1
|
Maulvi FA, Patel AR, Shetty KH, Desai DT, Shah DO, Willcox MDP. Chitosan nanoparticles laden contact lenses for enzyme-triggered controlled delivery of timolol maleate: A promising strategy for managing glaucoma. Drug Deliv Transl Res 2024; 14:3212-3224. [PMID: 38407770 DOI: 10.1007/s13346-024-01543-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 02/27/2024]
Abstract
To improve drug bioavailability, eye drops can be replaced by drug-eluting contact lenses. However, issues of drug leaching from lenses during manufacture and storage, and sterilization, currently limit their commercial application. To address the issues, stimuli-(lysozyme)-sensitive chitosan nanoparticles were developed to provide controlled ocular drug delivery. Nanoparticles were prepared by ionic gelation and characterized by TEM, X-ray diffraction, DSC, and FTIR. In the flux study, conventional-soaked contact lenses (SM-TM-CL) showed high-burst release, while with direct drug-only laden contact lenses (DL-TM-CL) the drug was lost during extraction and sterilization, as well as having poor swelling and optical properties. The nanoparticle-laden contact lenses (TM-Cht-NPs) showed controlled release of timolol for 120 h in the presence of lysozyme, with acceptable opto-physical properties. In the shelf-life study, the TM-Cht-NPs contact lenses showed no leaching or alteration in the drug release pattern. In animal studies, the TM-NPs-CL lenses gave a high drug concentration in rabbit tear fluid (mean = 11.01 µg/mL for 56 h) and helped maintain a low intraocular pressure for 120 h. In conclusion, the chitosan nanoparticle-laden contact lenses demonstrated the potential application to treat glaucoma with acceptable opto-physical properties and addressed the issues of drug-leaching during sterilization and storage.
Collapse
Affiliation(s)
- Furqan A Maulvi
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW, 2052, Australia
- Maliba Pharmacy College, Uka Tarsadia University, Surat, 394350, India
| | - Ashmi R Patel
- Maliba Pharmacy College, Uka Tarsadia University, Surat, 394350, India
| | - Kiran H Shetty
- Maliba Pharmacy College, Uka Tarsadia University, Surat, 394350, India
| | - Ditixa T Desai
- Maliba Pharmacy College, Uka Tarsadia University, Surat, 394350, India.
| | - Dinesh O Shah
- Department of Chemical Engineering and Department of Anesthesiology, University of Florida, Gainesville, FL, 32611, USA
| | - Mark D P Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
2
|
Ali A, Zafar S, Rasekh M, Chohan TA, Pisapia F, Singh N, Qutachi O, Arshad MS, Ahmad Z. An Adaptive Approach in Polymer-Drug Nanoparticle Engineering using Slanted Electrohydrodynamic Needles and Horizontal Spraying Planes. AAPS PharmSciTech 2024; 25:257. [PMID: 39477831 DOI: 10.1208/s12249-024-02971-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/08/2024] [Indexed: 12/12/2024] Open
Abstract
The present study focuses on the adaptive development of a key peripheral component of conventional electrohydrodynamic atomisation (EHDA) systems, namely spraying needles (also referred to as nozzles or spinnerets). Needle geometry and planar alignment are often overlooked. To explore potential impact, curcumin-loaded polylactic-co-glycolic acid (PLGA) and methoxypolyethylene glycol amine (PEG)-based nanoparticles were fabricated. To elucidate these technological aspects, a horizontal electrospraying needle regime was adapted, and three formulations containing different polymeric ratios of PLGA: PEG (50:50, 75:25, and 25:75) were prepared and utilised. Furthermore, processing head tip geometries e.g. blunt (a flat needle exit) or slanted (a 45° inclination angle), were subjected to various flow rates (5 µL-100 µL). Successful engineering of curcumin-loaded polymeric nanoparticles (< 150 nm) was observed. In-silico analysis demonstrated stable properties of curcumin, PEG and PLGA (molecular docking studies) and fluid flow direction towards the Taylor-Cone (also known as the stable jet mode), was shown by the assessment of fluid dynamics simulations in various needle outlets. Curcumin-loaded nanoparticles were characterised using an array of methods including Scanning electron microscopy, Differential scanning calorimetry, Fourier transform infrared spectroscopy, X-ray diffraction, as well as their contact angles, encapsulation efficiencies and finally release patterns. The discrepancy when spraying with blunt and angled needles was evidenced by electron micrographs and deposition patterns. Spraying plumes utilising slanted needles enhanced particle collection efficiency and distribution of resultant atomised structures. In addition to needle design, fine-tuning the applied voltage and flow rate impacted the electrospraying process. The coefficient of variation was calculated as 30.5% and 25.6% for blunt and angled needle outlets, respectively, presenting improved particle uniformity with the employment of angled needle tips (8-G needle at 25 µL). The interplay of processing parameters with the utilisation of a slanted exit at a capillary optimised the spray pattern and formation of desired nanoparticulates. These demonstrate great applicability for controlled deposition and up-scaling processes in the pharmaceutical industry. These advances elaborate on EHDA processes, indicating a more cost-effective and scalable approach for industrial applications, facilitating the generation of a diverse range of particle systems in a controlled and more uniform fashion.
Collapse
Affiliation(s)
- Amna Ali
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Saman Zafar
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Manoochehr Rasekh
- College of Engineering, Design and Physical Sciences, Brunel University of London, London, UK
| | - Tahir Ali Chohan
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Francesca Pisapia
- The Biosphere, Drayman Helix,, Newcells Biotech, South St., NE4 5BX, Newcastle upon Tyne, UK
| | - Neenu Singh
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Omar Qutachi
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | | | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester, UK.
| |
Collapse
|
3
|
Mladenovic T, Zivic F, Petrovic N, Njezic S, Pavic J, Kotorcevic N, Milenkovic S, Grujovic N. Application of Silicone in Ophthalmology: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3454. [PMID: 39063747 PMCID: PMC11278226 DOI: 10.3390/ma17143454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
This paper reviews the latest trends and applications of silicone in ophthalmology, especially related to intraocular lenses (IOLs). Silicone, or siloxane elastomer, as a synthetic polymer, has excellent biocompatibility, high chemical inertness, and hydrophobicity, enabling wide biomedical applications. The physicochemical properties of silicone are reviewed. A review of methods for mechanical and in vivo characterization of IOLs is presented as a prospective research area, since there are only a few available technologies, even though these properties are vital to ensure medical safety and suitability for clinical use, especially if long-term function is considered. IOLs represent permanent implants to replace the natural lens or for correcting vision, with the first commercial foldable lens made of silicone. Biological aspects of posterior capsular opacification have been reviewed, including the effects of the implanted silicone IOL. However, certain issues with silicone IOLs are still challenging and some conditions can prevent its application in all patients. The latest trends in nanotechnology solutions have been reviewed. Surface modifications of silicone IOLs are an efficient approach to further improve biocompatibility or to enable drug-eluting function. Different surface modifications, including coatings, can provide long-term treatments for various medical conditions or medical diagnoses through the incorporation of sensory functions. It is essential that IOL optical characteristics remain unchanged in case of drug incorporation and the application of nanoparticles can enable it. However, clinical trials related to these advanced technologies are still missing, thus preventing their clinical applications at this moment.
Collapse
Affiliation(s)
- Tamara Mladenovic
- Faculty of Engineering, University of Kragujevac, Sestre Janjic 6, 34000 Kragujevac, Serbia; (T.M.); (J.P.); (N.K.); (S.M.); (N.G.)
- Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijica bb, 34000 Kragujevac, Serbia
| | - Fatima Zivic
- Faculty of Engineering, University of Kragujevac, Sestre Janjic 6, 34000 Kragujevac, Serbia; (T.M.); (J.P.); (N.K.); (S.M.); (N.G.)
| | - Nenad Petrovic
- Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia;
| | - Sasa Njezic
- Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina;
| | - Jelena Pavic
- Faculty of Engineering, University of Kragujevac, Sestre Janjic 6, 34000 Kragujevac, Serbia; (T.M.); (J.P.); (N.K.); (S.M.); (N.G.)
- Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijica bb, 34000 Kragujevac, Serbia
| | - Nikola Kotorcevic
- Faculty of Engineering, University of Kragujevac, Sestre Janjic 6, 34000 Kragujevac, Serbia; (T.M.); (J.P.); (N.K.); (S.M.); (N.G.)
| | - Strahinja Milenkovic
- Faculty of Engineering, University of Kragujevac, Sestre Janjic 6, 34000 Kragujevac, Serbia; (T.M.); (J.P.); (N.K.); (S.M.); (N.G.)
| | - Nenad Grujovic
- Faculty of Engineering, University of Kragujevac, Sestre Janjic 6, 34000 Kragujevac, Serbia; (T.M.); (J.P.); (N.K.); (S.M.); (N.G.)
| |
Collapse
|
4
|
Yang H, Zhang F, Fan Y, Zhang J, Fang T, Xing D, Zhen Y, Nie Z, Liu Y, Wang D, Li J. Co-delivery of Brinzolamide and Timolol from Micelles-laden Contact Lenses: In vitro and In Vivo Evaluation. Pharm Res 2024; 41:531-546. [PMID: 38366235 DOI: 10.1007/s11095-024-03672-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/28/2024] [Indexed: 02/18/2024]
Abstract
PURPOSE Traditional eye drops exhibit a modest bioavailability ranging from 1 to 5%, necessitating recurrent application. Thus, a contact lens-based drug delivery system presents substantial benefits. Nonetheless, pharmaceutical agents exhibiting poor solubility may compromise the quintessential characteristics of contact lenses and are, consequently, deemed unsuitable for incorporation. To address this issue, the present study has engineered a novel composite drug delivery system that amalgamates micellar technology with contact lenses, designed specifically for the efficacious conveyance of timolol and brinzolamide. METHODS Utilizing mPEG-PCL as the micellar material, this study crafted mPEG-PCL micelles loaded with brinzolamide and timolol through the film hydration technique. The micelle-loaded contact lens was fabricated employing the casting method; a uniform mixture of HEMA and EGDMA with the mPEG-PCL micelles enshrouding brinzolamide and timolol was synthesized. Following the addition of a photoinitiator, 50 μL of the concoction was deposited into a contact lens mold. Subsequently, the assembly was subjected to polymerization under 365 nm ultraviolet light for 35 min, resulting in the formation of the micelle-loaded contact lenses. RESULTS In the present article, we delineate the construction of a micelle-loaded contact lens designed for the administration of brinzolamide and timolol in the treatment of glaucoma. The study characterizes crucial properties of the micelle-loaded contact lenses, such as transmittance and ionic permeability. It was observed that these vital attributes meet the standard requirements for contact lenses. In vitro release studies revealed that timolol and brinzolamide could be gradually liberated over periods of up to 72 and 84 h, respectively. In vivo pharmacodynamic evaluation showed a significant reduction in intraocular pressure and a relative bioavailability of 10.84 times that of commercially available eye drops. In vivo pharmacokinetic evaluation, MRT was significantly increased, and the bioavailability of timolol and brinzolamide was 2.71 and 1.41 times that of eye drops, respectively. Safety assessments, including in vivo irritation, histopathological sections, and protein adsorption studies, were conducted as per established protocols, confirming that the experiments were in compliance with safety standards. IN CONCLUSION The manuscript delineates the development of a safe and efficacious micelle-loaded contact lens drug delivery system, which presents a novel therapeutic alternative for the management of glaucoma.
Collapse
Affiliation(s)
- Hongyu Yang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, People's Republic of China
| | - Faxing Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, People's Republic of China
| | - Yingzhen Fan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, People's Republic of China
| | - Jian Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, People's Republic of China
| | - Ting Fang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, People's Republic of China
| | - Dandan Xing
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, People's Republic of China
| | - Yanli Zhen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, People's Republic of China
| | - Zhihao Nie
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, People's Republic of China
| | - Yaming Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, People's Republic of China
| | - Dongkai Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, People's Republic of China.
| | - Ji Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
5
|
Kumara BN, Velmurugan K, Ghate MV, Shambhu R, Nirmal J, Prasad KS. A promising 'single' and 'dual' drug-nanocomposite enriched contact lens for the management of glaucoma in response to the tear fluid enzyme. J Mater Chem B 2024; 12:2394-2412. [PMID: 38349383 DOI: 10.1039/d3tb02624h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Glaucoma is a neurodegenerative condition that results in the damage of retinal ganglion cells due to elevated intraocular pressure (IOP). To curtail the limitations associated with conventional treatments such as eye drops and ocular suspensions, we have developed 'single' and 'dual' drug delivery contact lenses (CLs), that is, latanoprost (LP) and latanoprost-timolol (LP-TM) deliverable CLs, in response to lysozyme (Lyz), which is abundant in the lacrimal fluid. Since chitosan (CS) can entrap more of the drug and also undergo hydrolysis in the presence of Lyz, we have employed CS for the composite preparation. The CL fabrication was performed by free radical copolymerization of poly(2-hydroxyethyl methacrylate) (pHEMA) in the presence of the drug-loaded nanocomposite with UV-curing initiators using the pre-drug loading strategy. The surface morphological, optical and mechanical investigations confirmed the presence of the drugs, ≥80% transparency, the adequate flexibility and biocompatibility of both the CLs. The in vitro release experiments showed the release of 95.86% LP from LP-CL, and 83.87% LP and 86.70% TM from LP-TM-CL in the presence of 1.5 mg mL-1 of Lyz in 72 h. In vitro biocompatibility assay against human corneal epithelial (HCE) cells and ex vivo experiments on HET-CAM confirmed that the fabricated LP-CL and LP-TM-CL are well tolerated. Moreover, in vivo safety evaluations of CLs on New Zealand white rabbit eyes suggest no sign of irritation to the ocular tissues within 72 h of observation. Hence, the study suggests that the 'single' and 'dual' drug-loaded CLs could open a new avenue to manage glaucoma by maintaining mean diurnal IOP.
Collapse
Affiliation(s)
- B N Kumara
- Nanomaterial Research Laboratory [NMRL], Smart Materials And Devices, Yenepoya Research Centre, Yenepoya [Deemed to be University], Deralakatte, Mangalore 575 018, India.
| | - K Velmurugan
- Translational Pharmaceutics Research Laboratory (TPRL), Department of Pharmacy, Birla Institute of Technology and Sciences (BITS), Pilani, Hyderabad Campus, Hyderabad, 500 078, Telangana, India.
| | - M Vivek Ghate
- Yenepoya Technology Incubator, Yenepoya [Deemed to be University], Deralakatte, Mangalore 575 018, India
| | - R Shambhu
- Department of Ophthalmology, Yenepoya Medical College, Yenepoya [Deemed to be University], Deralakatte, Mangalore, 575 018, India
| | - Jayabalan Nirmal
- Translational Pharmaceutics Research Laboratory (TPRL), Department of Pharmacy, Birla Institute of Technology and Sciences (BITS), Pilani, Hyderabad Campus, Hyderabad, 500 078, Telangana, India.
| | - K Sudhakara Prasad
- Nanomaterial Research Laboratory [NMRL], Smart Materials And Devices, Yenepoya Research Centre, Yenepoya [Deemed to be University], Deralakatte, Mangalore 575 018, India.
- Centre for Nutrition Studies, Yenepoya [Deemed to be University], Deralakatte, Mangalore 575 018, India
| |
Collapse
|
6
|
Jiao X, Peng X, Jin X, Liu N, Yu Y, Liu R, Li Z. Nano-composite system of traditional Chinese medicine for ocular applications: molecular docking and three-dimensional modeling insight for intelligent drug evaluation. Drug Deliv Transl Res 2023; 13:3132-3144. [PMID: 37355484 DOI: 10.1007/s13346-023-01376-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 06/26/2023]
Abstract
The absorption of drugs was impeded in the posterior part of the eye due to the special structure. In addition, it was crucial to comprehend transport laws of molecules in ocular drug delivery for designing effective strategies. However, the current quality evaluation methods of the eye were backward and lack of dynamic monitoring of drug processes in vivo. Herein, nano-drug delivery system and three-dimensional (3D) model were combined to overcome the problems of low bioavailability and diffusion law. The model drugs were screened by molecular docking. The flexible nano-liposome (FNL) and temperature-sensitive gel (TSG) composite formulation was characterized through comprehensive evaluation. COMSOL software was utilized to build 3D eyeball to predict the bioavailability of drugs. The size of the preparation was about 98.34 nm which is relatively optimal for the enhanced permeability of the eyes. The formulation showed a stronger safety and non-irritant. The pharmacokinetics results of aqueous humor showed that the AUC of two drugs in this system increased by 3.79 and 3.94 times, respectively. The results of 3D calculation model proved that the concentrations of drugs reaching the retina were 1.90×10-5 mol/m3 and 6.37×10-6 mol/m3. In conclusion, the FNL-TSG markedly improved the bioavailability of multiple components in the eye. More importantly, a simplified 3D model was developed to preliminarily forecast the bioavailability of the retina after drug infusion, providing technical support for the accurate evaluation of ocular drug delivery. It provided new pattern for the development of intelligent versatile ophthalmic preparations.
