1
|
Soltanian-Zadeh S, Kovalick K, Aghayee S, Miller DT, Liu Z, Hammer DX, Farsiu S. Identifying retinal pigment epithelium cells in adaptive optics-optical coherence tomography images with partial annotations and superhuman accuracy. BIOMEDICAL OPTICS EXPRESS 2024; 15:6922-6939. [PMID: 39679394 PMCID: PMC11640571 DOI: 10.1364/boe.538473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 12/17/2024]
Abstract
Retinal pigment epithelium (RPE) cells are essential for normal retinal function. Morphological defects in these cells are associated with a number of retinal neurodegenerative diseases. Owing to the cellular resolution and depth-sectioning capabilities, individual RPE cells can be visualized in vivo with adaptive optics-optical coherence tomography (AO-OCT). Rapid, cost-efficient, and objective quantification of the RPE mosaic's structural properties necessitates the development of an automated cell segmentation algorithm. This paper presents a deep learning-based method with partial annotation training for detecting RPE cells in AO-OCT images with accuracy better than human performance. We have made the code, imaging datasets, and the manual expert labels available online.
Collapse
Affiliation(s)
- Somayyeh Soltanian-Zadeh
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Katherine Kovalick
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Samira Aghayee
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Donald T. Miller
- School of Optometry, Indiana University, Bloomington, IN 47405, USA
| | - Zhuolin Liu
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Daniel X. Hammer
- Center for Devices and Radiological Health (CDRH), U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Sina Farsiu
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
2
|
Liu Z, Aghayee S, Soltanian-Zadeh S, Kovalick K, Agrawal A, Saeedi O, Cukras C, Chew EY, Farsiu S, Hammer DX. Quantification of Human Photoreceptor-Retinal Pigment Epithelium Macular Topography with Adaptive Optics-Optical Coherence Tomography. Diagnostics (Basel) 2024; 14:1518. [PMID: 39061655 PMCID: PMC11276449 DOI: 10.3390/diagnostics14141518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Photoreceptors (PRs) and retinal pigment epithelial (RPE) cells form a functional unit called the PR-RPE complex. The PR-RPE complex plays a critical role in maintaining retinal homeostasis and function, and the quantification of its structure and topographical arrangement across the macula are important for understanding the etiology, mechanisms, and progression of many retinal diseases. However, the three-dimensional cellular morphology of the PR-RPE complex in living human eyes has not been completely described due to limitations in imaging techniques. We used the cellular resolution and depth-sectioning capabilities of a custom, high-speed Fourier domain mode-locked laser-based adaptive optics-optical coherence tomography (FDML-AO-OCT) platform to characterize human PR-RPE complex topography across the temporal macula from eleven healthy volunteers. With the aid of a deep learning algorithm, key metrics were extracted from the PR-RPE complex of averaged AO-OCT volumes including PR and RPE cell density, PR outer segment length (OSL), and PR/RPE ratio. We found a tight grouping among our cohort for PR density, with a mean (±SD) value of 53,329 (±8106) cells/mm2 at 1° decreasing to 8669 (±737) cells/mm2 at 12°. We observed a power function relationship between eccentricity and both PR density and PR/RPE ratio. We found similar variability in our RPE density measures, with a mean value of 7335 (±681) cells/mm2 at 1° decreasing to 5547 (±356) cells/mm2 at 12°, exhibiting a linear relationship with a negative slope of -123 cells/mm2 per degree. OSL monotonically decreased from 33.3 (±2.4) µm at 1° to 18.0 (±1.8) µm at 12°, following a second-order polynomial relationship. PR/RPE ratio decreased from 7.3 (±0.9) µm at 1° to 1.5 (±0.1) µm at 12°. The normative data from this investigation will help lay a foundation for future studies of retinal pathology.
Collapse
Affiliation(s)
- Zhuolin Liu
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD 20993, USA (S.S.-Z.); (A.A.)
| | - Samira Aghayee
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD 20993, USA (S.S.-Z.); (A.A.)
| | - Somayyeh Soltanian-Zadeh
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD 20993, USA (S.S.-Z.); (A.A.)
| | - Katherine Kovalick
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD 20993, USA (S.S.-Z.); (A.A.)
| | - Anant Agrawal
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD 20993, USA (S.S.-Z.); (A.A.)
| | - Osamah Saeedi
- Department of Ophthalmology, University of Maryland Baltimore School of Medicine, Baltimore, MD 21201, USA;
| | - Catherine Cukras
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA (E.Y.C.)
| | - Emily Y. Chew
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA (E.Y.C.)
| | - Sina Farsiu
- Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA;
| | - Daniel X. Hammer
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD 20993, USA (S.S.-Z.); (A.A.)
