1
|
Song Z, Jin L, Jiao L, Yu R, Liu H, Zhang S, Hu Y, Sun Y, Li E, Zhao G, Liu Z, Cai T. ALC-0315 Lipid-Based mRNA LNP Induces Stronger Cellular Immune Responses Postvaccination. Mol Pharm 2025; 22:859-870. [PMID: 39813729 DOI: 10.1021/acs.molpharmaceut.4c00995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
At the end of 2019, SARS-CoV-2 emerged and rapidly spread, having a profound negative impact on human health and socioeconomic conditions. In response to this unprecedented global health crisis, significant advancements were made in the mRNA vaccine technology. In this study, we have compared the difference between two SARS-CoV-2 receptor-binding domain (RBD) mRNA-Lipid nanoparticle (LNP) vaccines prepared from two different ionizable cationic lipids: ALC-0315 and MC3. Characterization of RBD mRNA-LNPs showed that both MC3-LNP and ALC-0315-LNP are highly uniform and stable. Furthermore, we assessed the humoral immune response in mice after immunization; our findings indicated that both vaccine formulations effectively enhanced the formation and differentiation of germinal center (GC). Notably, the mice immunized with the ALC-0315-LNP vaccine elicited higher levels of IgG and its subclasses and significantly enhanced the activation of dendritic cells and T cells in draining lymph nodes (dLNs) compared to those immunized with the MC3-LNP vaccine. Further analysis of the T cell phenotype after splenic restimulation showed that mice injected with both LNP mRNA vaccines had significantly increased activation of the splenic T cells and Th1-type cytokine production. In addition, our finding showed that both LNP mRNA vaccines significantly increased the proportions of follicular helper T cells (Tfh) and long-lasting plasma cells in the dLNs of mice on day 14 postimmunization compared to control. In conclusion, both ALC-0315 and MC3 exhibited good stability and immunogenicity as mRNA-LNP recipes, but the ALC-0315-based mRNA-LNP vaccine showed higher efficacy in humoral and cellular immune responses compared to MC3.
Collapse
Affiliation(s)
- Zuchen Song
- Ningbo No.2 Hospital, Ningbo, Zhejiang 315010, P. R. China
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, Zhejiang 315000, P. R. China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - Lan Jin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - Lina Jiao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - Ruihong Yu
- Ningbo No.2 Hospital, Ningbo, Zhejiang 315010, P. R. China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - Huina Liu
- Ningbo No.2 Hospital, Ningbo, Zhejiang 315010, P. R. China
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, Zhejiang 315000, P. R. China
| | - Shun Zhang
- Ningbo No.2 Hospital, Ningbo, Zhejiang 315010, P. R. China
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, Zhejiang 315000, P. R. China
| | - Yaoren Hu
- Ningbo No.2 Hospital, Ningbo, Zhejiang 315010, P. R. China
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, Zhejiang 315000, P. R. China
| | - Yuechao Sun
- Ningbo No.2 Hospital, Ningbo, Zhejiang 315010, P. R. China
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, Zhejiang 315000, P. R. China
| | - Entao Li
- Ningbo No.2 Hospital, Ningbo, Zhejiang 315010, P. R. China
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, Zhejiang 315000, P. R. China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - Guofang Zhao
- Ningbo No.2 Hospital, Ningbo, Zhejiang 315010, P. R. China
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, Zhejiang 315000, P. R. China
| | - Zhenguang Liu
- Ningbo No.2 Hospital, Ningbo, Zhejiang 315010, P. R. China
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, Zhejiang 315000, P. R. China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - Ting Cai
- Ningbo No.2 Hospital, Ningbo, Zhejiang 315010, P. R. China
- Guoke Ningbo Life Science and Health Industry Research Institute, Ningbo, Zhejiang 315000, P. R. China
| |
Collapse
|
2
|
Clogston JD, Foss W, Harris D, Oberoi H, Pan J, Pu E, Guzmán EAT, Walter K, Brown S, Soo PL. Current state of nanomedicine drug products: An industry perspective. J Pharm Sci 2024; 113:3395-3405. [PMID: 39276979 DOI: 10.1016/j.xphs.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Nanomedicine drug products have reached an unprecedented high in terms of global commercial acceptance and media exposure with the approvals of the mRNA COVID-19 vaccines in 2021. In this paper, we examine the current state of the art for nanomedicine technologies as applied for pharmaceutical products and compare those trends with results from a recent IQ Consortium industry survey on nanomedicine drug products. We find that 1) industry companies continue to push the envelope in terms of new technologies for characterizing their specific drug products, 2) new analytical technologies continue to be utilized by industry to characterize the increasingly complex nanomedicine drug products and 3) alignment and communication are key between industry and regulatory authorities to better understand the regulatory filings that are being submitted. There are many CMC challenges that a company must overcome to successfully file a nanomedicine drug product. In 2022, the FDA Guidance on Drug Products containing Nanomaterials was published, and it provides a roadmap for submission of a nanomedicine drug product. We propose that our paper serves as a complimentary guide providing knowledge on specific CMC issues such as quality attributes, physicochemical characterization methods, excipients, and stability.