Collapse
Affiliation(s)
- Xinyi Jiao
- State Key Laboratory of Component‑Based Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xingru Peng
- State Key Laboratory of Component‑Based Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xin Jin
- Military Medicine Section, Dongli District, Logistics University of People's Armed Police Force, 1 Huizhihuan Road, Tianjin, 300309, China
| | - Ning Liu
- State Key Laboratory of Component‑Based Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yang Yu
- State Key Laboratory of Component‑Based Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Rui Liu
- State Key Laboratory of Component‑Based Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Zheng Li
- State Key Laboratory of Component‑Based Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| |
Collapse
|
7
|
Seo H, Chung WG, Kwon YW, Kim S, Hong YM, Park W, Kim E, Lee J, Lee S, Kim M, Lim K, Jeong I, Song H, Park JU. Smart Contact Lenses as Wearable Ophthalmic Devices for Disease Monitoring and Health Management. Chem Rev 2023; 123:11488-11558. [PMID: 37748126 PMCID: PMC10571045 DOI: 10.1021/acs.chemrev.3c00290] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 09/27/2023]
Abstract
The eye contains a complex network of physiological information and biomarkers for monitoring disease and managing health, and ocular devices can be used to effectively perform point-of-care diagnosis and disease management. This comprehensive review describes the target biomarkers and various diseases, including ophthalmic diseases, metabolic diseases, and neurological diseases, based on the physiological and anatomical background of the eye. This review also includes the recent technologies utilized in eye-wearable medical devices and the latest trends in wearable ophthalmic devices, specifically smart contact lenses for the purpose of disease management. After introducing other ocular devices such as the retinal prosthesis, we further discuss the current challenges and potential possibilities of smart contact lenses.
Collapse
Affiliation(s)
- Hunkyu Seo
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Won Gi Chung
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Yong Won Kwon
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Sumin Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Yeon-Mi Hong
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Wonjung Park
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Enji Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Jakyoung Lee
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Sanghoon Lee
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Moohyun Kim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Kyeonghee Lim
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Inhea Jeong
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Hayoung Song
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
| | - Jang-Ung Park
- Department
of Materials Science and Engineering, Yonsei
University, Seoul 03722, Republic
of Korea
- Department
of Neurosurgery, Yonsei University College
of Medicine, Seoul 03722, Republic of Korea
- Center
for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul 03722, Republic
of Korea
| |
Collapse
|
8
|
Al-Qaysi ZK, Beadham IG, Schwikkard SL, Bear JC, Al-Kinani AA, Alany RG. Sustained release ocular drug delivery systems for glaucoma therapy. Expert Opin Drug Deliv 2023; 20:905-919. [PMID: 37249548 DOI: 10.1080/17425247.2023.2219053] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 05/24/2023] [Indexed: 05/31/2023]
Abstract
INTRODUCTION Glaucoma is a group of progressive optic neuropathies resulting in irreversible blindness. It is associated with an elevation of intraocular pressure (>21 mm Hg) and optic nerve damage. Reduction of the intraocular pressure (IOP) through the administration of ocular hypotensive eye drops is one of the most common therapeutic strategies. Patient adherence to conventional eye drops remains a major obstacle in preventing glaucoma progression. Additional problems emerge from inadequate patient education as well as local and systemic side effects associated with adminstering ocular hypotensive drugs. AREAS COVERED Sustained-release drug delivery systems for glaucoma treatment are classified into extraocular systems including wearable ocular surface devices or multi-use (immediate-release) eye formulations (such as aqueous solutions, gels; ocular inserts, contact lenses, periocular rings, or punctual plugs) and intraocular drug delivery systems (such as intraocular implants, and microspheres for supraciliary drug delivery). EXPERT OPINION Sustained release platforms for the delivery of ocular hypotensive drugs (small molecules and biologics) may improve patient adherence and prevent vision loss. Such innovations will only be widely adopted when efficacy and safety has been established through large-scale trials. Sustained release drug delivery can improve glaucoma treatment adherence and reverse/prevent vision deterioration. It is expected that these approaches will improve clinical management and prognosis of glaucoma.
Collapse
Affiliation(s)
- Zinah K Al-Qaysi
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, Department of Pharmacy, Kingston University London, Kingston Upon Thames, UK
| | - Ian G Beadham
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, Department of Pharmacy, Kingston University London, Kingston Upon Thames, UK
| | - Sianne L Schwikkard
- Department of Chemical and Pharmaceutical Sciences, Kingston University, Kingston Upon Thames, UK
| | - Joseph C Bear
- Department of Chemical and Pharmaceutical Sciences, Kingston University, Kingston Upon Thames, UK
| | - Ali A Al-Kinani
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, Department of Pharmacy, Kingston University London, Kingston Upon Thames, UK
| | - Raid G Alany
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, Department of Pharmacy, Kingston University London, Kingston Upon Thames, UK
- School of Pharmacy, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
9
|
Zafar S, Sohail Arshad M, Jafar Rana S, Patel M, Yousef B, Ahmad Z. Engineering of clarithromycin loaded stimulus responsive dissolving microneedle patches for the treatment of biofilms. Int J Pharm 2023; 640:123003. [PMID: 37146953 DOI: 10.1016/j.ijpharm.2023.123003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
This study aimed to fabricate clarithromycin laden Eudragit S-100-based microfibers (MF), microfibers coated film (MB), clarithromycin loaded polyvinyl pyrollidone, hyaluronic acid and sorbitol-based dissolving microneedle patches (CP) and microfibers coated microneedle patches (MP). Morphological and phase analysis of formulations were carried out by scanning electron microscopy and differential scanning calorimetry, X-ray diffraction, respectively. Substrate liquefaction test, in vitro drug release, antimicrobial assay and in vivo antibiofilm studies were performed. MF exhibited a uniform surface and interconnected network. Morphological analysis of CP revealed sharp-tipped and uniform-surfaced microstructures. Clarithromycin was incorporated within MF and CP as amorphous solid. Liquefaction test indicated hyaluronate lyase enzyme responsiveness of hyaluronic acid. Fibers-based formulations (MF, MB and MP) provided an alkaline pH (7.4) responsive drug release; ∼79 %, ∼78 % and ∼81 %, respectively within 2 hours. CP showed a drug release of ∼82 % within 2 hours. MP showed ∼13 % larger inhibitory zone against Staphylococcus aureus (S. aureus) as compared to MB and CP. A relatively rapid eradication of S. aureus in infected wounds and subsequent skin regeneration was observed following MP application as compared to MB and CP indicating its usefulness for the management of microbial biofilms.
Collapse
Affiliation(s)
- Saman Zafar
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | | | - Sadia Jafar Rana
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Mohammed Patel
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| | - Bushra Yousef
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom.
| |
Collapse
|
10
|
Multifunctional glycoprotein coatings improve the surface properties of highly oxygen permeable contact lenses. BIOMATERIALS ADVANCES 2023; 145:213233. [PMID: 36521413 DOI: 10.1016/j.bioadv.2022.213233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/03/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
To achieve and maintain good operability of medical devices while reducing putative side effects for the patient, a promising strategy is to tailor the surface properties of such devices as they critically dictate the tissue compatibility and the biofouling behavior. Indeed, those properties can be strongly improved by generating mucin coatings on such medical devices. However, using coatings on optical systems, e.g., contact lenses, comes with various challenges: here, the geometrical and optical characteristics of the lens may not be compromised by either the coating process or the coating itself. In this study, we show how mucin macromolecules can be attached onto the surfaces of rigid, gas permeable contact lenses while maintaining all critical lens parameters. We demonstrate that the generated coatings improve the surface wettability (contact angles are reduced from 105° to 40° and liquid film break-up times are increased from <1 s to 31 s) and prevent tribological damage to corneal tissue. Additionally, such coatings are highly transparent (transmission values above 98 % compared to an uncoated sample are reached) and efficiently reduce lipid deposition to the lens surface by 90 % but fully maintain the geometrical and mechanical properties of the lenses. Thus, such mucin coatings could also be highly beneficial for other optical systems that are used in direct contact with tissues or body fluids.
