1
|
Togami K, Hazama Y, Nakamura Y, Ishizawa K, Chono S. Development of a Compensated Förster Resonance Energy Transfer Imaging for Improved Assessment of the Intrapulmonary Distribution of Polymeric Nanoparticles. J Pharm Sci 2023; 112:2696-2702. [PMID: 37478971 DOI: 10.1016/j.xphs.2023.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
Inhalation-based drug delivery systems have gained attention as potential therapeutic options for various respiratory diseases. Among these systems, nanoparticles are being explored as drug carriers because of their ability to deliver therapeutic agents directly to the lungs. It is essential to accurately evaluate the intrapulmonary behavior of nanoparticles to optimize drug delivery and achieve selective targeting of lung lesions. Prior research used the Förster resonance energy transfer (FRET) phenomenon to study the in vivo behavior of nanoparticles as drug carriers. In this study, image reconstruction involving bleed-through compensation was used to quantitatively assess the behavior of FRET nanoparticles in the lungs. When the nanoparticles for FRET fluorescence imaging, which employed 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine, 4-chlorobenzenesulfonate salt (DiD) as the donor and as 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine iodide (DiR) the acceptor, were administered to mouse lungs, whole-body in vivo imaging could not compensate for the influence of respiration and heartbeat. However, ex vivo imaging of excised lungs enabled the quantitative evaluation of the time-concentration profiles and distribution of nanoparticles within the lungs. This imaging technique is particularly useful for the development of inhalable nanoparticles that specifically target the lesions and exhibit controlled-release capabilities within the lungs.
Collapse
Affiliation(s)
- Kohei Togami
- Division of Pharmaceutics, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan; Creation Research Institute of Life Science in KITA-no-DAICHI, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan.
| | - Yoshiki Hazama
- Division of Pharmaceutics, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan
| | - Yuki Nakamura
- Division of Pharmaceutics, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan
| | - Kiyomi Ishizawa
- Division of Pharmaceutics, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan
| | - Sumio Chono
- Division of Pharmaceutics, Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan; Creation Research Institute of Life Science in KITA-no-DAICHI, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan
| |
Collapse
|
3
|
Kaeokhamloed N, Legeay S, Roger E. FRET as the tool for in vivo nanomedicine tracking. J Control Release 2022; 349:156-173. [PMID: 35779657 DOI: 10.1016/j.jconrel.2022.06.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 11/29/2022]
Abstract
Advanced drug delivery system utilizing a nanocarrier is the major application of nanotechnology on pharmacotherapeutics. However, despite the promising benefits and a leading trend in pharmaceutical research, nanomedicine development suffers from a poor clinical translation problem as only a handful of nanomedicine products reach the market yearly. The conventional pharmacokinetic study generally focuses only on monitoring the level of a free drug but ignores the nanocarrier's role in pharmacokinetics. One hurdle is that it is difficult to directly track intact nanocarriers in vivo to explore their pharmacokinetics. Although several imaging techniques such as radiolabeling, nuclear imaging, fluorescence imaging, etc., have been developed over the past few years, currently, one method that can successfully track the intact nanocarriers in vivo directly is by Förster resonance energy transfer (FRET). This review summarizes the application of FRET as the in vivo nanoparticle tracker for studying the in vivo pharmacokinetics of the organic nanocarriers and gives elaborative details on the techniques utilized.