| |
Collapse
|
3
|
Govindahari V, Dornier R, Ferdowsi S, Moser C, Mantel I, Behar-Cohen F, Kowalczuk L. High-resolution adaptive optics-trans-scleral flood illumination (AO-TFI) imaging of retinal pigment epithelium (RPE) in central serous chorioretinopathy (CSCR). Sci Rep 2024; 14:13689. [PMID: 38871803 DOI: 10.1038/s41598-024-64524-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/10/2024] [Indexed: 06/15/2024] Open
Abstract
This study aims to correlate adaptive optics-transscleral flood illumination (AO-TFI) images of the retinal pigment epithelium (RPE) in central serous chorioretinopathy (CSCR) with standard clinical images and compare cell morphological features with those of healthy eyes. After stitching 125 AO-TFI images acquired in CSCR eyes (including 6 active CSCR, 15 resolved CSCR, and 3 from healthy contralateral), 24 montages were correlated with blue-autofluorescence, infrared and optical coherence tomography images. All 68 AO-TFI images acquired in pathological areas exhibited significant RPE contrast changes. Among the 52 healthy areas in clinical images, AO-TFI revealed a normal RPE mosaic in 62% of the images and an altered RPE pattern in 38% of the images. Morphological features of the RPE cells were quantified in 54 AO-TFI images depicting clinically normal areas (from 12 CSCR eyes). Comparison with data from 149 AO-TFI images acquired in 33 healthy eyes revealed significantly increased morphological heterogeneity. In CSCR, AO-TFI not only enabled high-resolution imaging of outer retinal alterations, but also revealed RPE abnormalities undetectable by all other imaging modalities. Further studies are required to estimate the prognosis value of these abnormalities. Imaging of the RPE using AO-TFI holds great promise for improving our understanding of the CSCR pathogenesis.
Collapse
Affiliation(s)
- Vishal Govindahari
- Department of Retina, Pushpagiri Eye Institute, Hyderabad, 500026, India
- INSERM UMRS 1138 From Physiopathology of Ocular Diseases to Clinical Developments, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie - Paris 6, 75006, Paris, France
| | - Rémy Dornier
- Laboratory of Applied Photonic Devices (LAPD), School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | | | - Christophe Moser
- Laboratory of Applied Photonic Devices (LAPD), School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Irmela Mantel
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, CH-1004, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, CH-1005, Lausanne, Switzerland
| | - Francine Behar-Cohen
- INSERM UMRS 1138 From Physiopathology of Ocular Diseases to Clinical Developments, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie - Paris 6, 75006, Paris, France
- Assistance Publique - Hôpitaux de Paris, Ophtalmopôle, Cochin Hospital, 75014, Paris, France
- Université Paris Cité, 75006, Paris, France
- Hôpital Foch, Suresnes, France
| | - Laura Kowalczuk
- Laboratory of Applied Photonic Devices (LAPD), School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland.
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, CH-1004, Lausanne, Switzerland.
- Faculty of Biology and Medicine, University of Lausanne, CH-1005, Lausanne, Switzerland.
| |
Collapse
|
4
|
Gofas-Salas E, Lee DMW, Rondeau C, Grieve K, Rossi EA, Paques M, Gocho K. Comparison between Two Adaptive Optics Methods for Imaging of Individual Retinal Pigmented Epithelial Cells. Diagnostics (Basel) 2024; 14:768. [PMID: 38611681 PMCID: PMC11012195 DOI: 10.3390/diagnostics14070768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The Retinal Pigment Epithelium (RPE) plays a prominent role in diseases such as age-related macular degeneration, but imaging individual RPE cells is challenging due to their high absorption and low autofluorescence emission. The RPE lies beneath the highly reflective photoreceptor layer (PR) and contains absorptive pigments, preventing direct backscattered light detection when the PR layer is intact. Here, we used near-infrared autofluorescence adaptive optics scanning laser ophthalmoscopy (NIRAF AOSLO) and transscleral flood imaging (TFI) in the same healthy eyes to cross-validate these approaches. Both methods revealed a consistent RPE mosaic pattern and appeared to reflect a distribution of fluorophores consistent with findings from histological studies. Interestingly, even in apparently healthy RPE, we observed dynamic changes over months, suggesting ongoing cellular activity or alterations in fluorophore distribution. These findings emphasize the value of NIRAF AOSLO and TFI in understanding RPE morphology and dynamics.
Collapse
Affiliation(s)
- Elena Gofas-Salas
- Department of Photonics, Institut de la Vision, INSERM, CNRS, Sorbonne Université, 17 rue Moreau, F-75012 Paris, France;
- CIC 1423, CHNO des Quinze-Vingts, INSERM-DGOS 28 rue de Charenton, F-75012 Paris, France; (M.P.); (K.G.)
| | - Daniel M. W. Lee
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA; (D.M.W.L.); (E.A.R.)
| | | | - Kate Grieve
- Department of Photonics, Institut de la Vision, INSERM, CNRS, Sorbonne Université, 17 rue Moreau, F-75012 Paris, France;
- CIC 1423, CHNO des Quinze-Vingts, INSERM-DGOS 28 rue de Charenton, F-75012 Paris, France; (M.P.); (K.G.)
| | - Ethan A. Rossi
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA; (D.M.W.L.); (E.A.R.)