Collapse
|
11
|
Belamkar A, Harris A, Zukerman R, Siesky B, Oddone F, Verticchio Vercellin A, Ciulla TA. Sustained release glaucoma therapies: Novel modalities for overcoming key treatment barriers associated with topical medications. Ann Med 2022; 54:343-358. [PMID: 35076329 PMCID: PMC8794062 DOI: 10.1080/07853890.2021.1955146] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Glaucoma is a progressive optic neuropathy and a leading cause of irreversible blindness. The disease has conventionally been characterized by an elevated intraocular pressure (IOP); however, recent research has built the consensus that glaucoma is not only dependent on IOP but rather represents a multifactorial optic neuropathy. Although many risk factors have been identified ranging from demographics to co-morbidities to ocular structural predispositions, IOP is currently the only modifiable risk factor, most often treated by topical IOP-lowering medications. However, topical hypotensive regimens are prone to non-adherence and are largely inefficient, leading to disease progression in spite of treatment. As a result, several companies are developing sustained release (SR) drug delivery systems as alternatives to topical delivery to potentially overcome these barriers. Currently, Bimatoprost SR (DurystaTM) from Allergan plc is the only FDA-approved SR therapy for POAG. Other SR therapies under investigation include: bimatoprost ocular ring (Allergan) (ClinicalTrials.gov identifier: NCT01915940), iDose® (Glaukos Corporation) (NCT03519386), ENV515 (Envisia Therapeutics) (NCT02371746), OTX-TP (Ocular Therapeutix) (NCT02914509), OTX-TIC (Ocular Therapeutix) (NCT04060144), and latanoprost free acid SR (PolyActiva) (NCT04060758). Additionally, a wide variety of technologies for SR therapeutics are under investigation including ocular surface drug delivery systems such as contact lenses and nanotechnology. While challenges remain for SR drug delivery technology in POAG management, this technology may shift treatment paradigms and dramatically improve outcomes.
Collapse
Affiliation(s)
- Aditya Belamkar
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alon Harris
- Department of Opthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ryan Zukerman
- Department of Opthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Opthalmology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Brent Siesky
- Department of Opthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Thomas A Ciulla
- Indiana University School of Medicine, Indianapolis, IN, USA.,Vitreoretinal Medicine and Surgery, Midwest Eye Institute, Indianapolis, IN, USA
| |
Collapse
|
12
|
Hou B, Wen Y, Zhu X, Qi M, Cai W, Du B, Sun H, Qiu L. Preparation and characterization of vaccarin, hypaphorine and chitosan nanoparticles and their promoting effects on chronic wounds healing. Int J Biol Macromol 2022; 221:1580-1592. [PMID: 35961560 DOI: 10.1016/j.ijbiomac.2022.08.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/25/2022] [Accepted: 08/07/2022] [Indexed: 11/18/2022]
Abstract
Chronic wounds have become an important factor hindering human health, affecting tens of millions of people worldwide, especially diabetic wounds. Based on the antibacterial properties of chitosan, the angiogenesis promoting effect of vaccarin (VAC) and the anti-inflammatory effect of hypaphorine (HYP), nanoparticles with high bioavailability were prepared. VAC, HYP and chitosan nanoparticles (VAC + HYP-NPS) were used to the treatment of chronic wounds. Transmission electron microscopy (TEM) images showed the nanoparticles were spherical. ZetaPALS showed the potential of nanoparticles were -12.8 ± 5.53 mV and the size were 166.8 ± 29.95 nm. Methyl thiazolyl tetrazolium (MTT) assay showed that VAC + HYP-NPS had no toxicity and the biocompatibility was satisfactory. In the treatment of chronic wounds in diabetic rats, VAC + HYP-NPS significantly promoted the re-epithelialization of chronic wounds and accelerated the healing of chronic wounds. In the process of chronic wounds healing, VAC + HYP-NPS played the antibacterial effect of chitosan, the angiogenic effect of VAC and the anti-inflammatory effect of HYP, and finally promoted the chronic wounds healing. Overall, the developed VAC + HYP-NPS have potential application in chronic wounds healing. In view of the complexity of the causes of chronic wounds, multi-target drug administration may be an effective way to treat chronic wounds.
Collapse
Affiliation(s)
- Bao Hou
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, PR China
| | - Yuanyuan Wen
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, PR China
| | - Xuerui Zhu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, PR China
| | - Mengting Qi
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, PR China
| | - Weiwei Cai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, PR China
| | - Bin Du
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, PR China
| | - Haijian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, PR China
| | - Liying Qiu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, PR China.
| |
Collapse
|
13
|
The Use of Polymer Blends in the Treatment of Ocular Diseases. Pharmaceutics 2022; 14:pharmaceutics14071431. [PMID: 35890326 PMCID: PMC9322751 DOI: 10.3390/pharmaceutics14071431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 12/10/2022] Open
Abstract
The eye is an organ with limited drug access due to its anatomical and physiological barriers, and the usual forms of ocular administration are limited in terms of drug penetration, residence time, and bioavailability, as well as low patient compliance. Hence, therapeutic innovations in new drug delivery systems (DDS) have been widely explored since they show numerous advantages over conventional methods, besides delivering the content to the eye without interfering with its normal functioning. Polymers are usually used in DDS and many of them are applicable to ophthalmic use, especially biodegradable ones. Even so, it can be a hard task to find a singular polymer with all the desirable properties to deliver the best performance, and combining two or more polymers in a blend has proven to be more convenient, efficient, and cost-effective. This review was carried out to assess the use of polymer blends as DDS. The search conducted in the databases of Pubmed and Scopus for specific terms revealed that although the physical combination of polymers is largely applied, the term polymer blend still has low compliance.
Collapse
|
14
|
Platelet Lysate as a Promising Medium for Nanocarriers in the Management and Treatment of Ocular Diseases. CURRENT OPHTHALMOLOGY REPORTS 2022. [DOI: 10.1007/s40135-022-00285-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Hosseinian H, Hosseini S, Martinez-Chapa SO, Sher M. A Meta-Analysis of Wearable Contact Lenses for Medical Applications: Role of Electrospun Fiber for Drug Delivery. Polymers (Basel) 2022; 14:185. [PMID: 35012207 PMCID: PMC8747307 DOI: 10.3390/polym14010185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 01/14/2023] Open
Abstract
In recent years, wearable contact lenses for medical applications have attracted significant attention, as they enable continuous real-time recording of physiological information via active and noninvasive measurements. These devices play a vital role in continuous monitoring of intraocular pressure (IOP), noninvasive glucose monitoring in diabetes patients, drug delivery for the treatment of ocular illnesses, and colorblindness treatment. In specific, this class of medical devices is rapidly advancing in the area of drug loading and ocular drug release through incorporation of electrospun fibers. The electrospun fiber matrices offer a high surface area, controlled morphology, wettability, biocompatibility, and tunable porosity, which are highly desirable for controlled drug release. This article provides an overview of the advances of contact lens devices in medical applications with a focus on four main applications of these soft wearable devices: (i) IOP measurement and monitoring, (ii) glucose detection, (iii) ocular drug delivery, and (iv) colorblindness treatment. For each category and application, significant challenges and shortcomings of the current devices are thoroughly discussed, and new areas of opportunity are suggested. We also emphasize the role of electrospun fibers, their fabrication methods along with their characteristics, and the integration of diverse fiber types within the structure of the wearable contact lenses for efficient drug loading, in addition to controlled and sustained drug release. This review article also presents relevant statistics on the evolution of medical contact lenses over the last two decades, their strengths, and the future avenues for making the essential transition from clinical trials to real-world applications.
