1
|
Cui XL, Ding A, Yin W, Yang WM, Zhang W, Wu H, Jiang JS, Zhai YL, Hua ZK, Yu HY. Imaging observation of intervertebral disc degeneration in patients with old thoracolumbar fracture-related kyphotic deformity. Sci Rep 2024; 14:31335. [PMID: 39732936 DOI: 10.1038/s41598-024-82827-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024] Open
Abstract
Old thoracolumbar fracture with kyphosis (OTLFK) often results in low back pain, with intervertebral disc degeneration being a significant contributor. We hypothesized that patients with OTLFK exhibit distinct patterns of disc degeneration compared to those with chronic low back pain without kyphotic deformity. This study aimed to investigate the characteristics of disc degeneration in OTLFK patients and explore its association with sagittal spinal parameters and endplate injury. A retrospective analysis was conducted on 52 patients with OTLFK (observation group, OG) and 104 age-, gender-, and BMI-matched patients with chronic low back pain (control group, CG) treated at our hospital between February 2017 and March 2023. Intervertebral disc degeneration from T11/12 to L5/S1 was assessed using MRI T2-weighted images and the Pfirrmann grading system. Sagittal spinal parameters-including lumbar lordosis (LL), thoracic kyphosis (TK), local kyphosis Cobb angle (LKCA), thoracolumbar kyphosis (TLK), pelvic tilt(PT), sacral slope(SS), and sagittal vertical axis (SVA)-and endplate injury grades were measured in the OG. Differences in disc degeneration between the two groups were compared, and correlations between disc degeneration, sagittal parameters, and endplate injury were analyzed. The OG exhibited significantly higher overall disc degeneration grades compared to the CG (p < 0.05), particularly at levels T11/12, T12/L1, L1/2, and L2/3. In the OG, grade IV and V degenerations were predominantly found from T11/12 to L2/3, whereas in the CG, they were mainly at L4/5 and L5/S1. Disc degeneration in the OG was significantly correlated with sagittal parameters and endplate injury grades (p < 0.05). Patients with OTLFK have higher grades of disc degeneration in the thoracolumbar region compared to those with chronic low back pain without kyphosis. Disc degeneration in OTLFK is associated with abnormal sagittal alignment and endplate injury, suggesting that kyphotic deformity and altered spinal biomechanics contribute to accelerated disc degeneration.
Collapse
Affiliation(s)
- Xi-Long Cui
- Affiliated Fuyang People's Hospital of Anhui Medical University, Sanqing Road 501, Fuyang, 236000, Anhui, China
- School of Mechanical Engineering and Automation, Shanghai University, Shanghai, China
- Anhui Province Clinical Medical Research Center for Spinal Deformities, Hefei, Anhui, China
| | - Ao Ding
- Medical College, Hubei University for Nationalities, Enshi City, Hubei, China
| | - Wen Yin
- Affiliated Fuyang People's Hospital of Anhui Medical University, Sanqing Road 501, Fuyang, 236000, Anhui, China
- Anhui Province Clinical Medical Research Center for Spinal Deformities, Hefei, Anhui, China
| | - Wan-Mei Yang
- Affiliated Fuyang People's Hospital of Anhui Medical University, Sanqing Road 501, Fuyang, 236000, Anhui, China
- Anhui Province Clinical Medical Research Center for Spinal Deformities, Hefei, Anhui, China
| | - Wei Zhang
- Affiliated Fuyang People's Hospital of Anhui Medical University, Sanqing Road 501, Fuyang, 236000, Anhui, China
- Anhui Province Clinical Medical Research Center for Spinal Deformities, Hefei, Anhui, China
| | - Hao Wu
- Affiliated Fuyang People's Hospital of Anhui Medical University, Sanqing Road 501, Fuyang, 236000, Anhui, China
- Anhui Province Clinical Medical Research Center for Spinal Deformities, Hefei, Anhui, China
| | - Ji-Shi Jiang
- Affiliated Fuyang People's Hospital of Anhui Medical University, Sanqing Road 501, Fuyang, 236000, Anhui, China
- Anhui Province Clinical Medical Research Center for Spinal Deformities, Hefei, Anhui, China
| | - Yun-Lei Zhai
- Affiliated Fuyang People's Hospital of Anhui Medical University, Sanqing Road 501, Fuyang, 236000, Anhui, China
- Anhui Province Clinical Medical Research Center for Spinal Deformities, Hefei, Anhui, China
| | - Zi-Kai Hua
- School of Mechanical Engineering and Automation, Shanghai University, Shanghai, China
- Anhui Province Clinical Medical Research Center for Spinal Deformities, Hefei, Anhui, China
| | - Hai-Yang Yu
- Affiliated Fuyang People's Hospital of Anhui Medical University, Sanqing Road 501, Fuyang, 236000, Anhui, China.
