1
|
Ahmed Tawfik M, Eltaweel MM, Farag MM, Shamsel-Din HA, Ibrahim AB. Sonophoresis-assisted transdermal delivery of antimigraine-loaded nanolipomers: Radio-tracking, histopathological assessment and in-vivo biodistribution study. Int J Pharm 2023; 644:123338. [PMID: 37607646 DOI: 10.1016/j.ijpharm.2023.123338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023]
Abstract
Migraine is a disabling neurovascular polygenic disorder affecting life quality with escorted socioeconomic encumbrances. Herein, we investigated the consolidated amalgamation of passive lipomer approach alongside active sonophoresis assisted transdermal delivery of zolmitriptan (ZT) using high frequency ultrasound pre-treatment protocol to mitigate migraine attacks. A modified nanoprecipitation technique was utilized to prepare zolmitriptan loaded lipomers (ZTL) adopting 23 factorial design. Three factors were scrutinized namely lipid type, ZT: lipid ratio and ZT: Gantrez® ratio. The prepared systems were characterized regarding particle size, zeta potential, polydispersity index, entrapment efficiency and in-vitro release studies. The best achieved ZTL system was evaluated for ZT- Gantrez® intermolecular interactions, drug crystallinity, morphology, ex-vivo permeation and histopathological examination. Finally, a comparative in-vivo biodistribution study through radiotracking technique using Technetium-99 m was adopted. L2 was the best-achieved ZTL system with respect to spherical particle size (390.7 nm), zeta-potential (-30.8 mV), PDI (0.2), entrapment efficiency (86.2%), controlled release profile, flux (147.13 μg/cm2/hr) and enhancement ratio (5.67). Histopathological studies proved the safety of L2 system upon application on skin. L2 revealed higher brain Cmax (12.21 %ID/g), prolonged brain MRT (8.67 hr), prolonged brain 0.23 hr), significantly high relative bioavailability (2929.36%) and similar brain Tmax (0.5 hr) compared to I.V. route with higher brain/blood ratio. Thus, sonophoresis assisted transdermal delivery of ZTL offers a propitious alterative to alleviate migraine symptoms.
Collapse
Affiliation(s)
- Mai Ahmed Tawfik
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt
| | - Mai M Eltaweel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt
| | - Michael M Farag
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt.
| | - Hesham A Shamsel-Din
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt
| | - Ahmed B Ibrahim
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt
| |
Collapse
|
2
|
Dul M, Alali M, Ameri M, Burke MD, Craig CM, Creelman BP, Dick L, Donnelly RF, Eakins MN, Frivold C, Forster AH, Gilbert PA, Henke S, Henry S, Hunt D, Lewis H, Maibach HI, Mistilis JJ, Park JH, Prausnitz MR, Robinson DK, Hernandez CAR, Ross C, Shin J, Speaker TJ, Taylor KM, Zehrung D, Birchall JC, Jarrahian C, Coulman SA. Assessing the risk of a clinically significant infection from a Microneedle Array Patch (MAP) product. J Control Release 2023; 361:236-245. [PMID: 37437849 DOI: 10.1016/j.jconrel.2023.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/14/2023]
Abstract
Microneedle Array Patches (MAPs) are an emerging dosage form that creates transient micron-sized disruptions in the outermost physical skin barrier, the stratum corneum, to facilitate delivery of active pharmaceutical ingredients to the underlying tissue. Numerous MAP products are proposed and there is significant clinical potential in priority areas such as vaccination. However, since their inception scientists have hypothesized about the risk of a clinically significant MAP-induced infection. Safety data from two major Phase 3 clinical trials involving hundreds of participants, who in total received tens of thousands of MAP applications, does not identify any clinically significant infections. However, the incumbent data set is not extensive enough to make definitive generalizable conclusions. A comprehensive assessment of the infection risk is therefore advised for MAP products, and this should be informed by clinical and pre-clinical data, theoretical analysis and informed opinions. In this article, a group of key stakeholders identify some of the key product- and patient-specific factors that may contribute to the risk of infection from a MAP product and provide expert opinions in the context of guidance from regulatory authorities. Considerations that are particularly pertinent to the MAP dosage form include the specifications of the finished product (e.g. microbial specification), it's design features, the setting for administration, the skill of the administrator, the anatomical application site, the target population and the clinical context. These factors, and others discussed in this article, provide a platform for the development of MAP risk assessments and a stimulus for early and open dialogue between developers, regulatory authorities and other key stakeholders, to expedite and promote development of safe and effective MAP products.
