1
|
Huang Q, Hu J, Mei D, Li G, Rong J. Optimization of lyoprotectant for recombinant human acidic fibroblast growth factor by response surface methodology. Prep Biochem Biotechnol 2024:1-11. [PMID: 39028537 DOI: 10.1080/10826068.2024.2378098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Recombinant human acidic fibroblast growth factor (rh-aFGF) is a widely used biological product, but it is unstable and its biological activity is easy to decrease. In order to maintain the long-term stability and biological activity of rh-aFGF, based on the response surface method, the freeze-drying characterization and cell proliferation rate of rh-aFGF freeze-dried powder were evaluated by scoring and Methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay in this study. The optimal concentrations of trehalose, glycine and BSA were optimized, and the optimal formulation was verified by regression experiment. The results showed that trehalose, glycine and BSA had significant effects on the characterization of lyophilized rh-aFGF and cell proliferation. The optimal formulation of 5.7% trehalose, 2.04% glycine and 1.98%BSA combined with rh-aFGF could achieve the optimal freeze-dried characterization and biological activity. Using the best formulation to verify, the freeze-dried formability index of the freeze-dried powder was 23.35, and the rate of cell proliferation was 43.59%, which was close to the expected 23 and 41.69%. This study determined a freeze-dried formulation of rh-aFGF that meets the requirements of freeze-dried formalization integrity and maintains biological activity, providing reliable support for the subsequent development of related drugs.
Collapse
Affiliation(s)
- Qiwen Huang
- College of Life Science, Yangtze University, Jingzhou, PR China
| | - Jing Hu
- College of Life Science, Yangtze University, Jingzhou, PR China
| | - Dongjie Mei
- College of Life Science, Yangtze University, Jingzhou, PR China
| | - Guopan Li
- College of Life Science, Yangtze University, Jingzhou, PR China
- Jingzhou Changxin Biotechnology Co, Ltd, Jingzhou, PR China
| | - Jun Rong
- College of Life Science, Yangtze University, Jingzhou, PR China
- Jingzhou Changxin Biotechnology Co, Ltd, Jingzhou, PR China
| |
Collapse
|
2
|
Coussot G, Le Postollec A, Delbecq S, Dobrijevic M. Freeze-drying of few microliters of antibody formulations to implement 384-wells homogeneous instant assays. Anal Chim Acta 2023; 1277:341660. [PMID: 37604613 DOI: 10.1016/j.aca.2023.341660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/03/2023] [Accepted: 07/25/2023] [Indexed: 08/23/2023]
Abstract
Enzyme-linked immunosorbent assay protocols have traditionally complex workflows with several intensive wash steps. Analytical tools with both shorter time-to-result and hands-on-time using smaller sample and assays reagents volumes are now investigated. In this context, fluorescence resonance energy transfer (FRET)-based assays are emerging as one of the most promising analytical tools in high-throughput screening (HTS). These immunoassays allow fast quantification of antigens at the nano-gram level in a final assay volume of only a few μL. We used a homogeneous time-resolved FRET (called HTRF) assay to develop a freeze-dried screening and ready-to-use format with only one rehydration step called "instant assay". To assure optimal performance of the developed homogeneous instant assay, we investigated the critical quality attributes by studying the functionality and stability of the critical reagents and fluorophores. The cyclic adenosine 3'-5'-monophosphate (cAMP) was selected as the antigen target. We tested various formulations (with different buffers, sugars, bulking reagents, surfactants and co-solvants) combined with a slow freezing and the use of an aluminium plate holder during the freeze-drying of few microliter of bioreagents. The optimized freeze-drying procedure permits to preserve more than 70% of Ab recognition properties. The developed off-the-shelf homogeneous FRET immunoassay allows direct and fast quantification of cAMP at a nanogram level.
Collapse
Affiliation(s)
- G Coussot
- Faculté des Sciences Pharmaceutiques et Biologiques, Université de Montpellier, 15 Avenue Charles Flahault, 34090, Montpellier, France.