- Anhui Province Clinical Medical Research Center for Spinal Deformities, Hefei, Anhui, China.
| |
Collapse
|
2
|
Ryu M, Yurube T, Takeoka Y, Kanda Y, Tsujimoto T, Miyazaki K, Ohnishi H, Matsuo T, Kumagai N, Kuroshima K, Hiranaka Y, Kuroda R, Kakutani K. Gene-Silencing Therapeutic Approaches Targeting PI3K/Akt/mTOR Signaling in Degenerative Intervertebral Disk Cells: An In Vitro Comparative Study Between RNA Interference and CRISPR-Cas9. Cells 2024; 13:2030. [PMID: 39682777 DOI: 10.3390/cells13232030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024] Open
Abstract
The mammalian target of rapamycin (mTOR), a serine/threonine kinase, promotes cell growth and inhibits autophagy. The following two complexes contain mTOR: mTORC1 with the regulatory associated protein of mTOR (RAPTOR) and mTORC2 with the rapamycin-insensitive companion of mTOR (RICTOR). The phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR signaling pathway is important in the intervertebral disk, which is the largest avascular, hypoxic, low-nutrient organ in the body. To examine gene-silencing therapeutic approaches targeting PI3K/Akt/mTOR signaling in degenerative disk cells, an in vitro comparative study was designed between small interfering RNA (siRNA)-mediated RNA interference (RNAi) and clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein 9 (Cas9) gene editing. Surgically obtained human disk nucleus pulposus cells were transfected with a siRNA or CRISPR-Cas9 plasmid targeting mTOR, RAPTOR, or RICTOR. Both of the approaches specifically suppressed target protein expression; however, the 24-h transfection efficiency differed by 53.8-60.3% for RNAi and 88.1-89.3% for CRISPR-Cas9 (p < 0.0001). Targeting mTOR, RAPTOR, and RICTOR all induced autophagy and inhibited apoptosis, senescence, pyroptosis, and matrix catabolism, with the most prominent effects observed with RAPTOR CRISPR-Cas9. In the time-course analysis, the 168-h suppression ratio of RAPTOR protein expression was 83.2% by CRISPR-Cas9 but only 8.8% by RNAi. While RNAi facilitates transient gene knockdown, CRISPR-Cas9 provides extensive gene knockout. Our findings suggest that RAPTOR/mTORC1 is a potential therapeutic target for degenerative disk disease.
Collapse
Affiliation(s)
- Masao Ryu
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Takashi Yurube
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Yoshiki Takeoka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Yutaro Kanda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Takeru Tsujimoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Kunihiko Miyazaki
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Hiroki Ohnishi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Tomoya Matsuo
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Naotoshi Kumagai
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Kohei Kuroshima
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Yoshiaki Hiranaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Kenichiro Kakutani
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| |
Collapse
|
3
|
Zhao Z, Wang Y, Wang Z, Zhang F, Ding Z, Fan T. Senescence in Intervertebral Disc Degeneration: A Comprehensive Analysis Based on Bioinformatic Strategies. Immun Inflamm Dis 2024; 12:e70072. [PMID: 39555740 PMCID: PMC11571097 DOI: 10.1002/iid3.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/18/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is a major cause for low back pain. Studies showed the association between senescence and degenerative diseases. Cell senescence can promote the occurrence and development of degenerative diseases through multiple mechanisms including inflammatory stress, oxidative stress and nutritional deprivation. The roles of senescence and senescence-associated genes (SAGs) remains unknown in IDD. METHODS Four differently expressed SAGs were identified as hub SAGs using "limma" package in R. We then calculated the immune infiltration of IDD patients, and investigated the relation between hub SAGs and immune infiltration. Enrichment analysis was performed to explore the functions of hub SAGs in IDD. Nomogram and LASSO model based on hub SAGs was constructed to predict the risk of severe degeneration (SD) for IDD patients. Subsequently, single cell analysis was conducted to describe the expression pattern of hub SAGs in intervertebral disc tissue. RESULTS We identified ASPH, CCND1, IGFBP3 and SGK1 as hub SAGs. Further analysis demonstrated that the hub SAGs might mediate the development of IDD by regulating immune infiltration and multiple pathways. The LASSO model based on the four hub SAGs showed good performance in predicting the risk of SD. Single cell analysis revealed that ASPH, CCND1 and SGK1 mainly expressed in nucleus pulposus cells, while IGFBP3 mainly expressed in epithelial cells. Eleven candidate drugs targeting hub SAGS were predicted for IDD patients through Comparative Toxicogenomics Database (CDT). PCR and immunohistochemical analysis showed that the levels of four hub SAGs were higher in SD than MD (mild degeneration) patients. CONCLUSIONS We performed a comprehensive analysis of SAGs in IDD, which revealed their functions and expression pattern in intervertebral disc tissue. Based on hub SAGs, we established a predictive model and explored the potential drugs. These findings provide new understandings of SAG mechanism and promising therapeutic strategies for IDD.
