1
|
Eggers T, von Lacroix F, Goede MF, Persch C, Berlin W, Dröder K. Investigations for Material Tracing in Selective Laser Sintering: Part ΙΙ: Validation of Modified Polymers as Marking Agents. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2631. [PMID: 37048929 PMCID: PMC10095707 DOI: 10.3390/ma16072631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Selective laser sintering (SLS) is currently in transition to the production of functional components. However, the ability to apply it is confronted with new requirements for reliability and reproducibility. Therefore, an in-depth understanding of aging processes in polymers is essential. Regarding material traceability as well as defective component identification with subsequent cause tracing, the application of a material-inherent marking technology represents a solution. SLS in combination with modified polymers as a marking technology proves to be an efficient opportunity to produce reproducible and high-quality components due to an increased understanding of the process. Based on a selection of modified polymers for use in SLS, which were characterized in part I of the study, this work focuses on the experimental validation of the result. The influence of modified polymers on materials and component properties and the SLS process's influence on the traceability of modified polymers are examined. Intrinsic and extrinsic material properties as well as mechanical properties, surface quality and sinter density are analyzed. No discernible influences of the modified polymers on the investigated properties could be observed and the traceability of the modified polymers could also be confirmed in the aged powder and component using mass spectroscopy.
Collapse
Affiliation(s)
- Tom Eggers
- Volkswagen AG Wolfsburg, Berliner Ring 2, 38440 Wolfsburg, Germany
| | | | | | - Christoph Persch
- Institute of Machine Tools and Production Technology, Technische Universität Braunschweig, Langer Kamp 19b, 38106 Braunschweig, Germany
| | - Werner Berlin
- Institute of Machine Tools and Production Technology, Technische Universität Braunschweig, Langer Kamp 19b, 38106 Braunschweig, Germany
| | - Klaus Dröder
- Institute of Machine Tools and Production Technology, Technische Universität Braunschweig, Langer Kamp 19b, 38106 Braunschweig, Germany
| |
Collapse
|
2
|
The importance of humidity control in powder rheometer studies. POWDER TECHNOL 2023. [DOI: 10.1016/j.powtec.2023.118425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
3
|
Wu Z, Wu Y, Zakhvatayeva A, Wang X, Liu Z, Yang M, Zheng Q, Wu CY. Influence of moisture content on die filling of pharmaceutical powders. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
4
|
Systematic study of paracetamol powder mixtures and granules tabletability: Key role of rheological properties and dynamic image analysis. Int J Pharm 2021; 608:121110. [PMID: 34547394 DOI: 10.1016/j.ijpharm.2021.121110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 12/31/2022]
Abstract
The aim of this systematic study was to analyze the granulometric and rheological behavior of tableting mixtures in relation to tabletability by single tablet and lab-scale batch compression with an eccentric tablet machine. Three mixtures containing 33, 50, and 66% of the cohesive drug paracetamol were prepared. The high compressibility of the powder mixtures caused problems with overcompaction or lamination in the single tablet compression method; due to jamming of the material during the filling of the die, the lab-scale batch compression was impossible. Using high shear granulation, the flow properties and tabletability were adjusted. A linear relationship between the span of granules and the specific energy measured by FT4 powder rheometer was detected. In parallel, a linear relationship between conditioned bulk density and the tensile strength of the tablets at lab-scale batch tableting was noted. The combination of dynamic image analysis and powder rheometry was useful for predicting the tabletability of pharmaceutical mixtures during the single tablet (design) compression and the lab-scale batch compression.
Collapse
|
5
|
|
6
|
Wikström H, Remmelgas J, Solin S, Marucci M, Sandler N, Boissier C, Tajarobi P. Powder flow from an intermediate bulk container - Discharge predictions and experimental evaluation. Int J Pharm 2021; 597:120309. [PMID: 33540037 DOI: 10.1016/j.ijpharm.2021.120309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/08/2021] [Accepted: 01/20/2021] [Indexed: 11/16/2022]
Abstract
Powders are usually dispensed, blended, and transferred between different manufacturing steps in so-called Intermediate Bulk Containers (IBCs), and discharge from an IBC plays a critical role in the ability to manufacture high-quality tablets. To better understand IBC discharge, the flow behavior of selected excipients was comprehensively characterized using a number of techniques including the Hausner ratio/Carr's index, Erweka flow test, FlowPro flow test, shear test and wall friction test as well as FT4 powder rheometer experiments. Jenike's hopper design methodology was then used to predict the minimum non-arching outlet diameter and the mode of flow. Furthermore, the discharge rate from an IBC was predicted using a simple model that takes into account gravity and aerodynamic drag. The predictions were experimentally verified by measuring the discharge rate from a 20 L IBC using five commonly-used excipients. The small-scale Erweka flow test provided the best prediction of the full-scale IBC discharge experiment. Furthermore, a simple model that relied only on the particle size of the material and the diameter of the discharge opening was found to predict the IBC discharge rate remarkably well.