| | - A Le Postollec
- Laboratoire d'astrophysique de Bordeaux (LAB), CNRS UMR 5804, Université de Bordeaux, B18N, allée Geoffroy Saint-Hilaire, 33615, Pessac, France
| | - S Delbecq
- Centre de Biologie Structurale (CBS), INSERM U1054, CNRS UMR 5048, Université de Montpellier, 34090, Montpellier, France
| | - M Dobrijevic
- Laboratoire d'astrophysique de Bordeaux (LAB), CNRS UMR 5804, Université de Bordeaux, B18N, allée Geoffroy Saint-Hilaire, 33615, Pessac, France
| |
Collapse
|
3
|
Juma KM, Inoue E, Asada K, Fukuda W, Morimoto K, Yamagata M, Takita T, Kojima K, Suzuki K, Nakura Y, Yanagihara I, Fujiwara S, Yasukawa K. Recombinase polymerase amplification using novel thermostable strand-displacing DNA polymerases from Aeribacillus pallidus and Geobacillus zalihae. J Biosci Bioeng 2023; 135:282-290. [PMID: 36806411 DOI: 10.1016/j.jbiosc.2023.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 02/19/2023]
Abstract
Recombinase polymerase amplification (RPA) is an isothermal DNA amplification reaction at around 41 °C using recombinase (Rec), single-stranded DNA-binding protein (SSB), and strand-displacing DNA polymerase (Pol). Component instability and the need to store commercial kits in a deep freezer until use are some limitations of RPA. In a previous study, Bacillus stearothermophilus Pol (Bst-Pol) was used as a thermostable strand-displacing DNA polymerase in RPA. Here, we attempted to optimize the lyophilization conditions for RPA with newly isolated thermostable DNA polymerases for storage at room temperature. We isolated novel two thermostable strand-displacing DNA polymerases, one from a thermophilic bacterium Aeribacillus pallidus (H1) and the other from Geobacillus zalihae (C1), and evaluated their performances in RPA reaction. Urease subunit β (UreB) DNA from Ureaplasma parvum serovar 3 was used as a model target for evaluation. The RPA reaction with H1-Pol or C1-Pol was performed at 41 °C with the in vitro synthesized standard UreB DNA. The minimal initial copy numbers of standard DNA from which the amplified products were observed were 600, 600, and 6000 copies for RPA with H1-Pol, C1-Pol, and Bst-Pol, respectively. Optimization was carried out using RPA components, showing that the lyophilized RPA reagents containing H1-Pol exhibited the same performance as the corresponding liquid RPA reagents. In addition, lyophilized RPA reagents with H1-Pol showed almost the same activity after two weeks of storage at room temperature as the freshly prepared liquid RPA reagents. These results suggest that lyophilized RPA reagents with H1-Pol are preferable to liquid RPA reagents for onsite use.
Collapse
Affiliation(s)
- Kevin Maafu Juma
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Eisuke Inoue
- Department of Biosciences, School of Biological and Environmental Sciences, Kwansei-Gakuin University, Sanda, Hyogo 669-1330, Japan
| | - Kengo Asada
- Department of Biosciences, School of Biological and Environmental Sciences, Kwansei-Gakuin University, Sanda, Hyogo 669-1330, Japan
| | - Wakao Fukuda
- Department of Biosciences, School of Biological and Environmental Sciences, Kwansei-Gakuin University, Sanda, Hyogo 669-1330, Japan
| | - Kenta Morimoto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masaya Yamagata
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Teisuke Takita
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kenji Kojima
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Himeji, Hyogo 670-8524, Japan
| | - Koichiro Suzuki
- The Research Foundation for Microbial Diseases of Osaka University, Suita, Osaka 565-0871, Japan
| | - Yukiko Nakura
- Department of Developmental Medicine, Research Institute, Osaka Women's and Children's Hospital, Izumi-shi, Osaka 594-1101, Japan
| | - Itaru Yanagihara
- Department of Developmental Medicine, Research Institute, Osaka Women's and Children's Hospital, Izumi-shi, Osaka 594-1101, Japan
| | - Shinsuke Fujiwara
- Department of Biosciences, School of Biological and Environmental Sciences, Kwansei-Gakuin University, Sanda, Hyogo 669-1330, Japan
| | - Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
4
|
Elsebay MT, Eissa NG, Balata GF, Kamal MA, Elnahas HM. Nanosuspension: A Formulation Technology for Tackling the Poor Aqueous Solubility and Bioavailability of Poorly Soluble Drugs. Curr Pharm Des 2023; 29:2297-2312. [PMID: 37694786 DOI: 10.2174/1381612829666230911105922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 09/12/2023]
Abstract
The poor water solubility of numerous novel drug candidates presents significant challenges, particularly in terms of oral administration. This limitation can result in various undesirable clinical implications, such as inter-patient variability, poor bioavailability, difficulties in achieving a safe therapeutic index, increased costs, and potential risks of toxicity or inefficacy. Biopharmaceutics Classification System (BCS) class II drugs face particular hurdles due to their limited solubility in the aqueous media of the gastrointestinal tract. In such cases, parenteral administration is often employed as an alternative strategy. To address these challenges, nanosuspension techniques offer a promising solution for enhancing drug solubility and overcoming oral delivery obstacles. This technique has the potential to bridge the gap between drug discovery and preclinical use by resolving problematic solubility. This literature review has delved into contemporary nanosuspension preparation technologies and the incorporation of stabilizing ingredients within the formulation. Furthermore, the manuscript explores nanosuspension strategies for both oral and parenteral/other delivery routes, and separate discussions have been presented to establish a suitable flow that addresses the challenges and strategies relevant to each administration method.