Collapse
Affiliation(s)
- Zijun Zhao
- Spine CenterSanbo Brain Hospital, Capital Medical UniversityBeijingChina
| | - Yining Wang
- Graduate DepartmentJinzhou Medical UniversityJinzhouChina
| | - Zairan Wang
- Department of NeurosurgeryPeking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Fan Zhang
- Spine CenterSanbo Brain Hospital, Capital Medical UniversityBeijingChina
| | - Ze Ding
- Spine CenterSanbo Brain Hospital, Capital Medical UniversityBeijingChina
| | - Tao Fan
- Spine CenterSanbo Brain Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
4
|
Liu G, Gao L, Wang Y, Xie X, Gao X, Wu X. The JNK signaling pathway in intervertebral disc degeneration. Front Cell Dev Biol 2024; 12:1423665. [PMID: 39364138 PMCID: PMC11447294 DOI: 10.3389/fcell.2024.1423665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
Intervertebral disc degeneration (IDD) serves as the underlying pathology for various spinal degenerative conditions and is a primary contributor to low back pain (LBP). Recent studies have revealed a strong correlation between IDD and biological processes such as Programmed Cell Death (PCD), cellular senescence, inflammation, cell proliferation, extracellular matrix (ECM) degradation, and oxidative stress (OS). Of particular interest is the emerging evidence highlighting the significant involvement of the JNK signaling pathway in these fundamental biological processes of IDD. This paper explores the potential mechanisms through the JNK signaling pathway influences IDD in diverse ways. The objective of this article is to offer a fresh perspective and methodology for in-depth investigation into the pathogenesis of IDD by thoroughly examining the interplay between the JNK signaling pathway and IDD. Moreover, this paper summarizes the drugs and natural compounds that alleviate the progression of IDD by regulating the JNK signaling pathway. This paper aims to identify potential therapeutic targets and strategies for IDD treatment, providing valuable insights for clinical application.
Collapse
Affiliation(s)
- Ganggang Liu
- Orthopaedics, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lu Gao
- Orthopaedics, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuncai Wang
- Orthopaedics, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinsheng Xie
- Orthopaedics, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xuejiao Gao
- Otolaryngology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xingjie Wu
- Orthopaedics, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
5
|
Ren J, Xin R, Cui X, Xu Y, Li C. Quercetin relieves compression-induced cell death and lumbar disc degeneration by stabilizing HIF1A protein. Heliyon 2024; 10:e37349. [PMID: 39296087 PMCID: PMC11408125 DOI: 10.1016/j.heliyon.2024.e37349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
Background Lumbar disc degeneration (LDD) is a prevalent condition characterized by the decreased viability and functional impairment of nucleus pulposus mesenchymal stem cells (NPMSCs). Shaoyao-Gancao decoction (SGD), a traditional Chinese medicine formula, has been used to treat LDD, but its active components and mechanisms are unclear. Methods An integrative network pharmacology and transcriptome analysis were conducted to identify bioactive compounds in SGD that could target LDD. NPMSCs were cultured under mechanical compression as a cellular model of LDD. A rat model of annulus fibrosus needle-puncture was established to induce intervertebral disc degeneration. The effects of quercetin, a predicted active component, on alleviating compression-induced NPMSC death and LDD were evaluated in vitro and in vivo. Results The analysis identified hypoxia-inducible factor 1-alpha (HIF1A) as a potential target of quercetin in LDD. HIF1A was upregulated in degenerated human disc samples and compression-treated NPMSCs. Quercetin treatment alleviated compression-induced oxidative stress, apoptosis, and loss of viability in NPMSCs by stabilizing HIF1A. The protective effects of quercetin were abrogated by HIF1A inhibition. In the rat model, quercetin ameliorated intervertebral disc degeneration. Conclusion Our study identified HIF1A as a protective factor against compression-induced cell death in NPMSCs. Quercetin, a bioactive compound found in the traditional Chinese medicine formula SGD, improved the survival of NPMSCs and alleviated LDD progression by stabilizing HIF1A. Targeting the HIF1A pathway through natural compounds like quercetin could represent a promising strategy for the clinical management of LDD and potentially other degenerative disc diseases.
