1
|
Müller P, Sack A, Dümler J, Heckel M, Wenzel T, Siegert T, Schuldt-Lieb S, Gieseler H, Pöschel T. Automated Tomographic Assessment of Structural Defects of Freeze-Dried Pharmaceuticals. AAPS PharmSciTech 2024; 25:143. [PMID: 38918304 DOI: 10.1208/s12249-024-02833-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/06/2024] [Indexed: 06/27/2024] Open
Abstract
The topology and surface characteristics of lyophilisates significantly impact the stability and reconstitutability of freeze-dried pharmaceuticals. Consequently, visual quality control of the product is imperative. However, this procedure is not only time-consuming and labor-intensive but also expensive and prone to errors. In this paper, we present an approach for fully automated, non-destructive inspection of freeze-dried pharmaceuticals, leveraging robotics, computed tomography, and machine learning.
Collapse
Affiliation(s)
- Patric Müller
- Institut für Multiskalensimulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Achim Sack
- Institut für Multiskalensimulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jens Dümler
- Institut für Multiskalensimulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Heckel
- Institut für Multiskalensimulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- IT Unit, University of Technology Nuremberg, Nuremberg, Germany
| | - Tim Wenzel
- Division of Pharmaceutics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Freeze Drying Focus Group, Erlangen, Germany
- GILYOS GmbH, Würzburg, Germany
| | - Teresa Siegert
- Division of Pharmaceutics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Freeze Drying Focus Group, Erlangen, Germany
| | | | | | - Thorsten Pöschel
- Institut für Multiskalensimulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
2
|
Coussot G, Le Postollec A, Delbecq S, Dobrijevic M. Freeze-drying of few microliters of antibody formulations to implement 384-wells homogeneous instant assays. Anal Chim Acta 2023; 1277:341660. [PMID: 37604613 DOI: 10.1016/j.aca.2023.341660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/03/2023] [Accepted: 07/25/2023] [Indexed: 08/23/2023]
Abstract
Enzyme-linked immunosorbent assay protocols have traditionally complex workflows with several intensive wash steps. Analytical tools with both shorter time-to-result and hands-on-time using smaller sample and assays reagents volumes are now investigated. In this context, fluorescence resonance energy transfer (FRET)-based assays are emerging as one of the most promising analytical tools in high-throughput screening (HTS). These immunoassays allow fast quantification of antigens at the nano-gram level in a final assay volume of only a few μL. We used a homogeneous time-resolved FRET (called HTRF) assay to develop a freeze-dried screening and ready-to-use format with only one rehydration step called "instant assay". To assure optimal performance of the developed homogeneous instant assay, we investigated the critical quality attributes by studying the functionality and stability of the critical reagents and fluorophores. The cyclic adenosine 3'-5'-monophosphate (cAMP) was selected as the antigen target. We tested various formulations (with different buffers, sugars, bulking reagents, surfactants and co-solvants) combined with a slow freezing and the use of an aluminium plate holder during the freeze-drying of few microliter of bioreagents. The optimized freeze-drying procedure permits to preserve more than 70% of Ab recognition properties. The developed off-the-shelf homogeneous FRET immunoassay allows direct and fast quantification of cAMP at a nanogram level.
Collapse
Affiliation(s)
- G Coussot
- Faculté des Sciences Pharmaceutiques et Biologiques, Université de Montpellier, 15 Avenue Charles Flahault, 34090, Montpellier, France.