Collapse
Affiliation(s)
| | - Samuel Legeay
- MINT, INSERM U1066, CNRS 6021, SFR-ICAT, University of Angers, 49333 Angers, France
| | - Emilie Roger
- MINT, INSERM U1066, CNRS 6021, SFR-ICAT, University of Angers, 49333 Angers, France.
| |
Collapse
|
5
|
Mathur D, Samanta A, Ancona MG, Díaz SA, Kim Y, Melinger JS, Goldman ER, Sadowski JP, Ong LL, Yin P, Medintz IL. Understanding Förster Resonance Energy Transfer in the Sheet Regime with DNA Brick-Based Dye Networks. ACS NANO 2021; 15:16452-16468. [PMID: 34609842 PMCID: PMC8823280 DOI: 10.1021/acsnano.1c05871] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Controlling excitonic energy transfer at the molecular level is a key requirement for transitioning nanophotonics research to viable devices with the main inspiration coming from biological light-harvesting antennas that collect and direct light energy with near-unity efficiency using Förster resonance energy transfer (FRET). Among putative FRET processes, point-to-plane FRET between donors and acceptors arrayed in two-dimensional sheets is predicted to be particularly efficient with a theoretical 1/r4 energy transfer distance (r) dependency versus the 1/r6 dependency seen for a single donor-acceptor interaction. However, quantitative validation has been confounded by a lack of robust experimental approaches that can rigidly place dyes in the required nanoscale arrangements. To create such assemblies, we utilize a DNA brick scaffold, referred to as a DNA block, which incorporates up to five two-dimensional planes with each displaying from 1 to 12 copies of five different donor, acceptor, or intermediary relay dyes. Nanostructure characterization along with steady-state and time-resolved spectroscopic data were combined with molecular dynamics modeling and detailed numerical simulations to compare the energy transfer efficiencies observed in the experimental DNA block assemblies to theoretical expectations. Overall, we demonstrate clear signatures of sheet regime FRET, and from this we provide a better understanding of what is needed to realize the benefits of such energy transfer in artificial dye networks along with FRET-based sensing and imaging.
Collapse
Affiliation(s)
| | | | | | - Sebastián A. Díaz
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Youngchan Kim
- Center for Materials Physics and Technology Code 6390, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Joseph S. Melinger
- Electronic Science and Technology Division Code 6800, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Ellen R. Goldman
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - John Paul Sadowski
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States; American Society for Engineering Education, Washington, D.C. 20001, United States
| | - Luvena L. Ong
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Peng Yin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
6
|
Yin A, Sun H, Chen H, Liu Z, Tang Q, Yuan Y, Tu Z, Zhuang Z, Chen T. Measuring calibration factors by imaging a dish of cells expressing different tandem constructs plasmids. Cytometry A 2021; 99:632-640. [PMID: 33491868 DOI: 10.1002/cyto.a.24316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022]
Abstract
Three-cube Förster resonance energy transfer (FRET) method is the most extensively applied approach for live-cell FRET quantification. Reliable measurements of calibration factors are crucial for quantitative FRET measurement. We here proposed a modified TA-G method (termed as mTA-G) to simultaneously obtain the FRET-sensitized quenching transition factor (G) and extinction coefficients ratio (γ) between donor and acceptor. mTA-G method includes four steps: (1) predetermining the ratio ranges of the sensitized emission of acceptor (FC ) to the donor excitation and donor channel image (IDD [(DA])) for all FRET plasmids; (2) culturing the cells which express every FRET plasmid in one dish respectively; (3) distinguishing and marking the cells expressing different FRET plasmids by detecting their FC /IDD (DA) values; (4) linearly fitting FC /IAA (DA) (acceptor excitation and acceptor channel image) to IDD (DA)/IAA (DA) for different kinds of cells. We implemented mTA-G method by imaging tandem constructs cells with different FRET efficiency cultured in one dish on different days, and obtained consistent G and γ values. mTA-G method not only circumvents switchover of different culture dishes but also keep the constant imaging conditions, exhibiting excellent robustness, and thus will expands the biological applications of quantitative FRET analysis in living cells.
Collapse
Affiliation(s)
- Ao Yin
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Han Sun
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Hongce Chen
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Zhi Liu
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Qiling Tang
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Ye Yuan
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Zhuang Tu
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Zhengfei Zhuang
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Tongsheng Chen
- Key Laboratory of Laser Life Science, Ministry of Education, College of Biophotonics, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|