Collapse
Affiliation(s)
- Hamed Hosseinian
- School of Engineering and Sciences, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (H.H.); (S.O.M.-C.)
| | - Samira Hosseini
- School of Engineering and Sciences, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (H.H.); (S.O.M.-C.)
- Writing Lab, Institute for the Future of Education, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Sergio O. Martinez-Chapa
- School of Engineering and Sciences, Tecnologico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (H.H.); (S.O.M.-C.)
| | - Mazhar Sher
- Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
16
|
Advances and challenges in the nanoparticles-laden contact lenses for ocular drug delivery. Int J Pharm 2021; 608:121090. [PMID: 34530102 DOI: 10.1016/j.ijpharm.2021.121090] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/04/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022]
Abstract
The delivery of drugs that target ocular tissues is challenging due to the physiological barriers of the eye like tear dilution, nasolacrimal drainage, blinking, tear turnover rate and low residence time Drug-laden contact lenses can be a possible solution to overcome some of these challenges. Nanoparticles are being extensively studied as novel systems for loading drugs into therapeutic contact lenses. The versatile features of the organic and inorganic nanoparticles and their diverse physicochemical properties make it possible to load and sustain drug release from the contact lenses. Nevertheless, several issues remains to be solved before its clinical application and commercialization such as changes in contact lens swelling (water content), transmittance, protein adherence, surface roughness, tensile strength, ion and oxygen permeability and drug leaching during contact lens manufacture. However, clinical studies demonstrated the potential of therapeutic contact lenses to manage the scientific, commercial and regulatory challenges to make its place in the market. This review highlights the different methodologies used to fabricate nanoparticle-laden contact lenses and highlights the major advances and challenges to commercialization.
Collapse
|
17
|
Preparation of W/O Hypaphorine-Chitosan Nanoparticles and Its Application on Promoting Chronic Wound Healing via Alleviating Inflammation Block. NANOMATERIALS 2021; 11:nano11112830. [PMID: 34835594 PMCID: PMC8625710 DOI: 10.3390/nano11112830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022]
Abstract
Chronic wound repair is a common complication in patients with diabetes mellitus, which causes a heavy burden on social medical resources and the economy. Hypaphorine (HYP) has good anti-inflammatory effect, and chitosan (CS) is used in the treatment of wounds because of its good antibacterial effect. The purpose of this research was to investigate the role and mechanism of HYP-nano-microspheres in the treatment of wounds for diabetic rats. The morphology of HYP-NPS was observed by transmission electron microscopy (TEM). RAW 264.7 macrophages were used to assess the bio-compatibility of HYP-NPS. A full-thickness dermal wound in a diabetic rat model was performed to evaluate the wound healing function of HYP-NPS. The results revealed that HYP-NPS nanoparticles were spherical with an average diameter of approximately 50 nm. The cell experiments hinted that HYP-NPS had the potential as a trauma material. The wound test in diabetic rats indicated that HYP-NPS fostered the healing of chronic wounds. The mechanism was through down-regulating the expression of pro-inflammatory cytokines IL-1β and TNF-α in the skin of the wound, and accelerating the transition of chronic wound from inflammation to tissue regeneration. These results indicate that HYP-NPS has a good application prospect in the treatment of chronic wounds.
Collapse
|
18
|
Omer S, Zelkó R. A Systematic Review of Drug-Loaded Electrospun Nanofiber-Based Ophthalmic Inserts. Pharmaceutics 2021; 13:1637. [PMID: 34683930 PMCID: PMC8536958 DOI: 10.3390/pharmaceutics13101637] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/26/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
Currently, ocular inserts and nanoparticles have received much attention due to the limited bioavailability of conventional eye preparations and the toxicity problems of systemic drug administration. The current systematic review aims to present recent studies on the use of electrospun nanofiber-based ocular inserts to improve the bioavailability of drugs used for different ophthalmic diseases. A systematic search was performed in PubMed, Ovid Medline, Web of Science, ScienceDirect, Scopus, Reaxys, Google Scholar, and Google Patents/Espacenet taking "drug-loaded", "nanofibers", and "ophthalmic inserts" and their equivalent terms as keywords. The search was limited to original and peer-reviewed studies published in 2011-2021 in English language. Only 13 out of 795 articles and 15 out of 197 patents were included. All results revealed the success of nanofiber-based ocular inserts in targeting and improved bioavailability. Ocular inserts based on nanofibers can be used as safe, efficient carriers for the treatment of anterior and posterior eye diseases.
Collapse
Affiliation(s)
| | - Romána Zelkó
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, 1092 Budapest, Hungary;
| |
Collapse
|
19
|
Abdelkader H, Fathalla Z, Seyfoddin A, Farahani M, Thrimawithana T, Allahham A, Alani AWG, Al-Kinani AA, Alany RG. Polymeric long-acting drug delivery systems (LADDS) for treatment of chronic diseases: Inserts, patches, wafers, and implants. Adv Drug Deliv Rev 2021; 177:113957. [PMID: 34481032 DOI: 10.1016/j.addr.2021.113957] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/13/2021] [Accepted: 08/29/2021] [Indexed: 02/07/2023]
Abstract
Non-oral long-acting drug delivery systems (LADDS) encompass a range of technologies for precisely delivering drug molecules into target tissues either through the systemic circulation or via localized injections for treating chronic diseases like diabetes, cancer, and brain disorders as well as for age-related eye diseases. LADDS have been shown to prolong drug release from 24 h up to 3 years depending on characteristics of the drug and delivery system. LADDS can offer potentially safer, more effective, and patient friendly treatment options compared to more invasive modes of drug administration such as repeated injections or minor surgical intervention. Whilst there is no single technology or definition that can comprehensively embrace LADDS; for the purposes of this review, these systems include solid implants, inserts, transdermal patches, wafers and in situ forming delivery systems. This review covers common chronic illnesses, where candidate drugs have been incorporated into LADDS, examples of marketed long-acting pharmaceuticals, as well as newly emerging technologies, used in the fabrication of LADDS.
Collapse
Affiliation(s)
- Hamdy Abdelkader
- Pharmaceutics Department, Faculty of Pharmacy, Minia University, Minia, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Deraya University, New Minia City, Minia, Egypt
| | - Zeinab Fathalla
- Pharmaceutics Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Ali Seyfoddin
- Drug Delivery Research Group, Faculty of Health and Environmental Sciences, School of Science, Auckland University of Technology, New Zealand
| | - Mojtaba Farahani
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Thilini Thrimawithana
- Discipline of Pharmacy, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Ayman Allahham
- Discipline of Pharmacy, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Adam W G Alani
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Moody Avenue, RLSB, Portland, OR, United States; Biomedical Engineering Department, Oregon Health & Science University, 2730 S. Moody Avenue, RLSB, Portland, OR, United States; Knight Cancer Institute, Oregon Health & Science University, 2730 S. Moody Avenue, RLSB, Portland, OR, United States
| | - Ali A Al-Kinani
- Drug Discovery, Delivery and Patient Care Theme (DDDPC), Faculty of Science, Engineering and Computing, Kingston University London, Penrhyn Road, Kingston upon Thames, UK.