| | - A Le Postollec
- Laboratoire d'astrophysique de Bordeaux (LAB), CNRS UMR 5804, Université de Bordeaux, B18N, allée Geoffroy Saint-Hilaire, 33615, Pessac, France
| | - S Delbecq
- Centre de Biologie Structurale (CBS), INSERM U1054, CNRS UMR 5048, Université de Montpellier, 34090, Montpellier, France
| | - M Dobrijevic
- Laboratoire d'astrophysique de Bordeaux (LAB), CNRS UMR 5804, Université de Bordeaux, B18N, allée Geoffroy Saint-Hilaire, 33615, Pessac, France
| |
Collapse
|
3
|
Borde S, Paul SK, Chauhan H. Ternary solid dispersions: classification and formulation considerations. Drug Dev Ind Pharm 2021; 47:1011-1028. [PMID: 33818224 DOI: 10.1080/03639045.2021.1908342] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The number of active pharmaceutical compounds from the biopharmaceutical classification system (BCS) belonging to Class II and IV have significantly increased in recent years. These compounds have high therapeutic potential but are difficult to formulate as oral dosage forms due to their poor aqueous solubility. The solubility and bioavailability of these poorly water-soluble compounds can be increased by various formulation approaches, such as amorphous solid dispersions (ASD), salt formation, complexations, etc. Out of these techniques, the ASD approach, where compounds are converted into amorphous form and embedded in the hydrophilic matrix, have been successfully used in many marketed preparations. The recent advancement of this ASD approach is the design of ternary solid dispersions (TSD), where an additional component is added to further improve their performance in terms of solubility, stability, and processability. This review discusses the classification, mechanism of performance improvement, preparation techniques, and characterizations for TSD.
Collapse
Affiliation(s)
- Shambhavi Borde
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA
| | - Sagar Kumar Paul
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA
| | - Harsh Chauhan
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA
| |
Collapse
|
4
|
Novel formulations and drug delivery systems to administer biological solids. Adv Drug Deliv Rev 2021; 172:183-210. [PMID: 33705873 DOI: 10.1016/j.addr.2021.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/28/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
Recent advances in formulation sciences have expanded the previously limited design space for biological modalities, including peptide, protein, and vaccine products. At the same time, the discovery and application of new modalities, such as cellular therapies and gene therapies, have presented formidable challenges to formulation scientists. We explore these challenges and highlight the opportunities to overcome them through the development of novel formulations and drug delivery systems as biological solids. We review the current progress in both industry and academic laboratories, and we provide expert perspectives in those settings. Formulation scientists have made a tremendous effort to accommodate the needs of these novel delivery routes. These include stability-preserving formulations and dehydration processes as well as dosing regimes and dosage forms that improve patient compliance.
Collapse
|
5
|
Wenzel T, Sack A, Müller P, Poeschel T, Schuldt-Lieb S, Gieseler H. Stability of freeze-dried products subjected to microcomputed tomography radiation doses. J Pharm Pharmacol 2021; 73:212-220. [PMID: 33793810 DOI: 10.1093/jpp/rgaa004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 02/09/2021] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Microcomputed tomography (µCT) is a powerful analytical tool for non-invasive structural analysis. The stability of drug substances and formulations subjected to X-ray radiation may be a concern in the industry. This study examines the effect of X-ray radiation on the stability of freeze-dried pharmaceuticals. The investigation is a proof of concept study for the safety of µCT X-ray radiation doses during the non-destructive investigation of freeze-dried products. METHODS Different formulations of clotrimazole, insulin and l-lactate dehydrogenase were freeze-dried and the products exposed to a defined dose of radiation by µCT. Conservative freeze-drying conditions were used. Irradiated and normal samples were analysed for their stability directly after freeze-drying and after stability testing. KEY FINDINGS The stability of model compounds was well maintained during freeze-drying. Some degradation of all compounds occurred during accelerated stability testing. The results showed no differences between the irradiated and normal state directly after freeze-drying and accelerated stability testing. CONCLUSIONS No evidence of a detrimental effect of 100 Gy X-ray exposure on a model small molecule, peptide and protein compound was found while useful structural information could be obtained. Consequently, the technology may be useful as a non-destructive tool for product inspections if the formulation proves stable.
