1
|
Fernandes Silva L, Vangipurapu J, Oravilahti A, Laakso M. Novel Metabolites Associated with Decreased GFR in Finnish Men: A 12-Year Follow-Up of the METSIM Cohort. Int J Mol Sci 2024; 25:10044. [PMID: 39337529 PMCID: PMC11432478 DOI: 10.3390/ijms251810044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Identification of the individuals having impaired kidney function is essential in preventing the complications of this disease. We measured 1009 metabolites at the baseline study in 10,159 Finnish men of the METSIM cohort and associated the metabolites with an estimated glomerular filtration rate (eGFR). A total of 7090 men participated in the 12-year follow-up study. Non-targeted metabolomics profiling was performed at Metabolon, Inc. (Morrisville, NC, USA) on EDTA plasma samples obtained after overnight fasting. We applied liquid chromatography mass spectrometry (LC-MS/MS) to identify the metabolites (the Metabolon DiscoveryHD4 platform). We performed association analyses between the eGFR and metabolites using linear regression adjusted for confounding factors. We found 108 metabolites significantly associated with a decrease in eGFR, and 28 of them were novel, including 12 amino acids, 8 xenobiotics, 5 lipids, 1 nucleotide, 1 peptide, and 1 partially characterized molecule. The most significant associations were with five amino acids, N-acetylmethionine, N-acetylvaline, gamma-carboxyglutamate, 3-methylglutaryl-carnitine, and pro-line. We identified 28 novel metabolites associated with decreased eGFR in the 12-year follow-up study of the METSIM cohort. These findings provide novel insights into the role of metabolites and metabolic pathways involved in the decline of kidney function.
Collapse
Affiliation(s)
- Lilian Fernandes Silva
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70211 Kuopio, Finland; (L.F.S.); (J.V.); (A.O.)
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jagadish Vangipurapu
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70211 Kuopio, Finland; (L.F.S.); (J.V.); (A.O.)
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Anniina Oravilahti
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70211 Kuopio, Finland; (L.F.S.); (J.V.); (A.O.)
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, 70211 Kuopio, Finland; (L.F.S.); (J.V.); (A.O.)
- Department of Medicine, Kuopio University Hospital, 70200 Kuopio, Finland
| |
Collapse
|
2
|
Zhang Z, Cao B, Wu Q. Causality of Genetically Determined Metabolites on Chronic Kidney Disease: A Two-Sample Mendelian Randomization Study In Silico. Metab Syndr Relat Disord 2024; 22:525-550. [PMID: 38742978 DOI: 10.1089/met.2024.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
Introduction: Chronic kidney disease (CKD) is associated with metabolic disorders. However, the evidence for the causality of circulating metabolites to promote or prevent CKD is still lacking. Methods: The two-sample Mendelian randomization (MR) analysis was conducted to evaluate the latent causal relationship between the genetically proxied 486 blood metabolites and CKD. Genome-wide association study (GWAS) data for exposures were derived from 7824 European GWAS on metabolite levels, which have been extensively utilized in the medical field to elucidate the mechanisms underlying disease onset and progression. The random inverse variance weighted (IVW) is the primary analysis for causality analysis while MR-Egger and weighted median as complementary analyses. For the further identification of metabolites, reverse MR and linkage disequilibrium score regression were performed for further evaluation. The drug target for N-acetylornithine was subsequently supplemented into the analysis, with MR and colocalization analysis being utilized. Key metabolic pathways were identified via MetaboAnalyst 4.0 (https://www.metaboanalyst.ca/) online website. Results: N-acetylornithine was identified as a reliable metabolite that increases the susceptibility to estimated glomerular filtration rate (eGFR) decrease (β = 0.047; 95% confidence interval: -0.068 to -0.026; PIVW = 1.5E-5). The "glyoxylate and dicarboxylate metabolism" pathway showed significant relevance to CKD development (P = 6E-4), whereas the "glycine, serine, and threonine metabolism" pathway was also recognized as associated with CKD by general practitioners (P = 7E-4). Colocalization analysis revealed a robust genetic link between N-acetylornithine and both CKD and eGFR, with 85.1% and 99.4% colocalization rates, respectively. IVW-MR analysis substantiated these findings with a significant positive association for CKD (odds ratio = 1.43, P = 4.7E-5) and a negative correlation with eGFR (b = -0.04, P = 1.13E-31). Conclusions: MR was utilized to explore the potential causal links between 61 genetic serum metabolites and CKD. N-acetylornithine and NAT8 were further explored as a potential therapeutic target for CKD treatment.
