell polarization and transporter protein localisation, supporting the controlled transcellular diffusion of smaller and larger hydrophilic as well as hydrophobic substances. This traditional diffusion barrier concept of TJs has been challenged lately, owing to a better understanding of the components that are associated with TJs. It is now well-established that mutations in TJ proteins are associated with a range of human diseases and that a change in the membrane fluidity of neighbouring cells can open possibilities for therapeutics to cross intercellular junctions. Nanotechnological approaches, exploiting ultrasound or hyperosmotic agents and permeation enhancers, are the paradigm for achieving enhanced paracellular diffusion. The other widely used transport route of drugs is via transcellular transport, allowing the passage of a variety of pro-drugs and nanoparticle-encapsulated drugs via different mechanisms based on receptors and others. For a long time, there was an expectation that lipidic nanocarriers and polymeric nanostructures could revolutionize the field for the delivery of RNA and protein-based therapeutics across different biological barriers equipped with TJs (e.g., blood-brain barrier (BBB), retina-blood barrier (RBB), corneal TJs, etc.). However, only a limited increase in therapeutic efficiency has been reported for most systems until now. The purpose of this review is to explore the reasons behind the current failures and to examine the emergence of synthetic and cell-derived nanomaterials and nanotechnological approaches as potential game-changers in enhancing drug delivery to target locations both at and across TJs using innovative concepts. Specifically, we will focus on recent advancements in various nanotechnological strategies enabling the bypassing or temporally opening of TJs to the brain and to the retina, and discuss their advantages and limitations.
Collapse
Affiliation(s)
- Asmaa Khalil
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France.
| | - Alexandre Barras
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France.
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France.
| | - Ching-Li Tseng
- Taipei Medical University, Graduate Institute of Biomedical Materials and Tissue Engineering (GIBMTE), New Taipei City 235603, Taiwan
- Taipei Medical University, International PhD Program in Biomedical Engineering (IPBME), New Taipei City 235603, Taiwan
| | - David Devos
- University Lille, CHU-Lille, Inserm, U1172, Lille Neuroscience & Cognition, LICEND, Lille, France
| | - Thierry Burnouf
- Taipei Medical University, Graduate Institute of Biomedical Materials and Tissue Engineering (GIBMTE), New Taipei City 235603, Taiwan
- Taipei Medical University, International PhD Program in Biomedical Engineering (IPBME), New Taipei City 235603, Taiwan
| | - Winfried Neuhaus
- AIT - Austrian Institute of Technology GmbH, Center Health and Bioresources, Competence Unit Molecular Diagnostics, 1210 Vienna, Austria
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, 3500 Krems, Austria
| | - Sabine Szunerits
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France.
| |
Collapse
|
3
|
Lee H, Noh H. Advancements in Nanogels for Enhanced Ocular Drug Delivery: Cutting-Edge Strategies to Overcome Eye Barriers. Gels 2023; 9:718. [PMID: 37754399 PMCID: PMC10529109 DOI: 10.3390/gels9090718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/29/2023] [Accepted: 09/02/2023] [Indexed: 09/28/2023] Open
Abstract
Nanomedicine in gel or particle formation holds considerable potential for enhancing passive and active targeting within ocular drug delivery systems. The complex barriers of the eye, exemplified by the intricate network of closely connected tissue structures, pose significant challenges for drug administration. Leveraging the capability of engineered nanomedicine offers a promising approach to enhance drug penetration, particularly through active targeting agents such as protein peptides and aptamers, which facilitate targeted release and heightened bioavailability. Simultaneously, DNA carriers have emerged as a cutting-edge class of active-targeting structures, connecting active targeting agents and illustrating their potential in ocular drug delivery applications. This review aims to consolidate recent findings regarding the optimization of various nanoparticles, i.e., hydrogel-based systems, incorporating both passive and active targeting agents for ocular drug delivery, thereby identifying novel mechanisms and strategies. Furthermore, the review delves into the potential application of DNA nanostructures, exploring their role in the development of targeted drug delivery approaches within the field of ocular therapy.
