1
|
Liu JZ, Li L, Fang WJ. A Novel Size Exclusion Chromatography Method for the Analysis of Monoclonal Antibodies and Antibody-drug Conjugates by Using Sodium Iodide in the Mobile Phase. Pharm Res 2024; 41:1893-1901. [PMID: 39231906 DOI: 10.1007/s11095-024-03763-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/13/2024] [Indexed: 09/06/2024]
Abstract
PURPOSES Size exclusion chromatography (SEC) is widely used to characterize molecular size variants of antibody drugs. However, SEC analysis is hindered by secondary interactions (or nonspecific interactions) between proteins and stationary phase packing, which result in poor column efficiency. Previous studies have reported that chaotropic salt can inhibit these interactions, but the corresponding applications of this aspect are relatively rare. Therefore, this study introduces a novel approach using sodium iodide (NaI) as a mobile-phase component in SEC and investigates the influence of the mobile-phase composition on secondary interactions. METHODS SEC analysis was performed on one antibody-drug conjugate and four monoclonal antibodies (mAbs) using three different mobile-phase systems (i.e., sodium chloride/L-arginine hydrochloride/NaI mobile phases system) to compare the column efficiency. Subsequently, mAb-1 was used as a model to investigate the effects of these factors on secondary interactions by adjusting the ionic strength (salt concentration) and pH of the NaI mobile-phase system. RESULTS NaI exhibits superior column efficiency performance in the SEC analysis of most products. The ionic strength will affect nonideal electrostatic and hydrophobic interaction. An appropriate ionic strength can inhibit electrostatic interactions, while an excessive ionic strength increases hydrophobic interactions. pH primarily influences electrostatic interactions. Determining the appropriate pH necessitates consideration of the isoelectric point of the protein and the pH tolerance of the column. CONCLUSIONS In SEC analysis, using NaI as the salt component in the mobile phase reduces secondary interactions and improves column efficiency. This approach is advantageous for samples with intense secondary interactions and is a suitable alternative.
Collapse
Affiliation(s)
- Jian-Zhong Liu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Taizhou Institute of Zhejiang University, Taizhou, 317000, China
| | - Lei Li
- Zhejiang Bioray Biopharmaceutical Co., Taizhou, 317000, China
| | - Wei-Jie Fang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Taizhou Institute of Zhejiang University, Taizhou, 317000, China.
- Innovation Center of Translational Pharmacy, Jinhua Institute of Zhejiang University, Jinhua, 321000, China.
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
2
|
Yu YS, Xu H, AboulFotouh K, Williams G, Suman J, Sahakijpijarn S, Cano C, Warnken ZN, Wu KCW, Williams RO, Cui Z. Intranasal delivery of thin-film freeze-dried monoclonal antibodies using a powder nasal spray system. Int J Pharm 2024; 653:123892. [PMID: 38350499 DOI: 10.1016/j.ijpharm.2024.123892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/15/2024]
Abstract
Monoclonal antibodies (mAbs) administered intranasally as dry powders can be potentially applied for the treatment or pre-exposure prevention of viral infections in the upper respiratory tract. However, a method to transform the mAbs from liquid to dry powders suitable for intranasal administration and a device that can spray the dry powders to the desired region of the nasal cavity are needed to fully realize the potentials of the mAbs. Herein, we report that thin-film freeze-dried mAb powders can be sprayed into the posterior nasal cavity using Aptar Pharma's Unidose (UDS) Powder Nasal Spray System. AUG-3387, a human-derived mAb that neutralizes the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was used in the present study. First, we prepared thin-film freeze-dried AUG-3387 powders (i.e., TFF AUG-3387 powders) from liquid formulations containing different levels of mAbs. The TFF AUG-3387 powder with the highest solid content (i.e., TFF AUG-3387C) was then chosen for further characterization, including the evaluation of the plume geometry, spray pattern, and particle size distribution after the powder was sprayed using the UDS Powder Nasal Spray. Finally, the deposition patterns of the TFF AUG-3387C powder sprayed using the UDS Powder delivery system were studied using 3D-printed nasal replica casts based on the CT scans of an adult and a child. It is concluded that it is feasible to intranasally deliver mAbs as dry powders by transforming the mAbs into dry powders using thin-film freeze-drying and then spraying the powder using a powder nasal spray system.
Collapse
Affiliation(s)
- Yu-Sheng Yu
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States; National Taiwan University, Department of Chemical Engineering, Taipei, Taiwan
| | - Haiyue Xu
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Khaled AboulFotouh
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | | | | | | | - Chris Cano
- TFF Pharmaceuticals, Inc., Fort Worth, TX, United States
| | | | - Kevin C-W Wu
- National Taiwan University, Department of Chemical Engineering, Taipei, Taiwan; National Health Research Institute, Institute of Biomedical Engineering and Nanomedicine, Miaoli, Taiwan
| | - Robert O Williams
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Zhengrong Cui
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States.
| |
Collapse
|
3
|
Hada S, Na KJ, Jeong J, Choi DH, Kim NA, Jeong SH. Evaluation of subvisible particles in human immunoglobulin and lipid nanoparticles repackaged from a multi-dose vial using plastic syringes. Int J Biol Macromol 2023; 232:123439. [PMID: 36716845 DOI: 10.1016/j.ijbiomac.2023.123439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023]
Abstract
The multi-dose vial (MDV) is widely used for most biopharmaceuticals that are repackaged in plastic syringes before use. However, subvisible particle formation with the use of plastic syringes containing silicone oil (SO syringes) for handling therapeutic proteins can be problematic. This study aimed to evaluate the extent of and trends in microparticle (>1 μm) formation and accumulation in repackaged syringes from MDVs containing human immunoglobulin (IgG) and lipid nanoparticles (LNPs). Light obscuration (LO) and flow imaging (FI) were used to analyze the microparticles. The number of microparticles observed with the use SO syringes was greater than that with SO-free syringes, and the number of microparticles continuously increased as did the number of times of repackaging in syringes for both drugs. However, a large variation was observed across different brands of SO syringes. In contrast, using a different technique of drug withdrawal from the vial significantly reduced the number of microparticles. Furthermore, the use of filter-integrated needles or the inclusion of stabilizers such as acetyl-arginine and Tween 20 into the formulation also helped reduce particle formation.
Collapse
Affiliation(s)
- Shavron Hada
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| | - Kyung Jun Na
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| | - Junoh Jeong
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| | - Du Hyung Choi
- Department of Pharmaceutical Engineering, Inje University, Gyeongnam 621-749, Republic of Korea; College of Pharmacy, Daegu Catholic University, Gyeongsan, Gyeongbuk 38430, Republic of Korea.
| | - Nam Ah Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea; College of Pharmacy, Mokpo National University, Jeonnam 58554, Republic of Korea.
| | - Seong Hoon Jeong
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Gyeonggi 10326, Republic of Korea.
| |
Collapse
|
4
|
Hufnagel S, Xu H, Sahakijpijarn S, Moon C, Chow LQ, Williams III RO, Cui Z. Dry Powders for Inhalation Containing Monoclonal Antibodies Made by Thin-Film Freeze-Drying. Int J Pharm 2022; 618:121637. [DOI: 10.1016/j.ijpharm.2022.121637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
|