Collapse
Affiliation(s)
- Junxiao Ren
- The First Clinical Medical College of Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China
| | - Rui Xin
- The First Clinical Medical College of Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China
| | - Xiaoping Cui
- Chongqing Fengdu County Traditional Chinese Medicine Hospital, Chongqing, 408200, China
| | - Yongqing Xu
- The 920th Hospital of Joint Logistics SupportForce of PLA, Kunming, 650032, Yunnan, China
| | - Chuan Li
- The First Clinical Medical College of Yunnan University of Chinese Medicine, Kunming, 650500, Yunnan, China
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| |
Collapse
|
6
|
Chen M, Li F, Qu M, Jin X, He T, He S, Chen S, Yao Q, Wang L, Chen D, Wu X, Xiao G. Pip5k1γ promotes anabolism of nucleus pulposus cells and intervertebral disc homeostasis by activating CaMKII-Ampk pathway in aged mice. Aging Cell 2024; 23:e14237. [PMID: 38840443 PMCID: PMC11488325 DOI: 10.1111/acel.14237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 06/07/2024] Open
Abstract
Degenerative disc disease (DDD) represents a significant global health challenge, yet its underlying molecular mechanisms remain elusive. This study aimed to investigate the role of type 1 phosphatidylinositol 4-phosphate 5-kinase (Pip5k1) in intervertebral disc (IVD) homeostasis and disease. All three Pip5k1 isoforms, namely Pip5k1α, Pip5k1β, and Pip5k1γ, were detectable in mouse and human IVD tissues, with Pip5k1γ displaying a highest expression in nucleus pulposus (NP) cells. The expression of Pip5k1γ was significantly down-regulated in the NP cells of aged mice and patients with severe DDD. To determine whether Pip5k1γ expression is required for disc homeostasis, we generated a Pip5k1γfl/fl; AggrecanCreERT2 mouse model for the conditional knockout of the Pip5k1γ gene in aggrecan-expressing IVD cells. Our findings revealed that the conditional deletion of Pip5k1γ did not affect the disc structure or cellular composition in 5-month-old adult mice. However, in aged (15-month-old) mice, this deletion led to several severe degenerative disc defects, including decreased NP cellularity, spontaneous fibrosis and cleft formation, and a loss of the boundary between NP and annulus fibrosus. At the molecular level, the absence of Pip5k1γ reduced the anabolism of NP cells without markedly affecting their catabolic or anti-catabolic activities. Moreover, the loss of Pip5k1γ significantly dampened the activation of the protective Ampk pathway in NP cells, thereby accelerating NP cell senescence. Notably, Pip5k1γ deficiency blunted the effectiveness of metformin, a potent Ampk activator, in activating the Ampk pathway and mitigating lumbar spine instability (LSI)-induced disc lesions in mice. Overall, our study unveils a novel role for Pip5k1γ in promoting anabolism and maintaining disc homeostasis, suggesting it as a potential therapeutic target for DDD.