Collapse
Affiliation(s)
| | - Hyeran Noh
- Department of Optometry, Seoul National University of Science and Technology, Gongnung-ro 232, Nowon-gu, Seoul 01811, Republic of Korea;
| |
Collapse
|
4
|
Ejaz S, Ali SMA, Zarif B, Shahid R, Ihsan A, Noor T, Imran M. Surface engineering of chitosan nanosystems and the impact of functionalized groups on the permeability of model drug across intestinal tissue. Int J Biol Macromol 2023; 242:124777. [PMID: 37169055 DOI: 10.1016/j.ijbiomac.2023.124777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Surface attributes of nanocarriers are crucial to determine their fate in the gastrointestinal (GI) tract. Herein, we have functionalized chitosan with biochemical moieties including rhamnolipid (RL), curcumin (Cur) and mannose (M). FTIR spectra of functionalized chitosan nanocarriers (FCNCs) demonstrated successful conjugation of M, Cur and RL. The functional moieties influenced the entrapment of model drug i.e., coumarin-6 (C6) in FCNCs with payload-hosting and non-leaching behavior i.e., >91 ± 2.5 % with negligible cumulative release of <2 % for 5 h in KREB, which was further verified in the simulated gastric and intestinal fluids. Consequently, substantial difference in the size and zeta potential was observed for FCNCs with different biochemical moieties. Scanning electron microscopy and atomic force microscopy of FCNCs displayed well-dispersed and spherical morphology. In addition, in vitro cytotoxicity results of FCNCs confirmed their hemocompatibility. In the ex-vivo rat intestinal models, FCNCs displayed a time-dependent-phenomenon in cellular-uptake and adherence. However, apparent-permeability-coefficient and flux values were in the order of C6-RL-FCNCs > C6-M-FCNCs > C6-Cur-FCNCs = C6-CNCs > Free-C6. Furthermore, the transepithelial electrical resistance revealed the FCNCs mediated recovery of membrane-integrity with reversible tight junctions opening. Thus, FCNCs have the potential to overcome the poor solubility and/or permeability issues of active pharmaceutical ingredients and transform the impact of functionalized-nanomedicines in the biomedical industry.
Collapse
Affiliation(s)
- Sadaf Ejaz
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan
| | - Syed Muhammad Afroz Ali
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan
| | - Bina Zarif
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan
| | - Ramla Shahid
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan
| | - Ayesha Ihsan
- Nanobiotechnology Group, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Imran
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan.
| |
Collapse
|
5
|
Hamedinasab H, Rezayan AH, Jaafari MR, Mashreghi M, Alvandi H. The Protective Effect of N-acetylcysteine against Liposome and Chitosan-Induced Cytotoxicity. J Microencapsul 2023:1-9. [PMID: 37147916 DOI: 10.1080/02652048.2023.2209646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
AIM N-acetylcysteine (NAC) as an antioxidant used to moderate liposome and chitosan-Induced cell cytotoxicity at their high concentrations. METHODS liposome and chitosan were prepared and characterized. The cytotoxicity effect of liposome with NAC-loaded liposome (liposome-NAC) and chitosan solution with chitosan solution containing NAC (chitosan-NAC) on the A549 cell line was compared. RESULTS Particle size, zeta potential, and NAC drug release for liposome were 125.9 ± 8 nm, -34.7 ± 2.1 mv, and 51.1% ±3%, respectively. SEM (Scanning electron microscope) and TEM (Transmission electron microscope) indicated spherical shape of liposome. Encapsulation efficiency of liposome-NAC was 12% ±0.98%. Particle size and zeta potential for chitosan solution were 361 ± 11.3 nm and 10.8 ± 1.52 mv. Stability storage study indicated good stability of chitosan and liposome. Cell viability of liposome-NAC and chitosan-NAC significantly was higher than liposome and chitosan at all four concentrations. CONCLUSION NAC has a protective effect against liposome and chitosan-induced cell toxicity.