Collapse
Affiliation(s)
- Tim Wenzel
- GILYOS GmbH, Würzburg, Germany.,Division of Pharmaceutics, Freeze Drying Focus Group, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Achim Sack
- Institute for Multiscale Simulation (MSS), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Patrick Müller
- Institute for Multiscale Simulation (MSS), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Thorsten Poeschel
- Institute for Multiscale Simulation (MSS), Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | | | | |
Collapse
|
6
|
Butreddy A, Dudhipala N, Janga KY, Gaddam RP. Lyophilization of Small-Molecule Injectables: an Industry Perspective on Formulation Development, Process Optimization, Scale-Up Challenges, and Drug Product Quality Attributes. AAPS PharmSciTech 2020; 21:252. [PMID: 32885357 DOI: 10.1208/s12249-020-01787-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
Lyophilization is a pivotal manufacturing process to obtain a stable drug product that is unstable as a ready-to-use formulation. Some formulations may require the addition of drug-specific excipients such as stabilizers, buffers, and bulking agents to support the cake appearance and ensure long-term stability of the drug product. Optimization of the lyophilization process parameters at each stage including freezing and primary and secondary drying is important because these parameters can have a direct impact on the process efficiency (shortened cycle time) and product performance (cake appearance and homogeneous moisture content). Several parameters of the formulation, including properties of the active pharmaceutical ingredient, excipients, solvent system, and container closure, determine the success of lyophilization. Development, scale-up, and transfer of the lyophilization cycle are challenging; hence, a comprehensive understanding of the critical parameters related to the formulation, lyophilization process, and lyophilizer design allows designing a quality drug product. One approach for a successful transfer of the lyophilization cycle between the laboratory and commercial-scale lyophilizer is using vial heat transfer coefficient and ice slab test to establish a maximum sublimation rate. This review provides a general overview of the lyophilization process and discusses several key considerations and product development aspects of formulation, process optimization, container closure system, scale-up principles, and drug product quality attributes from the industrial viewpoint. Grapical abstract.
Collapse
|
7
|
Haeuser C, Goldbach P, Huwyler J, Friess W, Allmendinger A. Excipients for Room Temperature Stable Freeze-Dried Monoclonal Antibody Formulations. J Pharm Sci 2020; 109:807-817. [PMID: 31622600 DOI: 10.1016/j.xphs.2019.10.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 01/26/2023]
Abstract
Sucrose is a common cryoprotectant and lyoprotectant to stabilize labile biopharmaceuticals during freeze-drying and storage. Sucrose-based formulations require low primary drying temperatures to avoid collapse and monoclonal antibody (mAb) containing products need to be stored refrigerated. The objective of this study is to investigate different excipients enabling storage at room temperature and aggressive, shorter lyophilization cycles. We studied combinations of 2-hydroxypropyl-beta-cyclodextrin (CD), recombinant human albumin, polyvinylpyrroldione (PVP), dextran 40 kDa (Dex), and sucrose (Suc) using 2 mAbs. Samples were characterized for collapse temperature (Tc), glass transition temperature of the liquid (Tg') and freeze-dried formulation (Tg), cake appearance, residual moisture, and reconstitution time. Freeze-dried formulations were stored at 5°C, 25°C, and 40°C for up to 9 months and mAb stability was analyzed for color, turbidity, visible and sub-visible particles, and monomer content. Formulations with CD/Suc or CD/PVP/Suc were superior to pure Suc formulations for long-term storage at 40°C. When using aggressive freeze-drying cycles, these formulations were characterized by pharmaceutically elegant cakes, short reconstitution times, higher Tg', Tc, and Tg. We conclude that the addition of CD allows for shorter freeze-drying cycles with improved cake appearance and enables storage at room temperature, which might reduce costs of goods substantially.
Collapse
Affiliation(s)
- Christina Haeuser
- Late Stage Pharmaceutical and Processing Development, Pharmaceutical Development & Supplies, Pharma Technical Development Biologics EU, F. Hoffmann-La Roche Ltd., Basel 4070, Switzerland; Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel 4056, Switzerland
| | - Pierre Goldbach
- Late Stage Pharmaceutical and Processing Development, Pharmaceutical Development & Supplies, Pharma Technical Development Biologics EU, F. Hoffmann-La Roche Ltd., Basel 4070, Switzerland
| | - Joerg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel 4056, Switzerland
| | - Wolfgang Friess
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Andrea Allmendinger
- Late Stage Pharmaceutical and Processing Development, Pharmaceutical Development & Supplies, Pharma Technical Development Biologics EU, F. Hoffmann-La Roche Ltd., Basel 4070, Switzerland.
| |
Collapse
|