Collapse
Affiliation(s)
- Mohamed T Elsebay
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Noura G Eissa
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
- School of Biotechnology and Science Academy, Badr University in Cairo, Badr City, Cairo, 11829, Egypt
| | - Gehan F Balata
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
- Department of Pharmacy Practice, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Birulia, Bangladesh
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia
- Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Hanan M Elnahas
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
5
|
The role of Raman spectroscopy in biopharmaceuticals from development to manufacturing. Anal Bioanal Chem 2021; 414:969-991. [PMID: 34668998 PMCID: PMC8724084 DOI: 10.1007/s00216-021-03727-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/08/2021] [Indexed: 12/21/2022]
Abstract
Biopharmaceuticals have revolutionized the field of medicine in the types of active ingredient molecules and treatable indications. Adoption of Quality by Design and Process Analytical Technology (PAT) frameworks has helped the biopharmaceutical field to realize consistent product quality, process intensification, and real-time control. As part of the PAT strategy, Raman spectroscopy offers many benefits and is used successfully in bioprocessing from single-cell analysis to cGMP process control. Since first introduced in 2011 for industrial bioprocessing applications, Raman has become a first-choice PAT for monitoring and controlling upstream bioprocesses because it facilitates advanced process control and enables consistent process quality. This paper will discuss new frontiers in extending these successes in upstream from scale-down to commercial manufacturing. New reports concerning the use of Raman spectroscopy in the basic science of single cells and downstream process monitoring illustrate industrial recognition of Raman’s value throughout a biopharmaceutical product’s lifecycle. Finally, we draw upon a nearly 90-year history in biological Raman spectroscopy to provide the basis for laboratory and in-line measurements of protein quality, including higher-order structure and composition modifications, to support formulation development.
Collapse
|
6
|
Development of a stable lyophilized adeno-associated virus gene therapy formulation. Int J Pharm 2021; 606:120912. [PMID: 34298099 DOI: 10.1016/j.ijpharm.2021.120912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 11/21/2022]
Abstract
Adeno-associated viruses (AAV) are among the most actively investigated vectors for gene therapy. Supply of early clinical studies with frozen drug product (DP) can accelerate timelines and minimize degradation risks. In the long-term, logistical challenges of frozen DP may limit patient access. In this work, we developed a lyophilized (freeze-dried) formulation of AAV. The mass concentration of AAV is typically low, and AAV also requires a minimum ionic strength to inhibit aggregation. These factors result in a low collapse temperature, which is limiting to lyophilization. Mannitol crystallization was found to cause extensive degradation and potency loss of AAV during the freezing step. With further development, we determined that AAV could be lyophilized in a sucrose and citrate formulation with a more desirable high glass transition temperature of the dried cake. An optimal residual moisture range (1-3%) was found to be critical to maintaining AAV8 stability. Glycerol was found to protect AAV8 from over-drying by preventing capsid damage and genome DNA release. A lyophilized formulation was identified that maintained potency for 24 months at 2-8 °C, indicating the feasibility of a dried formulation for AAV gene therapy.
Collapse
|
7
|
Klijn ME, Hubbuch J. Application of ultraviolet, visible, and infrared light imaging in protein-based biopharmaceutical formulation characterization and development studies. Eur J Pharm Biopharm 2021; 165:319-336. [PMID: 34052429 DOI: 10.1016/j.ejpb.2021.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/29/2021] [Accepted: 05/12/2021] [Indexed: 01/10/2023]
Abstract
Imaging is increasingly more utilized as analytical technology in biopharmaceutical formulation research, with applications ranging from subvisible particle characterization to thermal stability screening and residual moisture analysis. This review offers a comprehensive overview of analytical imaging for scientists active in biopharmaceutical formulation research and development, where it presents the unique information provided by the ultraviolet (UV), visible (Vis), and infrared (IR) sections in the electromagnetic spectrum. The main body of this review consists of an outline of UV, Vis, and IR imaging techniques for several (bio)physical properties that are commonly determined during protein-based biopharmaceutical formulation characterization and development studies. The review concludes with a future perspective of applied imaging within the field of biopharmaceutical formulation research.
Collapse
Affiliation(s)
- Marieke E Klijn
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, the Netherlands.
| | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| |
Collapse
|
8
|
Starciuc T, Malfait B, Danede F, Paccou L, Guinet Y, Correia NT, Hedoux A. Trehalose or Sucrose: Which of the Two Should be Used for Stabilizing Proteins in the Solid State? A Dilemma Investigated by In Situ Micro-Raman and Dielectric Relaxation Spectroscopies During and After Freeze-Drying. J Pharm Sci 2020; 109:496-504. [DOI: 10.1016/j.xphs.2019.10.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/15/2019] [Accepted: 10/29/2019] [Indexed: 10/25/2022]
|
9
|
Starciuc T, Tabary N, Paccou L, Duponchel L, Guinet Y, Martel B, Hédoux A. A detailed analysis of the influence of β-cyclodextrin derivates on the thermal denaturation of lysozyme. Int J Pharm 2019; 554:1-13. [DOI: 10.1016/j.ijpharm.2018.10.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 12/07/2022]
|