Collapse
Affiliation(s)
- Hamed Hamedinasab
- Division of Nanobiotechnology, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran, Iran
| | - Ali Hossein Rezayan
- Division of Nanobiotechnology, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mashreghi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hale Alvandi
- Division of Nanobiotechnology, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran, Iran
| |
Collapse
|
6
|
Lagreca E, Vecchione R, Di Cicco C, D’Aria F, La Rocca A, De Gregorio E, Izzo L, Crispino R, Mollo V, Bedini E, Imparato G, Ritieni A, Giancola C, Netti PA. Physicochemical and in vitro biological validation of food grade secondary oil in water nanoemulsions with enhanced mucus-adhesion properties. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Kantak MN, Bharate SS. Analysis of clinical trials on biomaterial and therapeutic applications of chitosan: A review. Carbohydr Polym 2022; 278:118999. [PMID: 34973801 DOI: 10.1016/j.carbpol.2021.118999] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023]
Abstract
Chitosan is a modified natural carbohydrate polymer derived from chitin that occurs in many natural sources. It has a diverse range of applications in medical and pharmaceutical sciences. Its primary and permitted use is biomaterial in medical devices. Chitosan and its derivatives also find utility in pharmaceuticals as an excipient, drug carrier, or therapeutic agent. The USFDA has approved chitosan usage as a biomaterial but not for pharmaceutical use, primarily because of the concerns over its source, purity, and immunogenicity. A large number of clinical studies are underway on chitosan-based materials/ products because of their diverse applications. Herein, we analyze clinical studies to understand their clinical usage portfolio. Our analysis shows that >100 clinical studies are underway to investigate the safety/efficacy of chitosan or its biomaterials/ nanoparticles, comprising ~95% interventional and ~ 5% observational studies. The regulatory considerations that limit the use of chitosan in pharmaceuticals are also deliberated. TEASER: Clinical Trials of Chitosan.
Collapse
Affiliation(s)
- Maithili N Kantak
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Sonali S Bharate
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India.
| |
Collapse
|
8
|
Ionescu OM, Iacob AT, Mignon A, Van Vlierberghe S, Baican M, Danu M, Ibănescu C, Simionescu N, Profire L. Design, preparation and in vitro characterization of biomimetic and bioactive chitosan/polyethylene oxide based nanofibers as wound dressings. Int J Biol Macromol 2021; 193:996-1008. [PMID: 34756969 DOI: 10.1016/j.ijbiomac.2021.10.166] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/03/2021] [Accepted: 10/21/2021] [Indexed: 12/16/2022]
Abstract
Chitosan-based nanofibers (CS-NFs) are excellent artificial extracellular matrices (ECMs) due to the resemblance of CS with the glycosaminoglycans of the natural ECMs. Despite this excellent feature, the poor electrospinnability and mechanical properties of CS are responsible for important limitations in respect to its biomedical applications. To improve the CS's physico-chemical properties, new bioactive and biomimetic CS-NFs were formulated with polyethylene oxide (PEO), having incorporated different active components (ACs) with important beneficial effects for healing. Manuka honey (trophic and antimicrobial effects), propolis (antimicrobial effects), Calendula officinalis infusion (antioxidant effect, reepithelialization stimulating agent), insulin (trophic effect), and L-arginine (angiogenic effect) were selected as ACs. SEM morphology analysis revealed well-alignment, unidirectional arrays, with small diameters, no beads, and smooth surfaces for developed CS_PEO-ACs NFs. The developed NFs showed good biodegradability (NFs mats lost up to 60% of their initial weight in PBS), increased hemocompatibility (hemolytic index less than 4%), and a reduced cytotoxicity degree (cell viability degree more than 90%). In addition, significant antioxidant and antimicrobial effects were noted for the developed NFs which make them suitable for chronic wounds, due to the role of oxidative stress and infection risk in delaying normal wound healing. The most suitable for wound healing applications seems to be CS_PEO@P_C which showed an improved hemolysis index (2.92 ± 0.16%), is non-toxic (cell viability degree more than 97%), and has also significant radical scavenging effect (DPPH inhibition more than 65%). In addition, CS_PEO@P_C presents increased antimicrobial effects, more noticeably for Staphylococcus aureus strain, which is a key feature in preventing wound infection and delaying the healing process. It can be concluded that the developed CS/PEO-ACs NFs are very promising biomaterials for wound care, especially CS_PEO@P_C.