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Michel Paques
- CIC 1423, CHNO des Quinze-Vingts, INSERM-DGOS 28 rue de Charenton, F-75012 Paris, France; (M.P.); (K.G.)
| | - Kiyoko Gocho
- CIC 1423, CHNO des Quinze-Vingts, INSERM-DGOS 28 rue de Charenton, F-75012 Paris, France; (M.P.); (K.G.)
| |
Collapse
|
5
|
Burri C, Salzmann S, Wandel J, Hoffmann L, Považay B, Meier C, Frenz M. Real-time OCT feedback-controlled RPE photodisruption in ex vivo porcine eyes using 8 microsecond laser pulses. BIOMEDICAL OPTICS EXPRESS 2023; 14:6328-6349. [PMID: 38420306 PMCID: PMC10898567 DOI: 10.1364/boe.503941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/24/2023] [Accepted: 11/12/2023] [Indexed: 03/02/2024]
Abstract
Selective retinal pigment epithelium (RPE) photodisruption requires reliable real-time feedback dosimetry (RFD) to prevent unwanted overexposure. In this study, optical coherence tomography (OCT) based RFD was investigated in ex vivo porcine eyes exposed to laser pulses of 8 µs duration (wavelength: 532 nm, exposure area: 90 × 90 µm2, radiant exposure: 247 to 1975 mJ/µm2). For RFD, fringe washouts in time-resolved OCT M-scans (central wavelength: 870 nm, scan rate: 85 kHz) were compared to an RPE cell viability assay. Statistical analysis revealed a moderate correlation between RPE lesion size and applied treatment energy, suggesting RFD adaptation to inter- and intraindividual RPE pigmentation and ocular transmission.
Collapse
Affiliation(s)
- Christian Burri
- optoLab, Institute for Human Centered Engineering, Bern University of Applied Sciences, Biel, Switzerland
- Biomedical Photonics Group, Institute of Applied Physics, University of Bern, Bern, Switzerland
| | - Simon Salzmann
- optoLab, Institute for Human Centered Engineering, Bern University of Applied Sciences, Biel, Switzerland
| | - Jasmin Wandel
- Institute for Optimisation and Data Analysis, Bern University of Applied Sciences, Burgdorf, Switzerland
| | - Leonie Hoffmann
- optoLab, Institute for Human Centered Engineering, Bern University of Applied Sciences, Biel, Switzerland
| | - Boris Považay
- optoLab, Institute for Human Centered Engineering, Bern University of Applied Sciences, Biel, Switzerland
| | - Christoph Meier
- optoLab, Institute for Human Centered Engineering, Bern University of Applied Sciences, Biel, Switzerland
| | - Martin Frenz
- Biomedical Photonics Group, Institute of Applied Physics, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Lee B, Jeong S, Lee J, Kim TS, Braaf B, Vakoc BJ, Oh WY. Wide-Field Three-Dimensional Depth-Invariant Cellular-Resolution Imaging of the Human Retina. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2203357. [PMID: 36642824 PMCID: PMC10023497 DOI: 10.1002/smll.202203357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Three-dimensional (3D) cellular-resolution imaging of the living human retina over a large field of view will bring a great impact in clinical ophthalmology, potentially finding new biomarkers for early diagnosis and improving the pathophysiological understanding of ocular diseases. While hardware-based and computational adaptive optics (AO) optical coherence tomography (OCT) have been developed to achieve cellular-resolution retinal imaging, these approaches support limited 3D imaging fields, and their high cost and intrinsic hardware complexity limit their practical utility. Here, this work demonstrates 3D depth-invariant cellular-resolution imaging of the living human retina over a 3 × 3 mm field of view using the first intrinsically phase-stable multi-MHz retinal swept-source OCT and novel computational defocus and aberration correction methods. Single-acquisition imaging of photoreceptor cells, retinal nerve fiber layer, and retinal capillaries is presented across unprecedented imaging fields. By providing wide-field 3D cellular-resolution imaging in the human retina using a standard point-scan architecture routinely used in the clinic, this platform proposes a strategy for expanded utilization of high-resolution retinal imaging in both research and clinical settings.
Collapse
Affiliation(s)
- ByungKun Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Sunhong Jeong
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Joosung Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Tae Shik Kim
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston 02140, USA
| | - Boy Braaf
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston 02140, USA
| | - Benjamin J. Vakoc
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston 02140, USA
| | - Wang-Yuhl Oh
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|