Collapse
Affiliation(s)
- Mingjue Chen
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Feiyun Li
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Minghao Qu
- School of MedicineSouthern University of Science and TechnologyShenzhenChina
- Southern University of Science and Technology HospitalShenzhenChina
| | - Xiaowan Jin
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Tailin He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Shuangshuang He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Sheng Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| | - Lin Wang
- School of MedicineSouthern University of Science and TechnologyShenzhenChina
- Southern University of Science and Technology HospitalShenzhenChina
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Xiaohao Wu
- Division of Immunology and RheumatologyStanford UniversityStanfordCaliforniaUSA
- VA Palo Alto Health Care SystemPalo AltoCaliforniaUSA
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease ResearchSouthern University of Science and TechnologyShenzhenChina
| |
Collapse
|
7
|
Tu H, Gao Q, Zhou Y, Peng L, Wu D, Zhang D, Yang J. The role of sirtuins in intervertebral disc degeneration: Mechanisms and therapeutic potential. J Cell Physiol 2024; 239:e31328. [PMID: 38922861 DOI: 10.1002/jcp.31328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/27/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024]
Abstract
Intervertebral disc degeneration (IDD) is one of the main causes of low back pain, which affects the patients' quality of life and health and imposes a significant socioeconomic burden. Despite great efforts made by researchers to understand the pathogenesis of IDD, effective strategies for preventing and treating this disease remain very limited. Sirtuins are a highly conserved family of (NAD+)-dependent deacetylases in mammals that are involved in a variety of metabolic processes in vivo. In recent years, sirtuins have attracted much attention owing to their regulatory roles in IDD on physiological activities such as inflammation, apoptosis, autophagy, aging, oxidative stress, and mitochondrial function. At the same time, many studies have explored the therapeutic effects of sirtuins-targeting activators or micro-RNA in IDD. This review summarizes the molecular pathways of sirtuins involved in IDD, and summarizes the therapeutic role of activators or micro-RNA targeting Sirtuins in IDD, as well as the current limitations and challenges, with a view to provide possible solutions for the treatment of IDD.
Collapse
Affiliation(s)
- Heng Tu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qian Gao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yumeng Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Li Peng
- Key Laboratory of Bio-Resource & Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Dan Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Demao Zhang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jing Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Dai J, Liu J, Shen Y, Zhang B, Li C, Liu Z. Regulation of endoplasmic reticulum stress on autophagy and apoptosis of nucleus pulposus cells in intervertebral disc degeneration and its related mechanisms. PeerJ 2024; 12:e17212. [PMID: 38666076 PMCID: PMC11044878 DOI: 10.7717/peerj.17212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Intervertebral disc degeneration (IVDD) is a common and frequent disease in orthopedics, which seriously affects the quality of life of patients. Endoplasmic reticulum stress (ERS)-regulated autophagy and apoptosis play an important role in nucleus pulposus (NP) cells in IVDD. Hypoxia and serum deprivation were used to induce NP cells. Cell counting kit-8 (CCK-8) assay was used to detect cell activity and immunofluorescence (IF) was applied for the appraisement of glucose regulated protein 78 (GRP78) and green fluorescent protein (GFP)-light chain 3 (LC3). Cell apoptosis was detected by flow cytometry and the expression of LC3II/I was detected by western blot. NP cells under hypoxia and serum deprivation were induced by lipopolysaccharide (LPS), and intervened by ERS inhibitor (4-phenylbutyric acid, 4-PBA) and activator (Thapsigargin, TP). Then, above functional experiments were conducted again and western blot was employed for the evaluation of autophagy-, apoptosis and ERS-related proteins. Finally, NP cells under hypoxia and serum deprivation were stimulated by LPS and intervened using apoptosis inhibitor z-Val-Ala-DL-Asp-fluoromethyl ketone (Z-VAD-FMK) and autophagy inhibitor 3-methyladenine (3-MA). CCK-8 assay, IF, flow cytometry and western blot were performed again. Besides, the levels of inflammatory cytokines were measured with enzyme-linked immunosorbent assay (ELISA) and the protein expressions of programmed death markers were estimated with western blot. It showed that serum deprivation induces autophagy and apoptosis. ERS was significantly activated by LPS in hypoxic and serum deprivation environment, and autophagy and apoptosis were significantly promoted. Overall, ERS affects the occurrence and development of IVDD by regulating autophagy, apoptosis and other programmed death.