Collapse
Affiliation(s)
- Maria Dul
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Howard I Maibach
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | | | - Jung-Hwan Park
- Department of Bionano Technology, Gachon University, Seongnam, Republic of Korea
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | | | | | | | - Kevin Michael Taylor
- University College London School of Pharmacy, British Pharmacopoeia Commission, UK
| | | | - James C Birchall
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | | | - Sion A Coulman
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
3
|
Iachina I, Eriksson AH, Bertelsen M, Petersson K, Jansson J, Kemp P, Engell KM, Brewer JR, Nielsen KT. Dissolvable microneedles for transdermal drug delivery showing skin pentation and modified drug release. Eur J Pharm Sci 2023; 182:106371. [PMID: 36621615 DOI: 10.1016/j.ejps.2023.106371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/12/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Topical therapies for chronic skin diseases suffer from a low patient compliance due to the inconvenient treatment regimens of available products. Dissolvable microneedles (MN) with modified release offer an interesting possibility to increase the compliance by acting as a depot in the skin and thereby decreasing the dosing frequency. Furthermore, the bioavailability can be increased significantly by bypassing the barrier of the skin by the direct penetration of the MN into the skin. In this study the depot effect and skin penetration of an innovative dissolvable MN patch was assessed by insertion in ex vivo human skin and in vivo using minipigs. The MN patches are based on biodegradable polymers and the active pharmaceutical ingredients calcipotriol (Calci) and betamethasone-17-21-dipropionate (BDP) used to treat psoriasis. Using computed tomography (CT) and Coherent anti-Stokes Raman scattering (CARS) microscopy it was possible to visualize the skin penetration and follow the morphology of the MN as function of time in the skin. The depot effect was assessed by studying the modified in vitro release in an aqueous buffer and by comparing the drug release of a single application of a patch both ex vivo and in vivo to daily application of a marketed oleogel containing the same active pharmaceutical ingredients. The CT and CARS images showed efficient penetration of the MN patches into the upper dermis and a slow swelling process of the drug containing tip over a period of 8 days. Furthermore, CARS demonstrated that it can be used as a noninvasive technique with potential applicability in clinical settings. The in vitro release studies show a release of 54% over a time period of 30 days. The pharmacological relevance of MNs was confirmed in human skin explants and in vivo after single application and showed a similar response on calcipotriol and BDP mediated signaling events compared to daily application of the active oleogel. Altogether it was demonstrated that the MN can penetrate the skin and have the potential to provide a depot effect.
Collapse
Affiliation(s)
- Irina Iachina
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - André H Eriksson
- In Vivo Biology & Biomarkers, LEO Pharma A/S, Industriparken 55, Ballerup 2750, Denmark
| | - Malene Bertelsen
- In Vivo Biology & Biomarkers, LEO Pharma A/S, Industriparken 55, Ballerup 2750, Denmark
| | - Karsten Petersson
- Explorative Formulation & Technologies, LEO Pharma A/S, Industriparken 55, Ballerup 2750, Denmark
| | - Jörgen Jansson
- Explorative Formulation & Technologies, LEO Pharma A/S, Industriparken 55, Ballerup 2750, Denmark
| | - Pernille Kemp
- Explorative Formulation & Technologies, LEO Pharma A/S, Industriparken 55, Ballerup 2750, Denmark
| | - Karen M Engell
- Small Molecule Early Pharmaceutical Development, LEO Pharma A/S, Industriparken 55, Ballerup 2750, Denmark
| | - Jonathan R Brewer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
| | - Kim T Nielsen
- Advanced Analytical and Structural Chemistry, LEO Pharma A/S, Industriparken 55, Ballerup 2750, Denmark.