Collapse
Affiliation(s)
- Zekai Zhang
- Second College of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Beibei Cao
- Academy of Paediatrics, Nanjing Medical University, Nanjing, China
| | - Qiutong Wu
- Second College of Clinical Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Wu G, Liu J, Shi H, Pan B, Li M, Wang X, Li Y, Cheng L, Guo W, Huang Y. The associations between dysregulation of human blood metabolites and lung cancer risk: evidence from genetic data. BMC Cancer 2024; 24:854. [PMID: 39026146 PMCID: PMC11256634 DOI: 10.1186/s12885-024-12416-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/22/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Metabolic dysregulation is recognized as a significant hallmark of cancer progression. Although numerous studies have linked specific metabolic pathways to cancer incidence, the causal relationship between blood metabolites and lung cancer risk remains unclear. METHODS Genomic data from 29,266 lung cancer patients and 56,450 control individuals from the Transdisciplinary Research in Cancer of the Lung and the International Lung Cancer Consortium (TRICL-ILCCO) were utilized, and findings were replicated using additional data from the FinnGen consortium. The analysis focused on the associations between 486 blood metabolites and the susceptibility to overall lung cancer and its three major clinical subtypes. Various Mendelian randomization methods, including inverse-variance weighting, weighted median estimation, and MR-Egger regression, were employed to ensure the robustness of our findings. RESULTS A total of 19 blood metabolites were identified with significant associations with lung cancer risk. Specifically, oleate (OR per SD = 2.56, 95% CI: 1.51 to 4.36), 1-arachidonoylglyceropholine (OR = 1.79, 95% CI: 1.22 to 2.65), and arachidonate (OR = 1.67, 95% CI: 1.16 to 2.40) were associated with a higher risk of lung cancer. Conversely, 1-linoleoylglycerophosphoethanolamine (OR = 0.57, 95% CI: 0.40 to 0.82), ADpSGEGDFXAEGGGVR, a fibrinogen cleavage peptide (OR = 0.60, 95% CI: 0.47 to 0.77), and isovalerylcarnitine (OR = 0.62, 95% CI: 0.49 to 0.78) were associated with a lower risk of lung cancer. Notably, isoleucine (OR = 9.64, 95% CI: 2.55 to 36.38) was associated with a significantly higher risk of lung squamous cell cancer, while acetyl phosphate (OR = 0.11, 95% CI: 0.01 to 0.89) was associated with a significantly lower risk of small cell lung cancer. CONCLUSION This study reveals the complex relationships between specific blood metabolites and lung cancer risk, highlighting their potential as biomarkers for lung cancer prevention, screening, and treatment. The findings not only deepen our understanding of the metabolic mechanisms of lung cancer but also provide new insights for future treatment strategies.
Collapse
Affiliation(s)
- Gujie Wu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jun Liu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Haochun Shi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Binyang Pan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Min Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaolin Wang
- Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yao Li
- Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lin Cheng
- Regenerative Medicine Institute, Biomedical Sciences Building, School of Medicine, National University of Ireland (NUI), Galway, Ireland.