Collapse
Affiliation(s)
- Jiuming Dai
- Department of Orthopedics, Binhai County People’s Hospital, Yancheng, China
| | - Jin Liu
- Department of Orthopedics, Binhai County People’s Hospital, Yancheng, China
| | - Yucheng Shen
- Department of Orthopedics, Binhai County People’s Hospital, Yancheng, China
| | - Bing Zhang
- Department of Orthopedics, Binhai County People’s Hospital, Yancheng, China
| | - Chaonian Li
- Department of Traditional Chinese Medicine, Binhai County People’s Hospital, Yancheng, China
| | - Zhidong Liu
- Department of Orthopedics, Binhai County People’s Hospital, Yancheng, China
| |
Collapse
|
9
|
Yurube T. Proteoglycan Dysfunction as a Key Hallmark of Intervertebral Disc Degeneration: Commentary on "Proteoglycan Dysfunction: A Common Link Between Intervertebral Disc Degeneration and Skeletal Dysplasia". Neurospine 2024; 21:179-181. [PMID: 38569643 PMCID: PMC10992636 DOI: 10.14245/ns.2448266.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Affiliation(s)
- Takashi Yurube
- Department of Orthopedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
10
|
Yurube T, Buchser WJ, Zhang Z, Silwal P, Lotze MT, Kang JD, Sowa GA, Vo NV. Rapamycin mitigates inflammation-mediated disc matrix homeostatic imbalance by inhibiting mTORC1 and inducing autophagy through Akt activation. JOR Spine 2024; 7:e1303. [PMID: 38222800 PMCID: PMC10782056 DOI: 10.1002/jsp2.1303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/05/2023] [Accepted: 10/31/2023] [Indexed: 01/16/2024] Open
Abstract
Background Low back pain is a global health problem that originated mainly from intervertebral disc degeneration (IDD). Autophagy, negatively regulated by the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway, prevents metabolic and degenerative diseases by removing and recycling damaged cellular components. Despite growing evidence that autophagy occurs in the intervertebral disc, the regulation of disc cellular autophagy is still poorly understood. Methods Annulus fibrosus (rAF) cell cultures derived from healthy female rabbit discs were used to test the effect of autophagy inhibition or activation on disc cell fate and matrix homeostasis. Specifically, different chemical inhibitors including rapamycin, 3-methyladenine, MK-2206, and PP242 were used to modulate activities of different proteins in the PI3K/Akt/mTOR signaling pathway to assess IL-1β-induced cellular senescence, apoptosis, and matrix homeostasis in rAF cells grown under nutrient-poor culture condition. Results Rapamycin, an inhibitor of mTOR complex 1 (mTORC1), reduced the phosphorylation of mTOR and its effector p70/S6K in rAF cell cultures. Rapamycin also induced autophagic flux as measured by increased expression of key autophagy markers, including LC3 puncta number, LC3-II expression, and cytoplasmic HMGB1 intensity and decreased p62/SQSTM1 expression. As expected, IL-1β stimulation promoted rAF cellular senescence, apoptosis, and matrix homeostatic imbalance with enhanced aggrecanolysis and MMP-3 and MMP-13 expression. Rapamycin treatment effectively mitigated IL-1β-mediated inflammatory stress changes, but these alleviating effects of rapamycin were abrogated by chemical inhibition of Akt and mTOR complex 2 (mTORC2). Conclusions These findings suggest that rapamycin blunts adverse effects of inflammation on disc cells by inhibiting mTORC1 to induce autophagy through the PI3K/Akt/mTOR pathway that is dependent on Akt and mTORC2 activities. Hence, our findings identify autophagy, rapamycin, and PI3K/Akt/mTOR signaling as potential therapeutic targets for IDD treatment.