Collapse
Affiliation(s)
- Oana Maria Ionescu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy of Iași, 16 University Street, Iasi, Romania
| | - Andreea-Teodora Iacob
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy of Iași, 16 University Street, Iasi, Romania
| | - Arn Mignon
- Smart Polymeric Biomaterials, Surface and Interface Engineered Materials, Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, 3000 Leuven, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Center of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-bis, 9000 Ghent, Belgium
| | - Mihaela Baican
- Department of Pharmaceutical Physics, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy of Iași, 16 University Street, Iasi, Romania
| | - Maricel Danu
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iaşi, Mangeron Avenue 73, 700050 Iaşi, Romania; "Petru Poni" Institute of Macromolecular Chemistry, Centre of Advanced Research in Bionanoconjugates and Biopolymers, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Constanța Ibănescu
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iaşi, Mangeron Avenue 73, 700050 Iaşi, Romania; "Petru Poni" Institute of Macromolecular Chemistry, Centre of Advanced Research in Bionanoconjugates and Biopolymers, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Natalia Simionescu
- "Petru Poni" Institute of Macromolecular Chemistry, Centre of Advanced Research in Bionanoconjugates and Biopolymers, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; "Prof. Dr. Nicolae Oblu" Emergency Clinical Hospital, 2 Ateneului Street, 700309 Iasi, Romania
| | - Lenuța Profire
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy of Iași, 16 University Street, Iasi, Romania.
| |
Collapse
|
9
|
Preparation and Antimicrobial Activity of Chitosan and Its Derivatives: A Concise Review. Molecules 2021; 26:molecules26123694. [PMID: 34204251 PMCID: PMC8233993 DOI: 10.3390/molecules26123694] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the advantages presented by synthetic polymers such as strength and durability, the lack of biodegradability associated with the persistence in the environment for a long time turned the attention of researchers to natural polymers. Being biodegradable, biopolymers proved to be extremely beneficial to the environment. At present, they represent an important class of materials with applications in all economic sectors, but also in medicine. They find applications as absorbers, cosmetics, controlled drug delivery, tissue engineering, etc. Chitosan is one of the natural polymers which raised a strong interest for researchers due to some exceptional properties such as biodegradability, biocompatibility, nontoxicity, non-antigenicity, low-cost and numerous pharmacological properties as antimicrobial, antitumor, antioxidant, antidiabetic, immunoenhancing. In addition to this, the free amino and hydroxyl groups make it susceptible to a series of structural modulations, obtaining some derivatives with different biomedical applications. This review approaches the physico-chemical and pharmacological properties of chitosan and its derivatives, focusing on the antimicrobial potential including mechanism of action, factors that influence the antimicrobial activity and the activity against resistant strains, topics of great interest in the context of the concern raised by the available therapeutic options for infections, especially with resistant strains.
Collapse
|
10
|
Kumara BN, Shambhu R, Prasad KS. Why chitosan could be apt candidate for glaucoma drug delivery - An overview. Int J Biol Macromol 2021; 176:47-65. [PMID: 33581206 DOI: 10.1016/j.ijbiomac.2021.02.057] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/03/2021] [Accepted: 02/07/2021] [Indexed: 12/15/2022]
Abstract
Most of the people in the world are affected by glaucoma, which leads to irreversible blindness. Several patient friendly treatments are available, nevertheless medications lack an easy and efficient way of sustained delivery. To make the delivery with enhanced bioavailability, biodegradable and non-biodegradable polymers-based drug carriers are explored. However, ocular drug delivery issues have not been resolved yet due to less adhesiveness, poor penetration ability, pH, and temperature dependent burst releases. Chitosan is found to be effective for ocular drug delivery due to excellent physio-chemical properties in terms of overcoming the existing issues. In this review, we aim to highlight why it has been chosen and the holy grail for ocular drug delivery. Besides, we have comprehensively reviewed recent patents on chitosan as a platform for ocular drug delivery and future perspectives on factors, lacunae and challenges that need to be addressed for better ocular delivery methods for glaucoma management.