| | - Weigang Guo
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Yiwei Huang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Schlosser P, Surapaneni AL, Borisov O, Schmidt IM, Zhou L, Anderson A, Deo R, Dubin R, Ganz P, He J, Kimmel PL, Li H, Nelson RG, Porter AC, Rahman M, Rincon-Choles H, Shah V, Unruh ML, Vasan RS, Zheng Z, Feldman HI, Waikar SS, Köttgen A, Rhee EP, Coresh J, Grams ME. Association of Integrated Proteomic and Metabolomic Modules with Risk of Kidney Disease Progression. J Am Soc Nephrol 2024; 35:923-935. [PMID: 38640019 PMCID: PMC11230725 DOI: 10.1681/asn.0000000000000343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/01/2024] [Indexed: 04/21/2024] Open
Abstract
Key Points Integrated analysis of proteome and metabolome identifies modules associated with CKD progression and kidney failure. Ephrin transmembrane proteins and podocyte-expressed CRIM1 and NPNT emerged as central components and warrant experimental and clinical investigation. Background Proteins and metabolites play crucial roles in various biological functions and are frequently interconnected through enzymatic or transport processes. Methods We present an integrated analysis of 4091 proteins and 630 metabolites in the Chronic Renal Insufficiency Cohort study (N =1708; average follow-up for kidney failure, 9.5 years, with 537 events). Proteins and metabolites were integrated using an unsupervised clustering method, and we assessed associations between clusters and CKD progression and kidney failure using Cox proportional hazards models. Analyses were adjusted for demographics and risk factors, including the eGFR and urine protein–creatinine ratio. Associations were identified in a discovery sample (random two thirds, n =1139) and then evaluated in a replication sample (one third, n =569). Results We identified 139 modules of correlated proteins and metabolites, which were represented by their principal components. Modules and principal component loadings were projected onto the replication sample, which demonstrated a consistent network structure. Two modules, representing a total of 236 proteins and 82 metabolites, were robustly associated with both CKD progression and kidney failure in both discovery and validation samples. Using gene set enrichment, several transmembrane-related terms were identified as overrepresented in these modules. Transmembrane–ephrin receptor activity displayed the largest odds (odds ratio=13.2, P value = 5.5×10−5). A module containing CRIM1 and NPNT expressed in podocytes demonstrated particularly strong associations with kidney failure (P value = 2.6×10−5). Conclusions This study demonstrates that integration of the proteome and metabolome can identify functions of pathophysiologic importance in kidney disease.
Collapse
Affiliation(s)
- Pascal Schlosser
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
- Institute of Genetic Epidemiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Aditya L. Surapaneni
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
- Division of Precision Medicine, Department of Medicine, NYU Langone Health, New York, New York
| | - Oleg Borisov
- Institute of Genetic Epidemiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Insa M. Schmidt
- Section of Nephrology, Department of Medicine, Boston Medical Center and Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts
| | - Linda Zhou
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Amanda Anderson
- Department of Epidemiology, Tulane University, New Orleans, Louisiana
| | - Rajat Deo
- Division of Cardiovascular Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ruth Dubin
- Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Peter Ganz
- Division of Cardiology, University of California, San Francisco, San Francisco, California
| | - Jiang He
- Department of Epidemiology, Tulane University, New Orleans, Louisiana
| | - Paul L. Kimmel
- Division of Kidney, Urologic, and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Hongzhe Li
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert G. Nelson
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, Arizona
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
| | - Anna C. Porter
- Renal Service, Wellington Regional Hospital, Wellington, New Zealand
| | - Mahboob Rahman
- Department of Kidney Medicine, Cleveland Clinic Foundation, Cleveland, Ohio
| | | | - Vallabh Shah
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Mark L. Unruh
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Ramachandran S. Vasan
- University of Texas Health Sciences Center, San Antonio, Texas
- Section of Preventive Medicine and Epidemiology, Department of Medicine, Boston Medical Center and Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts
| | - Zihe Zheng
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Harold I. Feldman
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sushrut S. Waikar
- Section of Nephrology, Department of Medicine, Boston Medical Center and Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts
| | - Anna Köttgen
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
- Institute of Genetic Epidemiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eugene P. Rhee
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
- Optimal Aging Institute, Departments of Population Health and Medicine, NYU Grossman School of Medicine, New York, New York
| | - Morgan E. Grams
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
- Division of Precision Medicine, Department of Medicine, NYU Langone Health, New York, New York
| |
Collapse
|
5
|
Yeo WJ, Surapaneni AL, Hasson DC, Schmidt IM, Sekula P, Köttgen A, Eckardt KU, Rebholz CM, Yu B, Waikar SS, Rhee EP, Schrauben SJ, Feldman HI, Vasan RS, Kimmel PL, Coresh J, Grams ME, Schlosser P. Serum and Urine Metabolites and Kidney Function. J Am Soc Nephrol 2024; 35:00001751-990000000-00343. [PMID: 38844075 PMCID: PMC11387034 DOI: 10.1681/asn.0000000000000403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/29/2024] [Indexed: 07/05/2024] Open
Abstract