Collapse
Affiliation(s)
- Takashi Yurube
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic SurgeryUniversity of Pittsburgh Medical Cancer, University of PittsburghPittsburghPennsylvaniaUSA
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - William J. Buchser
- Damage Associated Molecular Pattern Molecule Laboratory, Department of Surgery, Hillman Cancer CenterUniversity of Pittsburgh Cancer Institute, University of PittsburghPittsburghPennsylvaniaUSA
| | - Zhongying Zhang
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic SurgeryUniversity of Pittsburgh Medical Cancer, University of PittsburghPittsburghPennsylvaniaUSA
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Prashanta Silwal
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic SurgeryUniversity of Pittsburgh Medical Cancer, University of PittsburghPittsburghPennsylvaniaUSA
| | - Michael T. Lotze
- Damage Associated Molecular Pattern Molecule Laboratory, Department of Surgery, Hillman Cancer CenterUniversity of Pittsburgh Cancer Institute, University of PittsburghPittsburghPennsylvaniaUSA
| | - James D. Kang
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic SurgeryUniversity of Pittsburgh Medical Cancer, University of PittsburghPittsburghPennsylvaniaUSA
- Department of Orthopedics, Brigham and Women's Hospital, School of MedicineHarvard UniversityBostonMassachusettsUSA
| | - Gwendolyn A. Sowa
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic SurgeryUniversity of Pittsburgh Medical Cancer, University of PittsburghPittsburghPennsylvaniaUSA
- Department of Physical Medicine and RehabilitationUniversity of Pittsburgh Medical Cancer, University of PittsburghPittsburghPennsylvaniaUSA
| | - Nam V. Vo
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic SurgeryUniversity of Pittsburgh Medical Cancer, University of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
11
|
Ma T, Liu C, Zhao Q, Zhang Y, Xiao L. Decellularized nucleus pulposus matrix/chitosan hybrid hydrogel combined with nucleus pulposus stem cells and GDF5-loaded microspheres for intervertebral disc degeneration prevention. Mol Med 2024; 30:7. [PMID: 38200442 PMCID: PMC10782726 DOI: 10.1186/s10020-024-00777-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is considered an important pathological basis for spinal degenerative diseases. Tissue engineering is a powerful therapeutic strategy that can effectively restore the normal biological properties of disc units. In this study, hydrogels loaded with growth/differentiation factor 5 (GDF5) and stem cells were combined to provide an effective strategy for nucleus pulposus regeneration. METHODS Nucleus pulposus stem cells (NPSCs) were obtained by low-density inoculation and culture, and their stem cell characteristics were verified by flow cytometry and a tri-lineage-induced differentiation experiment. A decellularized nucleus pulposus matrix (DNPM) and chitosan hybrid hydrogel was prepared, and GDF5-loaded poly(lactic-co-glycolic acid) (PLGA) microspheres were incorporated into the hydrogels to obtain a composite hydrogels with GDF5-loaded microspheres. Taking bone marrow mesenchymal stem cells (BMSCs) as a reference, the effect of composite hydrogels with GDF5-loaded microspheres on the chondrogenic differentiation of NPSCs was evaluated. A model of intervertebral disc degeneration induced by acupuncture on the tail of rats was constructed, and the repair effect of composite hydrogels with GDF5-loaded microspheres combined with NPSCs on IDD was observed. RESULTS Stem cell phenotype identification, stemness gene expression and tri-lineage-induced differentiation confirmed that NPSCs had characteristics similar to those of BMSCs. The rat DNPM and chitosan hybrid hydrogels had good mechanical properties, and the GDF5-loaded microspheres sustainably released GDF5. NPSCs grew normally in the composite hydrogels and gradually expressed a chondrocyte phenotype. Animal experiments showed that the composite hydrogels with GDF5-loaded microspheres combined with NPSCs effectively promoted nucleus pulposus regeneration and that the effect of the hydrogels on the repair of IDD was significantly better than that of BMSCs. CONCLUSION GDF5-loaded microspheres combined with DNPM/chitosan composite hydrogels can effectively promote the differentiation of NPSCs into nucleus pulposus-like cells and effectively preventIDD.
Collapse
Affiliation(s)
- Tao Ma
- Department of Hand and Foot Surgery, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan West Road, Wuhu, Anhui, 241001, China
| | - Chen Liu
- Department of Spine Surgery, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan West Road, Wuhu, Anhui, 241001, China
| | - Quanlai Zhao
- Department of Spine Surgery, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan West Road, Wuhu, Anhui, 241001, China
| | - Yu Zhang
- Department of Spine Surgery, Yijishan Hospital of Wannan Medical College, No. 2 Zheshan West Road, Wuhu, Anhui, 241001, China
| | - Liang Xiao
- Key Laboratory of Non-Coding RNA Transformation Research of Anhui Higher Education Institution, No. 2 Zheshan West Road, Wuhu, Anhui, 241001, China.
- Spine Research Center of Wannan Medical College, No.22 Wenchang West Road, Wuhu, 241001, China.
| |
Collapse
|