Collapse
Affiliation(s)
- B N Kumara
- Nanomaterial Research Laboratory [NMRL], Nano Division, Yenepoya Research Centre, Yenepoya [Deemed to be University], Deralakatte, Mangalore 575 018, India
| | - Rashmi Shambhu
- Department of Ophthalmology, Yenepoya Medical College, Yenepoya [Deemed to be University], Deralakatte, Mangalore 575 018, India
| | - K Sudhakara Prasad
- Nanomaterial Research Laboratory [NMRL], Nano Division, Yenepoya Research Centre, Yenepoya [Deemed to be University], Deralakatte, Mangalore 575 018, India; Centre for Nutrition Studies, Yenepoya [Deemed to be University], Deralakatte, Mangalore 575 018, India.
| |
Collapse
|
11
|
Wang S, Jin S, Shu Q, Wu S. Strategies to Get Drugs across Bladder Penetrating Barriers for Improving Bladder Cancer Therapy. Pharmaceutics 2021; 13:166. [PMID: 33513793 PMCID: PMC7912621 DOI: 10.3390/pharmaceutics13020166] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 12/20/2022] Open
Abstract
Bladder cancer is a significant public health concern and social burden due to its high recurrence risk. Intravesical drug instillation is the primary therapy for bladder cancer to prevent recurrence. However, the intravesical drug therapeutic effect is limited by bladder penetrating barriers. The inadequate intravesical treatment might cause the low drug concentration in lesions, resulting in a high recurrence/progression rate of bladder cancer. Many strategies to get drugs across bladder penetrating barriers have been developed to improve intravesical treatment, including physical and chemical methods. This review summarizes the classical and updated literature and presents insights into great therapeutic potential strategies to overcome bladder penetrating barriers for improving the intravesical treatment of bladder cancer.
Collapse
Affiliation(s)
- Shupeng Wang
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (S.W.); (S.J.)
| | - Shaohua Jin
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (S.W.); (S.J.)
| | - Qinghai Shu
- School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (S.W.); (S.J.)
| | - Song Wu
- School of Medicine, Shenzhen University, Shenzhen 518000, China
| |
Collapse
|
12
|
Popescu R, Ghica MV, Dinu-Pîrvu CE, Anuța V, Lupuliasa D, Popa L. New Opportunity to Formulate Intranasal Vaccines and Drug Delivery Systems Based on Chitosan. Int J Mol Sci 2020; 21:ijms21145016. [PMID: 32708704 PMCID: PMC7404068 DOI: 10.3390/ijms21145016] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
In an attempt to develop drug delivery systems that bypass the blood–brain barrier (BBB) and prevent liver and intestinal degradation, it was concluded that nasal medication meets these criteria and can be used for drugs that have these drawbacks. The aim of this review is to present the influence of the properties of chitosan and its derivatives (mucoadhesion, permeability enhancement, surface tension, and zeta potential) on the development of suitable nasal drug delivery systems and on the nasal bioavailability of various active pharmaceutical ingredients. Interactions between chitosan and proteins, lipids, antigens, and other molecules lead to complexes that have their own applications or to changing characteristics of the substances involved in the bond (conformational changes, increased stability or solubility, etc.). Chitosan and its derivatives have their own actions (antibacterial, antifungal, immunostimulant, antioxidant, etc.) and can be used as such or in combination with other molecules from the same class to achieve a synergistic effect. The applicability of the properties is set out in the second part of the paper, where nasal formulations based on chitosan are described (vaccines, hydrogels, nanoparticles, nanostructured lipid carriers (NLC), powders, emulsions, etc.).
Collapse
Affiliation(s)
- Roxana Popescu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 020956 Bucharest, Romania; (R.P.); (M.V.G.); (V.A.); (L.P.)