Key Points We provide an atlas of cross-sectional and longitudinal serum and urine metabolite associations with eGFR and urine albumin-creatinine ratio in an older community-based cohort. Metabolic profiling in serum and urine provides distinct and complementary insights into disease. Background Metabolites represent a read-out of cellular processes underlying states of health and disease. Methods We evaluated cross-sectional and longitudinal associations between 1255 serum and 1398 urine known and unknown (denoted with “X” in name) metabolites (Metabolon HD4, 721 detected in both biofluids) and kidney function in 1612 participants of the Atherosclerosis Risk in Communities study. All analyses were adjusted for clinical and demographic covariates, including for baseline eGFR and urine albumin-creatinine ratio (UACR) in longitudinal analyses. Results At visit 5 of the Atherosclerosis Risk in Communities study, the mean age of participants was 76 years (SD 6); 56% were women, mean eGFR was 62 ml/min per 1.73 m2 (SD 20), and median UACR level was 13 mg/g (interquartile range, 25). In cross-sectional analysis, 675 serum and 542 urine metabolites were associated with eGFR (Bonferroni-corrected P < 4.0E-5 for serum analyses and P < 3.6E-5 for urine analyses), including 248 metabolites shared across biofluids. Fewer metabolites (75 serum and 91 urine metabolites, including seven metabolites shared across biofluids) were cross-sectionally associated with albuminuria. Guanidinosuccinate; N2,N2-dimethylguanosine; hydroxy-N6,N6,N6-trimethyllysine; X-13844; and X-25422 were significantly associated with both eGFR and albuminuria. Over a mean follow-up of 6.6 years, serum mannose (hazard ratio [HR], 2.3 [1.6–3.2], P = 2.7E-5) and urine X-12117 (HR, 1.7 [1.3–2.2], P = 1.9E-5) were risk factors of UACR doubling, whereas urine sebacate (HR, 0.86 [0.80–0.92], P = 1.9E-5) was inversely associated. Compared with clinical characteristics alone, including the top five endogenous metabolites in serum and urine associated with longitudinal outcomes improved the outcome prediction (area under the receiver operating characteristic curves for eGFR decline: clinical model=0.79, clinical+metabolites model=0.87, P = 8.1E-6; for UACR doubling: clinical model=0.66, clinical+metabolites model=0.73, P = 2.9E-5). Conclusions Metabolomic profiling in different biofluids provided distinct and potentially complementary insights into the biology and prognosis of kidney diseases.
Collapse
Affiliation(s)
- Wan-Jin Yeo
- Division of Precision Medicine, Department of Medicine, NYU Langone Health, New York, New York
| | - Aditya L. Surapaneni
- Division of Precision Medicine, Department of Medicine, NYU Langone Health, New York, New York
| | - Denise C. Hasson
- Division of Pediatric Critical Care Medicine, Hassenfeld Children's Hospital, NYU Langone Health, New York, New York
| | - Insa M. Schmidt
- Section of Nephrology, Department of Medicine, Boston Medical Center and Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts
| | - Peggy Sekula
- Department of Data Driven Medicine, Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Anna Köttgen
- Department of Data Driven Medicine, Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen–Nürnberg, Erlangen, Germany
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Casey M. Rebholz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas
| | - Sushrut S. Waikar
- Section of Nephrology, Department of Medicine, Boston Medical Center and Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts
| | - Eugene P. Rhee
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Sarah J. Schrauben
- Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Harold I. Feldman
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ramachandran S. Vasan
- School of Public Health, University of Texas Health San Antonio, San Antonio, Texas
- Section of Preventive Medicine and Epidemiology, Department of Medicine, Boston Medical Center and Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts
| | - Paul L. Kimmel
- Division of Kidney, Urologic, and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Optimal Aging Institute, Departments of Population Health and Medicine, NYU Langone Health, New York, New York
- Department of Population Health, NYU Langone Medical Center, New York, New York
| | - Morgan E. Grams
- Division of Precision Medicine, Department of Medicine, NYU Langone Health, New York, New York
- Department of Population Health, NYU Langone Medical Center, New York, New York
| | - Pascal Schlosser
- Department of Data Driven Medicine, Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Xu H, Pan J, Chen Q. The progress of clinical research on the detection of 1,5-anhydroglucitol in diabetes and its complications. Front Endocrinol (Lausanne) 2024; 15:1383483. [PMID: 38803475 PMCID: PMC11128578 DOI: 10.3389/fendo.2024.1383483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
1,5-Anhydroglucitol (1,5-AG) is sensitive to short-term glucose fluctuations and postprandial hyperglycemia, which has great potential in the clinical application of diabetes as a nontraditional blood glucose monitoring indicator. A large number of studies have found that 1,5-AG can be used to screen for diabetes, manage diabetes, and predict the perils of diabetes complications (diabetic nephropathy, diabetic cardiovascular disease, diabetic retinopathy, diabetic pregnancy complications, diabetic peripheral neuropathy, etc.). Additionally, 1,5-AG and β cells are also associated with each other. As a noninvasive blood glucose monitoring indicator, salivary 1,5-AG has much more benefit for clinical application; however, it cannot be ignored that its detection methods are not perfect. Thus, a considerable stack of research is still needed to establish an accurate and simple enzyme assay for the detection of salivary 1,5-AG. More clinical studies will also be required in the future to confirm the normal reference range of 1,5-AG and its role in diabetes complications to further enhance the blood glucose monitoring system for diabetes.