| | - Raid G Alany
- Drug Discovery, Delivery and Patient Care Theme (DDDPC), Faculty of Science, Engineering and Computing, Kingston University London, Penrhyn Road, Kingston upon Thames, UK; School of Pharmacy, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
20
|
Ali A, Zaman A, Sayed E, Evans D, Morgan S, Samwell C, Hall J, Arshad MS, Singh N, Qutachi O, Chang MW, Ahmad Z. Electrohydrodynamic atomisation driven design and engineering of opportunistic particulate systems for applications in drug delivery, therapeutics and pharmaceutics. Adv Drug Deliv Rev 2021; 176:113788. [PMID: 33957180 DOI: 10.1016/j.addr.2021.04.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022]
Abstract
Electrohydrodynamic atomisation (EHDA) technologies have evolved significantly over the past decade; branching into several established and emerging healthcare remits through timely advances in the engineering sciences and tailored conceptual process designs. More specifically for pharmaceutical and drug delivery spheres, electrospraying (ES) has presented itself as a high value technique enabling a plethora of different particulate structures. However, when coupled with novel formulations (e.g. co-flows) and innovative device aspects (e.g., materials and dimensions), core characteristics of particulates are manipulated and engineered specifically to deliver an application driven need, which is currently lacking, ranging from imaging and targeted delivery to controlled release and sensing. This demonstrates the holistic nature of these emerging technologies; which is often overlooked. Parametric driven control during particle engineering via the ES method yields opportunistic properties when compared to conventional methods, albeit at ambient conditions (e.g., temperature and pressure), making this extremely valuable for sensitive biologics and molecules of interest. Furthermore, several processing (e.g., flow rate, applied voltage and working distance) and solution (e.g., polymer concentration, electrical conductivity and surface tension) parameters impact ES modes and greatly influence the production of resulting particles. The formation of a steady cone-jet and subsequent atomisation during ES fabricates particles demonstrating monodispersity (or near monodispersed), narrow particle size distributions and smooth or textured morphologies; all of which are successfully incorporated in a one-step process. By following a controlled ES regime, tailored particles with various intricate structures (hollow microspheres, nanocups, Janus and cell-mimicking nanoparticles) can also be engineered through process head modifications central to the ES technique (single-needle spraying, coaxial, multi-needle and needleless approaches). Thus, intricate formulation design, set-up and combinatorial engineering of the EHDA process delivers particulate structures with a multitude of applications in tissue engineering, theranostics, bioresponsive systems as well as drug dosage forms for specific delivery to diseased or target tissues. This advanced technology has great potential to be implemented commercially, particularly on the industrial scale for several unmet pharmaceutical and medical challenges and needs. This review focuses on key seminal developments, ending with future perspectives addressing obstacles that need to be addressed for future advancement.
Collapse
|
21
|
Nguyen DCT, Dowling J, Ryan R, McLoughlin P, Fitzhenry L. Pharmaceutical-loaded contact lenses as an ocular drug delivery system: A review of critical lens characterization methodologies with reference to ISO standards. Cont Lens Anterior Eye 2021; 44:101487. [PMID: 34353748 DOI: 10.1016/j.clae.2021.101487] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/28/2021] [Accepted: 07/04/2021] [Indexed: 01/12/2023]
Abstract
Therapeutic contact lenses for ocular drug delivery have received considerable interest as they can potentially enhance ocular bioavailability, increase patient compliance, and reduce side effects. Along with the successful in vitro and in vivo studies on sustained drug delivery through contact lenses, lens critical properties such as water content, optical transparency and modulus have also been investigated. Aside from issues such as drug stability or burst release, the potential for the commercialization of pharmaceutical-loaded lenses can be limited by the alteration of lens physical and chemical properties upon the incorporation of therapeutic or non-therapeutic components. This review outlines advances in the use of pharmaceutical-loaded contact lenses and their relevant characterization methodologies as a potential ocular drug delivery system from 2010 to 2020, while summarizing current gaps and challenges in this field. A key reference point for this review is the relevant ISO standards on contact lenses, relating to the associated characterization methodologies. The content of this review is categorized based on the chemical, physical and mechanical properties of the loaded lens with the shortcomings of such analytical technologies examined.
Collapse
Affiliation(s)
- Dan Chau Thuy Nguyen
- Ocular Therapeutics Research Group (OTRG), Pharmaceutical & Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford City, County Waterford X91 K0EK, Ireland.
| | - Joseph Dowling
- Research and Development Department, Bausch + Lomb Ireland Ltd., Waterford City, County Waterford X91 V383, Ireland
| | - Richie Ryan
- Ocular Therapeutics Research Group (OTRG), Pharmaceutical & Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford City, County Waterford X91 K0EK, Ireland
| | - Peter McLoughlin
- Ocular Therapeutics Research Group (OTRG), Pharmaceutical & Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford City, County Waterford X91 K0EK, Ireland
| | - Laurence Fitzhenry
- Ocular Therapeutics Research Group (OTRG), Pharmaceutical & Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford City, County Waterford X91 K0EK, Ireland
| |
Collapse
|
22
|
Sharma S, Bhatia V. Nanoscale Drug Delivery Systems for Glaucoma: Experimental and In Silico Advances. Curr Top Med Chem 2021; 21:115-125. [PMID: 32962618 DOI: 10.2174/1568026620666200922114210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/25/2022]
Abstract
In this review, nanoscale-based drug delivery systems, particularly in relevance to the antiglaucoma drugs, have been discussed. In addition to that, the latest computational/in silico advances in this field are examined in brief. Using nanoscale materials for drug delivery is an ideal option to target tumours, and the drug can be released in areas of the body where traditional drugs may fail to act. Nanoparticles, polymeric nanomaterials, single-wall carbon nanotubes (SWCNTs), quantum dots (QDs), liposomes and graphene are the most important nanomaterials used for drug delivery. Ocular drug delivery is one of the most common and difficult tasks faced by pharmaceutical scientists because of many challenges like circumventing the blood-retinal barrier, corneal epithelium and the blood-aqueous barrier. Authors found compelling empirical evidence of scientists relying on in-silico approaches to develop novel drugs and drug delivery systems for treating glaucoma. This review in nanoscale drug delivery systems will help us understand the existing queries and evidence gaps and will pave the way for the effective design of novel ocular drug delivery systems.
Collapse
Affiliation(s)
- Smriti Sharma
- Department of Chemistry, Miranda House, University of Delhi, Delhi, India
| | - Vinayak Bhatia
- ICARE Eye Hospital and Postgraduate Institute, Noida, UP, India
| |
Collapse
|
23
|
Kompella UB, Hartman RR, Patil MA. Extraocular, periocular, and intraocular routes for sustained drug delivery for glaucoma. Prog Retin Eye Res 2021; 82:100901. [PMID: 32891866 PMCID: PMC8317199 DOI: 10.1016/j.preteyeres.2020.100901] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 08/22/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
Although once daily anti-glaucoma drug therapy is a current clinical reality, most therapies require multiple dosing and there is an unmet need to develop convenient, safe, and effective sustained release drug delivery systems for long-term treatment to improve patient adherence and outcomes. One of the first sustained release drug delivery systems was approved for the reduction of intraocular pressure in glaucoma patients. It is a polymeric reservoir-type insert delivery system, Ocusert™, placed under the eyelid and on the ocular surface for zero-order drug release over one week. The insert, marketed in two strengths, released pilocarpine on the eye surface. While many clinicians appreciated this drug product, it was eventually discontinued. No similar sustained release non-invasive drug delivery system has made it to the market to date for treating glaucoma. Drug delivery systems under development include punctal plugs, ring-type systems, contact lenses, implants, microspheres, nanospheres, gels, and other depot systems placed in the extraocular, periocular, or intraocular regions including intracameral, supraciliary, and intravitreal spaces. This article discusses the advantages and disadvantages of the various routes of administration and delivery systems for sustained glaucoma therapy. It also provides the reader with some examples and discussion of drug delivery systems that could potentially be applied for glaucoma treatment. Interestingly, one intracamerally injected implant, Durysta™, was approved recently for sustained intraocular pressure reduction. However, long-term acceptance of such devices has yet to be established. The ultimate success of the delivery system will depend on efficacy relative to eye drop dosing, safety, reimbursement options, and patient acceptance. Cautious development efforts are warranted considering prior failed approaches for sustained glaucoma drug delivery. Neuroprotective approaches for glaucoma therapy including cell, gene, protein, and drug-combination therapies, mostly administered intravitreally, are also rapidly progressing towards assessment in humans.
Collapse
Affiliation(s)
- Uday B Kompella
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Rachel R Hartman
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Madhoosudan A Patil
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
24
|
Kumara BN, Shambhu R, Prasad KS. Why chitosan could be apt candidate for glaucoma drug delivery - An overview. Int J Biol Macromol 2021; 176:47-65. [PMID: 33581206 DOI: 10.1016/j.ijbiomac.2021.02.057] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/03/2021] [Accepted: 02/07/2021] [Indexed: 12/15/2022]
Abstract
Most of the people in the world are affected by glaucoma, which leads to irreversible blindness. Several patient friendly treatments are available, nevertheless medications lack an easy and efficient way of sustained delivery. To make the delivery with enhanced bioavailability, biodegradable and non-biodegradable polymers-based drug carriers are explored. However, ocular drug delivery issues have not been resolved yet due to less adhesiveness, poor penetration ability, pH, and temperature dependent burst releases. Chitosan is found to be effective for ocular drug delivery due to excellent physio-chemical properties in terms of overcoming the existing issues. In this review, we aim to highlight why it has been chosen and the holy grail for ocular drug delivery. Besides, we have comprehensively reviewed recent patents on chitosan as a platform for ocular drug delivery and future perspectives on factors, lacunae and challenges that need to be addressed for better ocular delivery methods for glaucoma management.