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 020956 Bucharest, Romania; (R.P.); (M.V.G.); (V.A.); (L.P.)
| | - Cristina-Elena Dinu-Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 020956 Bucharest, Romania; (R.P.); (M.V.G.); (V.A.); (L.P.)
- Correspondence:
| | - Valentina Anuța
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 020956 Bucharest, Romania; (R.P.); (M.V.G.); (V.A.); (L.P.)
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy ”Carol Davila”, 020956 Bucharest, Romania;
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 020956 Bucharest, Romania; (R.P.); (M.V.G.); (V.A.); (L.P.)
| |
Collapse
|
13
|
Federer C, Kurpiers M, Bernkop-Schnürch A. Thiolated Chitosans: A Multi-talented Class of Polymers for Various Applications. Biomacromolecules 2020; 22:24-56. [PMID: 32567846 PMCID: PMC7805012 DOI: 10.1021/acs.biomac.0c00663] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Various properties of chitosan can be customized by thiolation for very specific needs in a wide range of application areas. Since the discovery of thiolated chitosans, many studies have proven their advantageous characteristics, such as adhesion to biological surfaces, adjustable cross-linking and swelling behavior, controllable drug release, permeation as well as cellular uptake enhancement, inhibition of efflux pumps and enzymes, complexation of metal ions, antioxidative properties, and radical scavenging activity. Simultaneously, these polymers remain biodegradable without increased toxicity. Within this Review, an overview about the different possibilities to covalently attach sulfhydryl ligands to the polymeric backbone of chitosan is given, and the resulting versatile physiochemical properties are discussed in detail. Furthermore, the broad spectrum of applications for thiolated chitosans in science and industry, ranging from their most advanced use in pharmaceutical and medical science over wastewater treatment to the impregnation of textiles, is addressed.
Collapse
Affiliation(s)
- Christoph Federer
- Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria.,Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Markus Kurpiers
- Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria.,Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
14
|
Son YJ, Tse JW, Zhou Y, Mao W, Yim EKF, Yoo HS. Biomaterials and controlled release strategy for epithelial wound healing. Biomater Sci 2019; 7:4444-4471. [PMID: 31436261 DOI: 10.1039/c9bm00456d] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The skin and cornea are tissues that provide protective functions. Trauma and other environmental threats often cause injuries, infections and damage to these tissues, where the degree of injury is directly correlated to the recovery time. For example, a superficial skin or corneal wound may recover within days; however, more severe injuries can last up to several months and may leave scarring. Thus, therapeutic strategies have been introduced to enhance the wound healing efficiency and quality. Although the skin and cornea share similar anatomic structures and wound healing process, therapeutic agents and formulations for skin and cornea wound healing differ in accordance with the tissue and wound type. In this review, we describe the anatomy and epithelial wound healing processes of the skin and cornea, and summarize the therapeutic molecules that are beneficial to the respective regeneration process. In addition, biomaterial scaffolds that inherently possess bioactive properties or modified with therapeutic molecules for topical controlled release and enhanced wound healing efficiency are also discussed.
Collapse
Affiliation(s)
- Young Ju Son
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - John W Tse
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada N2L 3G1.
| | - Yiran Zhou
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada N2L 3G1.
| | - Wei Mao
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Evelyn K F Yim
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, Canada N2L 3G1.
| | - Hyuk Sang Yoo
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea. and Institute of Bioscience and Biotechnology, Kangwon National University, Republic of Korea
| |
Collapse
|
15
|
Liang J, Wang R, Chen R. The Impact of Cross-linking Mode on the Physical and Antimicrobial Properties of a Chitosan/Bacterial Cellulose Composite. Polymers (Basel) 2019; 11:polym11030491. [PMID: 30960475 PMCID: PMC6474070 DOI: 10.3390/polym11030491] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 12/21/2022] Open
Abstract
The bacteriostatic performance of a chitosan film is closely related to its ionic and physical properties, which are significantly influenced by the mode of cross-linking. In the current work, chitosan with or without bacterial cellulose was cross-linked with borate, tripolyphosphate, or the mixture of borate and tripolyphosphate, and the composite films were obtained by a casting of dispersion. Mechanical measurements indicated that different modes of cross-linking led to varying degrees of film strength and elongation increases, while the films treated with the borate and tripolyphosphate mixture showed the best performance. Meanwhile, changes in the fractured sectional images showed a densified texture induced by cross-linkers, especially for the borate and tripolyphosphate mixture. Measurements of Fourier transform infrared showed the enhanced interaction between the matrix polymers treated by borate, confirmed by a slight increase in the glass transitional temperature and a higher surface hydrophobicity. However, the reduced antimicrobial efficiency of composite films against E. coli, B. cinerea, and S. cerevisiae was obtained in cross-linked films compared with chitosan/bacterial cellulose films, indicating that the impact on the antimicrobial function of chitosan is a noteworthy issue for cross-linking.