Collapse
Affiliation(s)
- Huijuan Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Junhua Pan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Bernard L, Chen J, Kim H, Wong KE, Steffen LM, Yu B, Boerwinkle E, Levey AS, Grams ME, Rhee EP, Rebholz CM. Serum Metabolomic Markers of Protein-Rich Foods and Incident CKD: Results From the Atherosclerosis Risk in Communities Study. Kidney Med 2024; 6:100793. [PMID: 38495599 PMCID: PMC10940775 DOI: 10.1016/j.xkme.2024.100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Rationale & Objective While urine excretion of nitrogen estimates the total protein intake, biomarkers of specific dietary protein sources have been sparsely studied. Using untargeted metabolomics, this study aimed to identify serum metabolomic markers of 6 protein-rich foods and to examine whether dietary protein-related metabolites are associated with incident chronic kidney disease (CKD). Study Design Prospective cohort study. Setting & Participants A total of 3,726 participants from the Atherosclerosis Risk in Communities study without CKD at baseline. Exposures Dietary intake of 6 protein-rich foods (fish, nuts, legumes, red and processed meat, eggs, and poultry), serum metabolites. Outcomes Incident CKD (estimated glomerular filtration rate < 60 mL/min/1.73 m2 with ≥25% estimated glomerular filtration rate decline relative to visit 1, hospitalization or death related to CKD, or end-stage kidney disease). Analytical Approach Multivariable linear regression models estimated cross-sectional associations between protein-rich foods and serum metabolites. C statistics assessed the ability of the metabolites to improve the discrimination of highest versus lower 3 quartiles of intake of protein-rich foods beyond covariates (demographics, clinical factors, health behaviors, and the intake of nonprotein food groups). Cox regression models identified prospective associations between protein-related metabolites and incident CKD. Results Thirty significant associations were identified between protein-rich foods and serum metabolites (fish, n = 8; nuts, n = 5; legumes, n = 0; red and processed meat, n = 5; eggs, n = 3; and poultry, n = 9). Metabolites collectively and significantly improved the discrimination of high intake of protein-rich foods compared with covariates alone (difference in C statistics = 0.033, 0.051, 0.003, 0.024, and 0.025 for fish, nuts, red and processed meat, eggs, and poultry-related metabolites, respectively; P < 1.00 × 10-16 for all). Dietary intake of fish was positively associated with 1-docosahexaenoylglycerophosphocholine (22:6n3), which was inversely associated with incident CKD (HR, 0.82; 95% CI, 0.75-0.89; P = 7.81 × 10-6). Limitations Residual confounding and sample-storage duration. Conclusions We identified candidate biomarkers of fish, nuts, red and processed meat, eggs, and poultry. A fish-related metabolite, 1-docosahexaenoylglycerophosphocholine (22:6n3), was associated with a lower risk of CKD.