Collapse
Affiliation(s)
- B N Kumara
- Nanomaterial Research Laboratory [NMRL], Nano Division, Yenepoya Research Centre, Yenepoya [Deemed to be University], Deralakatte, Mangalore 575 018, India
| | - Rashmi Shambhu
- Department of Ophthalmology, Yenepoya Medical College, Yenepoya [Deemed to be University], Deralakatte, Mangalore 575 018, India
| | - K Sudhakara Prasad
- Nanomaterial Research Laboratory [NMRL], Nano Division, Yenepoya Research Centre, Yenepoya [Deemed to be University], Deralakatte, Mangalore 575 018, India; Centre for Nutrition Studies, Yenepoya [Deemed to be University], Deralakatte, Mangalore 575 018, India.
| |
Collapse
|
25
|
Toffoletto N, Saramago B, Serro AP. Therapeutic Ophthalmic Lenses: A Review. Pharmaceutics 2020; 13:36. [PMID: 33379411 PMCID: PMC7824655 DOI: 10.3390/pharmaceutics13010036] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/17/2020] [Indexed: 12/17/2022] Open
Abstract
An increasing incidence of eye diseases has been registered in the last decades in developed countries due to the ageing of population, changes in lifestyle, environmental factors, and the presence of concomitant medical conditions. The increase of public awareness on ocular conditions leads to an early diagnosis and treatment, as well as an increased demand for more effective and minimally invasive solutions for the treatment of both the anterior and posterior segments of the eye. Despite being the most common route of ophthalmic drug administration, eye drops are associated with compliance issues, drug wastage by lacrimation, and low bioavailability due to the ocular barriers. In order to overcome these problems, the design of drug-eluting ophthalmic lenses constitutes a non-invasive and patient-friendly approach for the sustained drug delivery to the eye. Several examples of therapeutic contact lenses and intraocular lenses have been developed, by means of different strategies of drug loading, leading to promising results. This review aims to report the recent advances in the development of therapeutic ophthalmic lenses for the treatment and/or prophylaxis of eye pathologies (i.e., glaucoma, cataract, corneal diseases, or posterior segment diseases) and it gives an overview of the future perspectives and challenges in the field.
Collapse
Affiliation(s)
- Nadia Toffoletto
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (B.S.); (A.P.S.)
| | - Benilde Saramago
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (B.S.); (A.P.S.)
| | - Ana Paula Serro
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (B.S.); (A.P.S.)
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal
| |
Collapse
|
26
|
Zhang T, Zhu T, Wang F, Peng L, Lai M. Ketotifen loaded solid lipid nanoparticles laden contact lens to manage allergic conjunctivitis. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
27
|
Zamboulis A, Nanaki S, Michailidou G, Koumentakou I, Lazaridou M, Ainali NM, Xanthopoulou E, Bikiaris DN. Chitosan and its Derivatives for Ocular Delivery Formulations: Recent Advances and Developments. Polymers (Basel) 2020; 12:E1519. [PMID: 32650536 PMCID: PMC7407599 DOI: 10.3390/polym12071519] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Chitosan (CS) is a hemi-synthetic cationic linear polysaccharide produced by the deacetylation of chitin. CS is non-toxic, highly biocompatible, and biodegradable, and it has a low immunogenicity. Additionally, CS has inherent antibacterial properties and a mucoadhesive character and can disrupt epithelial tight junctions, thus acting as a permeability enhancer. As such, CS and its derivatives are well-suited for the challenging field of ocular drug delivery. In the present review article, we will discuss the properties of CS that contribute to its successful application in ocular delivery before reviewing the latest advances in the use of CS for the development of novel ophthalmic delivery systems. Colloidal nanocarriers (nanoparticles, micelles, liposomes) will be presented, followed by CS gels and lenses and ocular inserts. Finally, instances of CS coatings, aiming at conferring mucoadhesiveness to other matrixes, will be presented.
Collapse
Affiliation(s)
- Alexandra Zamboulis
- Laboratory of Polymer Chemistry & Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.N.); (G.M.); (I.K.); (M.L.); (N.M.A.); (E.X.)
| | | | | | | | | | | | | | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry & Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.N.); (G.M.); (I.K.); (M.L.); (N.M.A.); (E.X.)
| |
Collapse
|
28
|
Ahmad M, Ritzoulis C, Pan W, Chen J. Biologically-relevant interactions, phase separations and thermodynamics of chitosan–mucin binary systems. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Grande Tovar CD, Castro JI, Valencia CH, Navia Porras DP, Herminsul Mina Hernandez J, Valencia Zapata ME, Chaur MN. Nanocomposite Films of Chitosan-Grafted Carbon Nano-Onions for Biomedical Applications. Molecules 2020; 25:E1203. [PMID: 32155970 PMCID: PMC7179466 DOI: 10.3390/molecules25051203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/27/2020] [Accepted: 03/04/2020] [Indexed: 12/18/2022] Open
Abstract
The design of scaffolding from biocompatible and resistant materials such as carbon nanomaterials and biopolymers has become very important, given the high rate of injured patients. Graphene and carbon nanotubes, for example, have been used to improve the physical, mechanical, and biological properties of different materials and devices. In this work, we report the grafting of carbon nano-onions with chitosan (CS-g-CNO) through an amide-type bond. These compounds were blended with chitosan and polyvinyl alcohol composites to produce films for subdermal implantation in Wistar rats. Films with physical mixture between chitosan, polyvinyl alcohol, and carbon nano-onions were also prepared for comparison purposes. Film characterization was performed with Fourier Transformation Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), Tensile strength, X-ray Diffraction Spectroscopy (XRD), and Scanning Electron Microscopy (SEM). The degradation of films into simulated body fluid (SBF) showed losses between 14% and 16% of the initial weight after 25 days of treatment. Still, a faster degradation (weight loss and pH changes) was obtained with composites of CS-g-CNO due to a higher SBF interaction by hydrogen bonding. On the other hand, in vivo evaluation of nanocomposites during 30 days in Wistar rats, subdermal tissue demonstrated normal resorption of the materials with lower inflammation processes as compared with the physical blends of ox-CNO formulations. SBF hydrolytic results agreed with the in vivo degradation for all samples, demonstrating that with a higher ox-CNO content increased the stability of the material and decreased its degradation capacity; however, we observed greater reabsorption with the formulations including CS-g-CNO. With this research, we demonstrated the future impact of CS/PVA/CS-g-CNO nanocomposite films for biomedical applications.