Collapse
Affiliation(s)
- Jun Liang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300222, China.
- College of Packaging and Printing Engineering, Tianjin University of Science & Technology, Tianjin 300222, China.
| | - Rui Wang
- College of Packaging and Printing Engineering, Tianjin University of Science & Technology, Tianjin 300222, China.
| | - Ruipeng Chen
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300222, China.
| |
Collapse
|
16
|
Irimia T, Ghica MV, Popa L, Anuţa V, Arsene AL, Dinu-Pîrvu CE. Strategies for Improving Ocular Drug Bioavailability and Corneal Wound Healing with Chitosan-Based Delivery Systems. Polymers (Basel) 2018; 10:E1221. [PMID: 30961146 PMCID: PMC6290606 DOI: 10.3390/polym10111221] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 01/30/2023] Open
Abstract
The main inconvenience of conventional eye drops is the rapid washout of the drugs due to nasolacrimal drainage or ophthalmic barriers. The ocular drug bioavailability can be improved by either prolonging retention time in the cul-de-sac or by increasing the ocular permeability. The focus of this review is to highlight some chitosan-based drug delivery approaches that proved to have good clinical efficacy and high potential for use in ophthalmology. They are exemplified by recent studies exploring in-depth the techniques and mechanisms in order to improve ocular bioavailability of the active substances. Used alone or in combination with other compounds with synergistic action, chitosan enables ocular retention time and corneal permeability. Associated with other stimuli-responsive polymers, it enhances the mechanical strength of the gels. Chitosan and its derivatives increase drug permeability through the cornea by temporarily opening tight junctions between epithelial cells. Different types of chitosan-based colloidal systems have the potential to overcome the ocular barriers without disturbing the vision process. Chitosan also plays a key role in improving corneal wound healing by stimulating the migration of keratinocytes when it is used alone or in combination with other compounds with synergistic action.
Collapse
Affiliation(s)
- Teodora Irimia
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", Bucharest 020956, Romania.
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", Bucharest 020956, Romania.
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", Bucharest 020956, Romania.
| | - Valentina Anuţa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", Bucharest 020956, Romania.
| | - Andreea-Letiţia Arsene
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", Bucharest 020956, Romania.
| | - Cristina-Elena Dinu-Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Carol Davila", Bucharest 020956, Romania.
| |
Collapse
|
17
|
Preparation and Properties of Ginger Essential Oil β-Cyclodextrin/Chitosan Inclusion Complexes. COATINGS 2018. [DOI: 10.3390/coatings8090305] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The ginger essential oil/β-cyclodextrin (GEO/β-CD) composite, ginger essential oil/β-cyclodextrin/chitosan (GEO/β-CD/CTS) particles and ginger essential oil/β-cyclodextrin/chitosan (GEO/β-CD/CTS) microsphere were prepared with the methods of inclusion, ionic gelation and spray drying. Their properties were studied by using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermo-gravimetry analysis (TGA), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The results showed that the particle size of GEO/β-CD composite was smaller than that of β-CD and GEO/β-CD/CTS particles were loose and porous, while the microsphere obtained by spray drying had certain cohesiveness and small particle size. Besides, results also indicated that β-CD/CTS could modify properties and improve the thermal stability of GEO, which would improve its application value in food and medical industries.
Collapse
|