Collapse
Affiliation(s)
- Lauren Bernard
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Jingsha Chen
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Hyunju Kim
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Kari E. Wong
- Metabolon, Research Triangle Park, Morrisville, NC
| | - Lyn M. Steffen
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN
| | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center at Houston, Houston, TX
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center at Houston, Houston, TX
| | | | - Morgan E. Grams
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Division of Precision of Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY
| | - Eugene P. Rhee
- Nephrology Division and Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Casey M. Rebholz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
8
|
Hu Y, Jiang W. Mannose and glycine: Metabolites with potentially causal implications in chronic kidney disease pathogenesis. PLoS One 2024; 19:e0298729. [PMID: 38354117 PMCID: PMC10866514 DOI: 10.1371/journal.pone.0298729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Chronic Kidney Disease (CKD) represents a global health challenge, with its etiology and underlying mechanisms yet to be fully elucidated. Integrating genomics with metabolomics can offer insights into the putatively causal relationships between serum metabolites and CKD. METHODS Utilizing bidirectional Mendelian Randomization (MR), we assessed the putatively causal associations between 486 serum metabolites and CKD. Genetic data for these metabolites were sourced from comprehensive genome-wide association studies, and CKD data were obtained from the CKDGen Consortium. RESULTS Our analysis identified four metabolites with a robust association with CKD risk, of which mannose and glycine showed the most reliable causal relationships. Pathway analysis spotlighted five significant metabolic pathways, notably including "Methionine Metabolism" and "Arginine and Proline Metabolism", as key contributors to CKD pathogenesis. CONCLUSION This study underscores the potential of certain serum metabolites as biomarkers for CKD and illuminates pivotal metabolic pathways in CKD's pathogenesis. Our findings lay the groundwork for potential therapeutic interventions and warrant further research for validation.
Collapse
Affiliation(s)
- Yongzheng Hu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wei Jiang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
9
|
Kozlowska L, Jagiello K, Ciura K, Sosnowska A, Zwiech R, Zbrog Z, Wasowicz W, Gromadzinska J. The Effects of Two Kinds of Dietary Interventions on Serum Metabolic Profiles in Haemodialysis Patients. Biomolecules 2023; 13:biom13050854. [PMID: 37238723 DOI: 10.3390/biom13050854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The goal of this study was to evaluate the effects of two kinds of 24-week dietary interventions in haemodialysis patients, a traditional nutritional intervention without a meal before dialysis (HG1) and implementation of a nutritional intervention with a meal served just before dialysis (HG2), in terms of analysing the differences in the serum metabolic profiles and finding biomarkers of dietary efficacy. These studies were performed in two homogenous groups of patients (n = 35 in both groups). Among the metabolites with the highest statistical significance between HG1 and HG2 after the end of the study, 21 substances were putatively annotated, which had potential significance in both of the most relevant metabolic pathways and those related to diet. After the 24 weeks of the dietary intervention, the main differences between the metabolomic profiles in the HG2 vs. HG1 groups were related to the higher signal intensities from amino acid metabolites: indole-3-carboxaldehyde, 5-(hydroxymethyl-2-furoyl)glycine, homocitrulline, 4-(glutamylamino)butanoate, tryptophol, gamma-glutamylthreonine, and isovalerylglycine. These metabolites are intermediates in the metabolic pathways of the necessary amino acids (Trp, Tyr, Phe, Leu, Ile, Val, Liz, and amino acids of the urea cycle) and are also diet-related intermediates (4-guanidinobutanoic acid, indole-3-carboxyaldehyde, homocitrulline, and isovalerylglycine).
Collapse
Affiliation(s)
- Lucyna Kozlowska
- Laboratory of Human Metabolism Research, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Karolina Jagiello
- Department of Environmental Chemistry and Radiochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
- QSAR Lab Ltd., 80-172 Gdansk, Poland
| | - Krzesimir Ciura
- QSAR Lab Ltd., 80-172 Gdansk, Poland
- Department of Physical Chemistry, Medical University of Gdansk, 80-416 Gdansk, Poland
| | | | - Rafal Zwiech
- Dialysis Department, Norbert Barlicki Memorial Teaching Hospital No. 1, 90-001 Lodz, Poland
| | | | - Wojciech Wasowicz
- Department of Environmental and Biological Monitoring, Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland
| | - Jolanta Gromadzinska
- Department of Environmental and Biological Monitoring, Nofer Institute of Occupational Medicine, 91-348 Lodz, Poland
| |
Collapse
|
10
|
Zahid S, Dafre AL, Currais A, Yu J, Schubert D, Maher P. The Geroprotective Drug Candidate CMS121 Alleviates Diabetes, Liver Inflammation, and Renal Damage in db/db Leptin Receptor Deficient Mice. Int J Mol Sci 2023; 24:6828. [PMID: 37047807 PMCID: PMC10095029 DOI: 10.3390/ijms24076828] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 04/14/2023] Open