Collapse
Affiliation(s)
- Carlos David Grande Tovar
- Grupo de investigación de fotoquímica y fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia;
| | - Jorge Iván Castro
- Grupo de Investigación SIMERQO, Departamento de Química, Universidad del Valle, Calle 13 No. 100-00, Cali 76001, Colombia;
| | - Carlos Humberto Valencia
- Escuela de Odontología, Grupo biomateriales dentales, Universidad del Valle, Calle 4B # 36-00, Cali 76001, Colombia;
| | - Diana Paola Navia Porras
- Grupo de Investigación Biotecnología, Facultad de Ingeniería, Universidad de San Buenaventura Cali, Carrera 122 # 6-65, Cali 76001, Colombia;
| | - José Herminsul Mina Hernandez
- Escuela de Ingeniería de Materiales, Facultad de Ingeniería, Universidad del Valle, Calle 13 No. 100-00, Santiago de Cali 760032, Colombia;
| | - Mayra Eliana Valencia Zapata
- Escuela de Ingeniería de Materiales, Facultad de Ingeniería, Universidad del Valle, Calle 13 No. 100-00, Santiago de Cali 760032, Colombia;
| | - Manuel N. Chaur
- Grupo de Investigación SIMERQO, Departamento de Química, Universidad del Valle, Calle 13 No. 100-00, Cali 76001, Colombia;
- Centro de Excelencia en Nuevos Materiales (CENM), Universidad del Valle, Calle 13 No. 100-00, Santiago de Cali 760032, Colombia
| |
Collapse
|
30
|
Singh RB, Ichhpujani P, Thakur S, Jindal S. Promising therapeutic drug delivery systems for glaucoma: a comprehensive review. Ther Adv Ophthalmol 2020; 12:2515841420905740. [PMID: 32206746 PMCID: PMC7074511 DOI: 10.1177/2515841420905740] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/06/2020] [Indexed: 02/06/2023] Open
Abstract
The delivery of ophthalmic drugs is challenging despite easy accessibility via the ocular surface. Topical instillation of eye drops is a relatively easy and most commonly used as a conduit for drug delivery for treating a myriad of ocular morbidities, particularly involving the anterior segment, and has an additional benefit of avoiding the first-pass metabolism while passing through the systemic circulation. The primary challenges of drug administration through traditional methods include-inadequate patient education for proper drug instillation technique, compliance, adherence, and persistence. Various dynamic (choroidal and conjunctival blood flow, lymphatic clearance, and tear dilution) and static (namely, different layers of cornea, sclera, and retina including blood aqueous and blood-retinal barriers) ocular barriers limit drug delivery to the target ocular tissues. The maintenance of the therapeutic drug levels on the ocular surface for a prolonged duration is an added challenge, thus preventing persistent delivery for longer durations. These factors result in inadequate management, leading to poor prognosis in vision loss in as many as 27% of the patients diagnosed with glaucoma. We have reviewed the research and advancements in the development of novel and well-tolerated drug delivery systems with the common goal of overcoming the factors limiting adequate drug delivery to the target tissues in glaucomatous patients with traditional techniques. In the recent past, multiple research groups have successfully designed noninvasive, sustained drug delivery systems, promoting the efficacy as well as the feasibility of delivering topical drugs to the anterior segment.
Collapse
Affiliation(s)
- Rohan B. Singh
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Parul Ichhpujani
- Department of Ophthalmology, Government Medical College & Hospital, Chandigarh, Chandigarh, India
| | - Sahil Thakur
- Department of Ophthalmology, Government Medical College & Hospital, Chandigarh, Chandigarh, India; Singapore Eye Research Institute, Singapore
| | - Sumeet Jindal
- Department of Ophthalmology Virginia Commonwealth University School of Medicine Richmond, VA, USA
| |
Collapse
|
31
|
Grande Tovar CD, Castro JI, Valencia CH, Navia Porras DP, Mina Hernandez JH, Valencia ME, Velásquez JD, Chaur MN. Preparation of Chitosan/Poly(Vinyl Alcohol) Nanocomposite Films Incorporated with Oxidized Carbon Nano-Onions (Multi-Layer Fullerenes) for Tissue-Engineering Applications. Biomolecules 2019; 9:E684. [PMID: 31683889 PMCID: PMC6920947 DOI: 10.3390/biom9110684] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023] Open
Abstract
Recently, tissue engineering became a very important medical alternative in patients who need to regenerate damaged or lost tissues through the use of scaffolds that support cell adhesion and proliferation. Carbon nanomaterials (carbon nanotubes, fullerenes, multi-wall fullerenes, and graphene) became a very important alternative to reinforce the mechanical, thermal, and antimicrobial properties of several biopolymers. In this work, five different formulations of chitosan/poly(vinyl alcohol)/oxidized carbon nano-onions (CS/PVA/ox-CNO) were used to prepare biodegradable scaffolds with potential biomedical applications. Film characterization consisted of Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), tension strength, Young's modulus, X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). The degradation in a simulated body fluid (FBS) demonstrated that all the formulations lost between 75% and 80% of their weight after 15 days of treatment, but the degradation decreased with the ox-CNO content. In vivo tests after 90 days of subdermal implantation of the nanocomposite films in Wistar rats' tissue demonstrated good biocompatibility without allergenic reactions or pus formation. There was a good correlation between FBS hydrolytic degradation and degradation in vivo for all the samples, since the ox-CNO content increased the stability of the material. All these results indicate the potential of the CS/PVA/ox-CNO nanocomposite films in tissue engineering, especially for long-term applications.
Collapse
Affiliation(s)
- Carlos David Grande Tovar
- Grupo de Investigación de fotoquímica y fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia.
| | - Jorge Iván Castro
- Grupo de Investigación SIMERQO, Departamento de Química, Universidad del Valle, Calle 13 No. 100-00, Cali 76001, Colombia.
| | - Carlos Humberto Valencia
- Escuela de Odontología, Grupo biomateriales dentales, Universidad del Valle, Calle 13 No. 100-00, Cali 76001, Colombia.
| | - Diana Paola Navia Porras
- Grupo de Investigación Biotecnología, Facultad de Ingeniería, Universidad de San Buenaventura Cali, Carrera 122 # 6-65, Cali 76001, Colombia.
| | - José Herminsul Mina Hernandez
- Escuela de Ingeniería de Materiales, Facultad de Ingeniería, Universidad del Valle, Calle 13 No. 100-00, Santiago de Cali 760032, Colombia.
| | - Mayra Eliana Valencia
- Escuela de Ingeniería de Materiales, Facultad de Ingeniería, Universidad del Valle, Calle 13 No. 100-00, Santiago de Cali 760032, Colombia.
| | - José Daniel Velásquez
- Grupo de Investigación SIMERQO, Departamento de Química, Universidad del Valle, Calle 13 No. 100-00, Cali 76001, Colombia.
| | - Manuel N Chaur
- Grupo de Investigación SIMERQO, Departamento de Química, Universidad del Valle, Calle 13 No. 100-00, Cali 76001, Colombia.
- Centro de Excelencia en Nuevos Materiales (CENM), Universidad del Valle, Calle 13 No. 100-00, Santiago de Cali 760032, Colombia.
| |
Collapse
|
32
|
Mutlu B, Farhan M, Kucuk I. T-Shaped Microfluidic Junction Processing of Porous Alginate-Based Films and Their Characteristics. Polymers (Basel) 2019; 11:E1386. [PMID: 31450763 PMCID: PMC6780642 DOI: 10.3390/polym11091386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 02/07/2023] Open
Abstract
In this work, highly monodisperse porous alginate films from bubble bursting were formed on a glass substrate at ambient temperature, by a T-shaped microfluidic junction device method using polyethylene glycol (PEG) stearate and phospholipid as precursors in some cases. Various polymer solution concentrations and feeding liquid flow rates were applied for the generation of monodisperse microbubbles, followed by the conversion of the bubbles to porous film structures on glass substrates. In order to compare the physical properties of polymeric solutions, the effects of alginate, PEG stearate (surfactant), and phospholipid concentrations on the flowability of the liquid in a T-shaped microfluidic junction device were studied. To tailor microbubble diameter and size distribution, a method for controlling the thinning process of the bubbles' shell was also explored. In order to control pore size, shape, and surface as well as internal structure morphologies in the scalable forming of alginate polymeric films, the effect of the feeding liquid's flow rate and concentrations of PEG-stearate and phospholipid was also studied. Digital microscopy images revealed that the as-formed alginate films at the flow rate of 100 µL·min-1 and the N2 gas pressure of 0.8 bar have highly monodisperse microbubbles with a polydispersity index (PDI) of approximately 6.5%. SEM captures also revealed that the as-formed alginate films with high PDI value have similar monodisperse porous surface and internal structure morphologies, with the exception that the as-formed alginate films with the help of phospholipids were mainly formed under our experimental environment. From the Fourier-transform infrared spectroscopy (FTIR), Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) measurements, we concluded that no chemical composition changes, thermal influence, and crystal structural modifications were observed due to the T-shaped microfluidic junction device technique. The method used in this work could expand and enhance the use of alginate porous films in a wide range of bioengineering applications, especially in tissue engineering and drug delivery, such as studying release behaviors to different internal and surface morphologies.
Collapse
Affiliation(s)
- Betul Mutlu
- Graduate School of Natural and Applied Sciences, Bursa Technical University, Bursa 16310, Turkey
| | - Muhammad Farhan
- Department of Pharmaceutics, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Israfil Kucuk
- Institute of Nanotechnology, Gebze Technical University, Gebze 41400, Turkey.
| |
Collapse
|