Collapse
Affiliation(s)
- Håkan Wikström
- Oral Product Development, Pharmaceutical Technology & Development, Operations & IT, AstraZeneca Gothenburg, Sweden
| | - Johan Remmelgas
- Oral Product Development, Pharmaceutical Technology & Development, Operations & IT, AstraZeneca Gothenburg, Sweden
| | - Sara Solin
- Pharmaceutical Sciences Laboratory, Faculty of Science and Technology, Åbo Akademi University, Turku, Finland
| | - Mariagrazia Marucci
- Oral Product Development, Pharmaceutical Technology & Development, Operations & IT, AstraZeneca Gothenburg, Sweden
| | - Niklas Sandler
- Pharmaceutical Sciences Laboratory, Faculty of Science and Technology, Åbo Akademi University, Turku, Finland
| | - Catherine Boissier
- Oral Product Development, Pharmaceutical Technology & Development, Operations & IT, AstraZeneca Gothenburg, Sweden
| | - Pirjo Tajarobi
- Early Product Development and Manufacturing, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca Gothenburg, Sweden.
| |
Collapse
|
7
|
Salehi H, Karde V, Hajmohammadi H, Dissanayake S, Larsson SH, Heng JYY, Bradley M. Understanding flow properties of mannitol powder at a range of temperature and humidity. Int J Pharm 2021; 596:120244. [PMID: 33484920 DOI: 10.1016/j.ijpharm.2021.120244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 11/18/2022]
Abstract
Inadequate flowability of powders in industries during handling can cause many problems. For example, lack of flow from hoppers, poor tablet weight consistency, and low production rate in tableting. Many factors are known to commonly affect flow properties of powders, such as temperature, humidity and conditioning duration. In this paper, flow properties of a mannitol powder, which was conditioned between 24 and 72 h at various high relative humidities and temperature, were measured using a shear tester. A statistical model was developed to investigate the relative importance of these variables on the mannitol flow properties. The developed model showed all independent variables are significant in estimating bulk cohesion. Two separate approaches were used to evaluate inter-particle forces in the bulk, and how these changed with environmental conditions. First, inter-particle forces were inferred from the measured bulk properties using the Rumpf model approach. Secondly, inter-particle forces were predicted based on a model of moisture present on the particle surface using a combination of Kelvin model with the Laplace-Young (KLY) equation. The second approach also involved a new method to measure surface energy of mannitol powder based on measurements using Finite Dilution Inverse Gas Chromatography (FD-IGC). The surface energies of the mannitol powder were measured at high temperature (35 °C) and at different range of relative humidities. In spite of the fundamentally different approaches to the two ways of inferring inter-particles forces, these forces came out within less than 1.5:1 in magnitude. The Rumpf approach from bulk behaviour data obviously reflected the measured change in behaviour with humidity in particular, but this was not predicted from the KLY approach, however the likely reasons for this are postulated and recommendations for improvement are made.
Collapse
Affiliation(s)
- Hamid Salehi
- Wolfson Centre for Bulk Solids Handling Technology, Faculty of Engineering & Science, University of Greenwich, Chatham, United Kingdom.
| | - Vikram Karde
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | - Hajar Hajmohammadi
- Centre For Clinical Effectiveness and Health Data Sciences, Institute of Population Health Sciences, Queen Mary University of London, United Kingdom
| | - Susantha Dissanayake
- Wolfson Centre for Bulk Solids Handling Technology, Faculty of Engineering & Science, University of Greenwich, Chatham, United Kingdom
| | - Sylvia H Larsson
- Biomass Technology Centre, Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Jerry Y Y Heng
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | - Mike Bradley
- Wolfson Centre for Bulk Solids Handling Technology, Faculty of Engineering & Science, University of Greenwich, Chatham, United Kingdom
| |
Collapse
|
8
|
Beretta M, Hörmann TR, Hainz P, Hsiao WK, Paudel A. Investigation into powder tribo-charging of pharmaceuticals. Part II: Sensitivity to relative humidity. Int J Pharm 2020; 591:120015. [PMID: 33148521 DOI: 10.1016/j.ijpharm.2020.120015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 11/19/2022]
Abstract
Environmental conditions can have a profound impact on the bulk behaviour of pharmaceutical powders, including their tribo-charging tendency. Typically, high relative humidity (RH) has been associated to a reduction in the electrostatic charge of the material. However, the occurrence of charge mitigation seems to be related to the quantity of water molecules at the powder surface, which depends on intrinsic material attributes (i.e., water sorption propensity), and external factors (i.e., RH level). In the present study, pharmaceutical powders (i.e., microcrystalline cellulose, D-mannitol, paracetamol and magnesium stearate) were conditioned at three levels of RH, relevant for pharmaceutical operations, and their bulk behaviour, including charging propensity, was analyzed. Depending on the material type, powders sorbed water from the humid atmosphere to different extents, resulting in different charging behaviours. Overall, the charge density of the materials was found to decrease after a certain RH or monotonically decrease with an increase of RH, except for D-mannitol. For this material, a contrasting trend of increase in charging was observed with an increase in RH. Moreover, the powders showed a distinct tribo-charging sensitivity to RH, with paracetamol being the most affected. These findings suggest that a careful consideration on solid material-moisture interactions is needed when using RH as strategy to minimize electrostatic effects in powder processing.
Collapse
Affiliation(s)
- M Beretta
- Research Center Pharmaceutical Engineering GmbH, Graz 8010, Austria; European Consortium for Continuous Pharmaceutical Manufacturing (ECCPM), Graz 8010, Austria; Institute of Process and Particle Engineering, Graz University of Technology, Graz 8010, Austria
| | - T R Hörmann
- Research Center Pharmaceutical Engineering GmbH, Graz 8010, Austria; European Consortium for Continuous Pharmaceutical Manufacturing (ECCPM), Graz 8010, Austria
| | - P Hainz
- Research Center Pharmaceutical Engineering GmbH, Graz 8010, Austria
| | - W K Hsiao
- Research Center Pharmaceutical Engineering GmbH, Graz 8010, Austria; European Consortium for Continuous Pharmaceutical Manufacturing (ECCPM), Graz 8010, Austria
| | - A Paudel
- Research Center Pharmaceutical Engineering GmbH, Graz 8010, Austria; European Consortium for Continuous Pharmaceutical Manufacturing (ECCPM), Graz 8010, Austria; Institute of Process and Particle Engineering, Graz University of Technology, Graz 8010, Austria.
| |
Collapse
|