1
|
Togami K, Kanehira Y, Yumita Y, Ozaki H, Wang R, Tada H, Chono S. Heterogenous Intrapulmonary Distribution of Aerosolized Model Compounds in Mice with Bleomycin-Induced Pulmonary Fibrosis. J Aerosol Med Pulm Drug Deliv 2023; 36:289-299. [PMID: 37843890 DOI: 10.1089/jamp.2023.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
Background: A distinctive pathological feature of idiopathic pulmonary fibrosis (IPF) is the aberrant accumulation of extracellular matrix components in the alveoli in abnormal remodeling and reconstruction following scarring of the alveolar structure. The current antifibrotic agents used for IPF therapy frequently result in systemic side effects because these agents are distributed, through the blood, to many different tissues after oral administration. In contrast to oral administration, the intrapulmonary administration of aerosolized drugs is believed to be an efficient method for their direct delivery to the focus sites in the lungs. However, how fibrotic lesions alter the distribution of aerosolized drugs following intrapulmonary administration remains largely unknown. In this study, we evaluate the intrapulmonary distribution characteristics of aerosolized model compounds in mice with bleomycin-induced pulmonary fibrosis through imaging the organs and alveoli. Methods: Aerosolized model compounds were administered to mice with bleomycin-induced pulmonary fibrosis using a Liquid MicroSprayer®. The intrapulmonary distribution characteristics of aerosolized model compounds were evaluated through several imaging techniques, including noninvasive lung imaging using X-ray computed tomography, ex vivo imaging using zoom fluorescence microscopy, frozen tissue section observation, and three-dimensional imaging with tissue-clearing treatment using confocal laser microscopy. Results: In fibrotic lungs, the aerosolized model compounds were heterogeneously distributed. In observations of frozen tissue sections, model compounds were observed only in the fibrotic foci near airless spaces called honeycombs. In three-dimensional imaging of cleared tissue from fibrotic lungs, the area of the model compound in the alveolar space was smaller than in healthy lungs. Conclusion: The intrapulmonary deposition of extracellular matrix associated with pulmonary fibrosis limits the intrapulmonary distribution of aerosolized drugs. The development of delivery systems for antifibrotic agents to improve the distribution characteristics in fibrotic foci is necessary for effective IPF therapy.
Collapse
Affiliation(s)
- Kohei Togami
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Japan
- Creation Research Institute of Life Science in KITA-no-DAICHI, Sapporo, Japan
- Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, Sapporo, Japan
| | - Yukimune Kanehira
- Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, Sapporo, Japan
| | - Yuki Yumita
- Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, Sapporo, Japan
| | - Hiroaki Ozaki
- Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, Sapporo, Japan
| | - Rui Wang
- Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, Sapporo, Japan
| | - Hitoshi Tada
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Japan
- Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, Sapporo, Japan
| | - Sumio Chono
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Japan
- Creation Research Institute of Life Science in KITA-no-DAICHI, Sapporo, Japan
- Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, Sapporo, Japan
| |
Collapse
|
2
|
Kumar M, Jha A, Bharti K, Parmar G, Mishra B. Advances in lipid-based pulmonary nanomedicine for the management of inflammatory lung disorders. Nanomedicine (Lond) 2022; 17:913-934. [PMID: 35451334 DOI: 10.2217/nnm-2021-0389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inflammatory lung disorders have become one of the fastest growing global healthcare concerns, with more than 500 million annual cases of disorders such as chronic obstructive pulmonary disease, asthma and pulmonary fibrosis. Owing to environmental changes and socioeconomic disparity, the numbers are expected to grow even more in years to come. The therapeutic strategies and approved drugs currently employed in the management of inflammatory lung disorders show dose-dependent resistance and pharmacokinetic limitations. This review comprehensively discusses lipid-based pulmonary nanomedicine as a potential platform to overcome these barriers while ensuring site-specific drug delivery and minimal side effects in nontargeted tissues for the management of noninfectious inflammatory lung disorders.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Abhishek Jha
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Kanchan Bharti