Abstract
db/db mice, which lack leptin receptors and exhibit hyperphagia, show disturbances in energy metabolism and are a model of obesity and type 2 diabetes. The geroneuroprotector drug candidate CMS121 has been shown to be effective in animal models of Alzheimer's disease and aging through the modulation of metabolism. Thus, the hypothesis was that CMS121 could protect db/db mice from metabolic defects and thereby reduce liver inflammation and kidney damage. The mice were treated with CMS121 in their diet for 6 months. No changes were observed in food and oxygen consumption, body mass, or locomotor activity compared to control db/db mice, but a 5% reduction in body weight was noted. Improved glucose tolerance and reduced HbA1c and insulin levels were also seen. Blood and liver triglycerides and free fatty acids decreased. Improved metabolism was supported by lower levels of fatty acid metabolites in the urine. Markers of liver inflammation, including NF-κB, IL-18, caspase 3, and C reactive protein, were lowered by the CMS121 treatment. Urine markers of kidney damage were improved, as evidenced by lower urinary levels of NGAL, clusterin, and albumin. Urine metabolomics studies provided further evidence for kidney protection. Mitochondrial protein markers were elevated in db/db mice, but CMS121 restored the renal levels of NDUFB8, UQCRC2, and VDAC. Overall, long-term CMS121 treatment alleviated metabolic imbalances, liver inflammation, and reduced markers of kidney damage. Thus, this study provides promising evidence for the potential therapeutic use of CMS121 in treating metabolic disorders.
Collapse
Affiliation(s)
- Saadia Zahid
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Neurobiology Research Laboratory, Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Alcir L. Dafre
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Biochemistry Department, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Antonio Currais
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jingting Yu
- The Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - David Schubert
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Pamela Maher
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
11
|
Zhou L, Surapaneni A, Rhee EP, Yu B, Boerwinkle E, Coresh J, Grams ME, Schlosser P. Integrated proteomic and metabolomic modules identified as biomarkers of mortality in the Atherosclerosis Risk in Communities study and the African American Study of Kidney Disease and Hypertension. Hum Genomics 2022; 16:53. [PMID: 36329547 PMCID: PMC9635174 DOI: 10.1186/s40246-022-00425-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Proteins and metabolites are essential for many biological functions and often linked through enzymatic or transport reactions. Individual molecules have been associated with all-cause mortality. Many of these are correlated and might jointly represent pathways or endophenotypes involved in diseases. RESULTS We present an integrated analysis of proteomics and metabolomics via a local dimensionality reduction clustering method. We identified 224 modules of correlated proteins and metabolites in the Atherosclerosis Risk in Communities (ARIC) study, a general population cohort of older adults (N = 4046, mean age 75.7, mean eGFR 65). Many of the modules displayed strong cross-sectional associations with demographic and clinical characteristics. In comprehensively adjusted analyses, including fasting plasma glucose, history of cardiovascular disease, systolic blood pressure and kidney function among others, 60 modules were associated with mortality. We transferred the network structure to the African American Study of Kidney Disease and Hypertension (AASK) (N = 694, mean age 54.5, mean mGFR 46) and identified mortality associated modules relevant in this disease specific cohort. The four mortality modules relevant in both the general population and CKD were all a combination of proteins and metabolites and were related to diabetes / insulin secretion, cardiovascular disease and kidney function. Key components of these modules included N-terminal (NT)-pro hormone BNP (NT-proBNP), Sushi, Von Willebrand Factor Type A, EGF And Pentraxin (SVEP1), and several kallikrein proteases. CONCLUSION Through integrated biomarkers of the proteome and metabolome we identified functions of (patho-) physiologic importance related to diabetes, cardiovascular disease and kidney function.
Collapse
Affiliation(s)
- Linda Zhou
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 2024 E. Monument St., Baltimore, MD, 21287, USA
| | - Aditya Surapaneni
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 2024 E. Monument St., Baltimore, MD, 21287, USA
| | - Eugene P Rhee
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 2024 E. Monument St., Baltimore, MD, 21287, USA
| | - Morgan E Grams
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 2024 E. Monument St., Baltimore, MD, 21287, USA.,Division of Precision Medicine, Department of Medicine, New York University, New York, NY, USA
| | - Pascal Schlosser
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 2024 E. Monument St., Baltimore, MD, 21287, USA.
| |
Collapse
|