| |
Collapse
|
4
|
|
5
|
Nahas SJ, Hindiyeh N, Friedman DI, Elbuluk N, Kellerman DJ, Foreman PK, Schmidt P. Long term safety, tolerability, and efficacy of intracutaneous zolmitriptan (M207) in the acute treatment of migraine. J Headache Pain 2021; 22:37. [PMID: 34001002 PMCID: PMC8127195 DOI: 10.1186/s10194-021-01249-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/26/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To determine the long-term safety and tolerability profile of M207 in the acute treatment of migraine. BACKGROUND M207 is an investigational microneedle-based system for intracutaneous delivery of zolmitriptan for the treatment of migraine attacks. Following on the positive results of a Phase 2/3 placebo-controlled efficacy study (ZOTRIP), this study was designed to evaluate the safety of this novel product during repeated use for the treatment of migraine attacks. METHODS In this 6-12 month open-label, multicenter observational study, participants used an eDiary to record headache symptoms and adverse events at specified intervals up to 48 h following treatment of a qualifying attack with M207 3.8 mg (intracutaneous zolmitriptan). Participants underwent clinical evaluations at specified intervals up to 12 months. RESULTS Among 335 participants who treated ≥1 migraine attack, 257 completed 6 months and 127 completed 1 year of treatment. The most common reason for withdrawal from the study was a low frequency of reported attacks post randomization. Overall, 5963 migraine attacks were treated. Most participants (96%) experienced at least 1 adverse event, the vast majority of which concerned the application site, and > 95% of which were mild. Fifteen participants (4%) withdrew due to adverse events; 4 withdrew due to 7 application site reactions, 6 of which were mild. Participants achieved pain freedom in 2477/5617 (44%) of attacks, most bothersome symptom freedom in 3315/5330 (62%) of attacks, and pain relief 2 h post-dose in 4552/5617 (81%) of attacks. Sustained pain freedom 2-24 h was seen in 1761/4698 (38%) of attacks, and 2-48 h in 1534/4429 (35%) of attacks. CONCLUSIONS The majority of participants experienced cutaneous adverse reactions such as application site erythema, swelling, and bleeding, and most reactions were scored as mild. These results are consistent with what was observed in the single migraine attack treatment ZOTRIP trial indicating that M207 is well tolerated in the setting of longer-term repeated use. Efficacy findings were also similar to those in the ZOTRIP trial. TRIAL REGISTRATION Clinicaltrials.gov on September 13, 2017 ( NCT03282227 ).
Collapse
Affiliation(s)
- Stephanie J Nahas
- Department of Neurology, Jefferson Headache Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Nada Hindiyeh
- Department of Neurology, Stanford University Medical Center, Stanford, CA, USA
| | | | - Nada Elbuluk
- University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
6
|
Nahas SJ. Zolmitriptan for Early Onset of Action in Acute Migraine Attacks. Neurology 2021. [DOI: 10.17925/usn.2021.17.2.74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
7
|
Rapoport AM, Ameri M, Lewis H, Kellerman DJ. Development of a novel zolmitriptan intracutaneous microneedle system (Qtrypta™) for the acute treatment of migraine. Pain Manag 2020; 10:359-366. [PMID: 32752932 DOI: 10.2217/pmt-2020-0041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
M207 is an investigational intracutaneous microneedle therapeutic system for nonoral zolmitriptan delivery. In a Phase I trial, M207 provided faster absorption with a higher 2 h exposure than oral zolmitriptan. In the pivotal trial evaluating efficacy, tolerability and safety in moderate-to-severe migraine attacks, M207 3.8 mg was superior to placebo in providing freedom from headache pain (42 vs 14%) and freedom from most bothersome symptom (68 vs 43%) 2 h post-dose. Treatment-emergent adverse events were mild and transient and most commonly concerned the application site. In post hoc analyses: pain freedom was sustained in approximately 1/3 of patients; efficacy was observed in migraine headaches that are typically more difficult to treat.