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Gourav Parmar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Brahmeshwar Mishra
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|
3
|
Three-Dimensional Imaging of Pulmonary Fibrotic Foci at the Alveolar Scale Using Tissue-Clearing Treatment with Staining Techniques of Extracellular Matrix. Int J Biomed Imaging 2021; 2020:8815231. [PMID: 33456450 PMCID: PMC7787752 DOI: 10.1155/2020/8815231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 01/21/2023] Open
Abstract
Idiopathic pulmonary fibrosis is a progressive, chronic lung disease characterized by the accumulation of extracellular matrix proteins, including collagen and elastin. Imaging of extracellular matrix in fibrotic lungs is important for evaluating its pathological condition as well as the distribution of drugs to pulmonary focus sites and their therapeutic effects. In this study, we compared techniques of staining the extracellular matrix with optical tissue-clearing treatment for developing three-dimensional imaging methods for focus sites in pulmonary fibrosis. Mouse models of pulmonary fibrosis were prepared via the intrapulmonary administration of bleomycin. Fluorescent-labeled tomato lectin, collagen I antibody, and Col-F, which is a fluorescent probe for collagen and elastin, were used to compare the imaging of fibrotic foci in intact fibrotic lungs. These lung samples were cleared using the ClearT2 tissue-clearing technique. The cleared lungs were two dimensionally observed using laser-scanning confocal microscopy, and the images were compared with those of the lung tissue sections. Moreover, three-dimensional images were reconstructed from serial two-dimensional images. Fluorescent-labeled tomato lectin did not enable the visualization of fibrotic foci in cleared fibrotic lungs. Although collagen I in fibrotic lungs could be visualized via immunofluorescence staining, collagen I was clearly visible only until 40 μm from the lung surface. Col-F staining facilitated the visualization of collagen and elastin to a depth of 120 μm in cleared lung tissues. Furthermore, we visualized the three-dimensional extracellular matrix in cleared fibrotic lungs using Col-F, and the images provided better visualization than immunofluorescence staining. These results suggest that ClearT2 tissue-clearing treatment combined with Col-F staining represents a simple and rapid technique for imaging fibrotic foci in intact fibrotic lungs. This study provides important information for imaging various organs with extracellular matrix-related diseases.
Collapse
|
4
|
Togami K, Maruta Y, Nanbu M, Tada H, Chono S. Prolonged distribution of aerosolized PEGylated liposomes in the lungs of mice with bleomycin-induced pulmonary fibrosis. Drug Dev Ind Pharm 2020; 46:1873-1880. [PMID: 32940095 DOI: 10.1080/03639045.2020.1825473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Idiopathic pulmonary fibrosis (IPF) is a progressive and chronic lung disease characterized by abnormal remodeling of the lung parenchyma with subsequent scarring of the alveolar structure. In this study, we examined the distribution characteristics of aerosolized polyethylene glycol (PEG)ylated liposomes in the lungs of mice with bleomycin-induced pulmonary fibrosis. SIGNIFICANCE The present study details the utility of aerosolized PEGylated liposomes for improving intrapulmonary pharmacokinetics in fibrotic lungs. METHODS Aerosolized PEGylated liposomes were administered to fibrotic mouse lungs using a MicroSprayer. Intrapulmonary pharmacokinetics was evaluated via in vivo imaging, measurement of liposome concentrations in bronchoalveolar lavage fluid (BALF) and alveolar macrophages (AMs), and observation of lung tissue sections. In addition, in vitro accumulation experiments using WI-38, A549, and RAW264.7 cells were performed. RESULTS The decrease of the fluorescence intensity of the PEGylated liposomes was slower than that of the non-modified liposomes. Compared with the non-modified liposomes, the PEGylated liposomes were determined higher in BALF, whereas those in the AMs were lower. Both PEGylated and non-modified liposomes were widely dispersed in fibrotic regions in tissue sections. No difference in accumulation in WI-38 and A549 cells was noted between PEGylated and non-modified liposomes, whereas the PEGylated liposomes exhibited lower intracellular accumulation than non-modified liposomes in RAW264.7 cells. CONCLUSION Aerosolized drug delivery systems using PEGylated liposomes exhibited prolonged distribution in both healthy and fibrotic mouse lungs. PEGylated liposomes were determined to be efficient drug delivery systems for anti-fibrotic agents targeting lung fibroblasts and alveolar epithelial cells for optimizing the treatment of IPF.