Collapse
Affiliation(s)
- Alan M Rapoport
- The David Geffen School of Medicine at UCLA in Los Angeles, CA 90095, USA
| | - Mahmoud Ameri
- Zosano Pharma, 34790 Ardentech Court, Fremont, CA 94555, USA
| | - Hayley Lewis
- Zosano Pharma, 34790 Ardentech Court, Fremont, CA 94555, USA
| | | |
Collapse
|
8
|
Chen Z, He J, Qi J, Zhu Q, Wu W, Lu Y. Long-acting microneedles: a progress report of the state-of-the-art techniques. Drug Discov Today 2020; 25:1462-1468. [DOI: 10.1016/j.drudis.2020.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 03/31/2020] [Accepted: 05/10/2020] [Indexed: 12/11/2022]
|
9
|
Hochart G, Bonnel D, Stauber J, Stamatas GN. Biomarker Mapping on Skin Tape Strips Using MALDI Mass Spectrometry Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2082-2091. [PMID: 31407158 DOI: 10.1007/s13361-019-02277-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 05/23/2023]
Abstract
Keratinocyte organization and biochemistry are important in forming the skin's protective barrier. Intrinsic and extrinsic factors can affect skin barrier function at the cellular and molecular levels. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometric imaging, a technique which combines both molecular aspects and histological details, has proven to be a valuable method in various disciplines including pharmacology, dermatology and cosmetology. It typically requires ex vivo samples, prepared following frozen tissue sectioning. This paper demonstrates the feasibility of performing MALDI analysis on tape strips collected non-invasively on skin. The aim is to obtain molecular imaging of corneocytes on tapes towards novel biological insights. Tapes were collected from two skin sites (volar forearm and cheek) of human volunteers. Ten molecules relating to skin barrier function were detected with a single mode of acquisition at high spatial resolution with a 7 T MALDI-Fourier transform ion cyclotron resonance (FTICR) instrument. The method sensitivity was adequate to create molecular maps which could be overlaid on transmission microscopy images of the same area of the tape. Analysis of the molecular distributions from tapes at the two skin sites was consistent with the known skin properties of the two sites, confirming the validity of the observations. Hierarchical clustering analysis was used to differentiate corneocyte populations based on their molecular profiles. Furthermore, morphological analysis provided a new way of considering statistical populations of corneocytes on the same tape, rather than measuring a single averaged value, providing additional useful information relating to their structure-function relationship.
Collapse
Affiliation(s)
| | - David Bonnel
- ImaBiotech SAS, 152 rue du Docteur Yersin, 59120, Loos, France
| | | | - Georgios N Stamatas
- Johnson & Johnson Santé Beauté France, 1 rue Camille Desmoulins, 92130, Issy-les-Moulineaux, France
| |
Collapse
|
10
|
Ingrole RSJ, Gill HS. Microneedle Coating Methods: A Review with a Perspective. J Pharmacol Exp Ther 2019; 370:555-569. [PMID: 31175217 DOI: 10.1124/jpet.119.258707] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023] Open
Abstract
A coated microneedle array comprises sharp micrometer-sized needle shafts attached to a base substrate and coated with a drug on their surfaces. Coated microneedles are under investigation for drug delivery into the skin and other tissues, and a broad assortment of active materials, including small molecules, peptides, proteins, deoxyribonucleic acids, and viruses, have been coated onto microneedles. To coat the microneedles, different methods have been developed. Some coating methods achieve selective coating of just the microneedle shafts, whereas other methods coat not only microneedle shafts but also the array base substrate. Selective coating of just the microneedle shafts is more desirable since it provides control over drug dosage, prevents drug waste, and offers high delivery efficiency. Different excipients are added to the coating liquid to modulate its viscosity and surface tension in order to achieve uniform coatings on microneedles. Coated microneedles have been used in a broad range of biomedical applications. To highlight these different applications, a table summarizing the different active materials and the amounts coated on microneedles is provided. We also discuss factors that should be considered when deciding suitability of coated microneedles for new-drug delivery applications. In recent years, many coated microneedles have been investigated in human clinical trials, and there is now a strong effort to bring the first coated microneedle-based product to market.
Collapse
Affiliation(s)
- Rohan S J Ingrole
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas
| | | |
Collapse
|