Collapse
Affiliation(s)
- Kohei Togami
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Japan.,Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, Sapporo, Japan.,Creation Research Institute of Life Science in KITA-no-DAICHI, Sapporo, Japan
| | - Yuki Maruta
- Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, Sapporo, Japan
| | - Mao Nanbu
- Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, Sapporo, Japan
| | - Hitoshi Tada
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Japan.,Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, Sapporo, Japan
| | - Sumio Chono
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Japan.,Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, Sapporo, Japan.,Creation Research Institute of Life Science in KITA-no-DAICHI, Sapporo, Japan
| |
Collapse
|
5
|
Togami K. [Intrapulmonary Pharmacokinetics and Drug Distribution Characteristics for the Treatment of Respiratory Diseases]. YAKUGAKU ZASSHI 2020; 140:345-354. [PMID: 32115551 DOI: 10.1248/yakushi.19-00155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study was designed to clarify the intrapulmonary pharmacokinetics and distribution characteristics of drugs in order to develop better therapies for respiratory diseases, including respiratory infections and pulmonary fibrosis. The distribution characteristics of three macrolide antimicrobial agents-clarithromycin, azithromycin, and telithromycin-in plasma, lung epithelial lining fluid (ELF), and alveolar macrophages (AMs), were examined for the optimization of antimicrobial therapy. The time course of the uptake of these agents in ELF and AMs, following oral administration to rats, resulted in markedly higher concentrations than that in plasma. The high concentration of the agents in AMs was due to their sustained distribution to ELF via multidrug resistance protein 1 and to high uptake by AMs themselves via active transport mechanisms and trapping and/or binding in acidic organelles. The intrapulmonary pharmacokinetics of aerosolized model compounds administered to animals with bleomycin-induced pulmonary fibrosis via aerosol formulations of model compounds (MicroSprayer) were then evaluated. The concentrations of these compounds in the plasma of pulmonary fibrotic rats were markedly higher than in that of control rats. The expression of epithelial tight junctions decreased in pulmonary fibrotic lesions. The accumulation of extracellular matrix inhibited the intrapulmonary distribution of aerosolized model compounds, indicating that aerosolized drugs are easily absorbed after leakage through damaged alveolar epithelia, but cannot become widely distributed in the lungs because of interruption by the extracellular matrix. This review provides useful findings for the development of therapies for respiratory infections and pulmonary fibrosis.
Collapse
Affiliation(s)
- Kohei Togami
- Faculty of Pharmaceutical Sciences, Hokkaido University of Science
| |
Collapse
|
6
|
Togami K, Yamaguchi K, Chono S, Tada H. Evaluation of permeability alteration and epithelial–mesenchymal transition induced by transforming growth factor-β1 in A549, NCI-H441, and Calu-3 cells: Development of an in vitro model of respiratory epithelial cells in idiopathic pulmonary fibrosis. J Pharmacol Toxicol Methods 2017; 86:19-27. [DOI: 10.1016/j.vascn.2017.02.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 11/11/2016] [Accepted: 02/27/2017] [Indexed: 10/20/2022]
|
7
|
Kaneko K, Togami K, Yamamoto E, Wang S, Morimoto K, Itagaki S, Chono S. Sustained distribution of aerosolized PEGylated liposomes in epithelial lining fluids on alveolar surfaces. Drug Deliv Transl Res 2016; 6:565-71. [PMID: 27334278 DOI: 10.1007/s13346-016-0310-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The distribution characteristics of aerosolized PEGylated liposomes in alveolar epithelial lining fluid (ELF) were examined in rats, and the ensuing mechanisms were investigated in the in vitro uptake and protein adsorption experiments. Nonmodified or PEGylated liposomes (particle size 100 nm) were aerosolized into rat lungs. PEGylated liposomes were distributed more sustainably in ELFs than nonmodified liposomes. Furthermore, the uptake of PEGylated liposomes by alveolar macrophages (AMs) was less than that of nonmodified liposomes. In further in vitro uptake experiments, nonmodified and PEGylated liposomes were opsonized with rat ELF components and then added to NR8383 cells as cultured rat AMs. The uptake of opsonized PEGylated liposomes by NR8383 cells was lower than that of opsonized nonmodified liposomes. Moreover, the protein absorption levels in opsonized PEGylated liposomes were lower than those in opsonized nonmodified liposomes. These findings suggest that sustained distributions of aerosolized PEGylated liposomes in ELFs reflect evasion of liposomal opsonization with surfactant proteins and consequent reductions in uptake by AMs. These data indicate the potential of PEGylated liposomes as aerosol-based drug delivery system that target ELF for the treatment of respiratory diseases.
Collapse
Affiliation(s)
- Keita Kaneko
- Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, 7-15-4-1 Maeda, Teine, Sapporo, Hokkaido, 006-8590, Japan
| | - Kohei Togami
- Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, 7-15-4-1 Maeda, Teine, Sapporo, Hokkaido, 006-8590, Japan
| | - Eri Yamamoto
- Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, 7-15-4-1 Maeda, Teine, Sapporo, Hokkaido, 006-8590, Japan
| | - Shujun Wang
- Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, 7-15-4-1 Maeda, Teine, Sapporo, Hokkaido, 006-8590, Japan
| | - Kazuhiro Morimoto
- Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, 7-15-4-1 Maeda, Teine, Sapporo, Hokkaido, 006-8590, Japan.,Nihon Pharmaceutical University, Ina, Japan
| | - Shirou Itagaki
- Department of Pharmacy, Hirosaki University School of Medicine and Hospital, 53, Hon-cho, Hirosaki, 036-8563, Japan
| | - Sumio Chono
- Division of Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy, 7-15-4-1 Maeda, Teine, Sapporo, Hokkaido, 006-8590, Japan.
| |
Collapse
|