Collapse
Affiliation(s)
| | - Willard Foss
- Bristol Myers Squibb, Early Biologics Development, Redwood City, CA, USA
| | | | - Hardeep Oberoi
- AbbVie Inc., Drug Product Development, North Chicago, IL, USA
| | - Jiayi Pan
- Biogen, Technical Development, Cambridge, MA, USA
| | - Elaine Pu
- Bristol Myers Squibb, Drug Product Development, Summit, NJ, USA
| | | | - Katrin Walter
- AstraZeneca, Pharmaceutical Product Development, Gothenburg, Sweden
| | - Scott Brown
- GSK plc. Medicines Development and Supply, Drug Substance and Drug Product Analytical, Collegeville, PA 19426, USA
| | - Patrick Lim Soo
- Pfizer, Pharmaceutical Research & Development, Andover, MA, USA.
| |
Collapse
|
3
|
Saadh MJ, Shallan MA, Hussein UAR, Mohammed AQ, Al-Shuwaili SJ, Shikara M, Ami AA, Khalil NAMA, Ahmad I, Abbas HH, Elawady A. Advances in microscopy characterization techniques for lipid nanocarriers in drug delivery: a comprehensive review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5463-5481. [PMID: 38459989 DOI: 10.1007/s00210-024-03033-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/28/2024] [Indexed: 03/11/2024]
Abstract
This review paper provides an in-depth analysis of the significance of lipid nanocarriers in drug delivery and the crucial role of characterization techniques. It explores various types of lipid nanocarriers and their applications, emphasizing the importance of microscopy-based characterization methods such as light microscopy, confocal microscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The paper also delves into sample preparation, quantitative analysis, challenges, and future directions in the field. The review concludes by underlining the pivotal role of microscopy-based characterization in advancing lipid nanocarrier research and drug delivery technologies.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | | | | | | | | | - Ahmed Ali Ami
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq
| | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Huda Hayder Abbas
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Ahmed Elawady
- College of Technical Engineering, The Islamic University, Najaf, Iraq.
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq.
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq.
| |
Collapse
|
4
|
de Chateauneuf-Randon S, Bresson B, Ripoll M, Huille S, Barthel E, Monteux C. The mechanical properties of lipid nanoparticles depend on the type of biomacromolecule they are loaded with. NANOSCALE 2024; 16:10706-10714. [PMID: 38700424 DOI: 10.1039/d3nr06543j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
For drug delivery systems, the mechanical properties of drug carriers are suspected to play a crucial role in the delivery process. However, there is a lack of reliable methods available to measure the mechanical properties of drug carriers, which hampers the establishment of a link between delivery efficiency and the mechanical properties of carriers. Lipid nanoparticles (LNPs) are advanced systems for delivering nucleic acids to target cell populations for vaccination purposes (mRNA) or the development of new drugs. Hence, it is crucial to develop reliable techniques to measure the mechanical properties of LNPs. In this article, we used AFM to image and probe the mechanical properties of LNPs which are loaded with two different biopolymers either pDNA or mRNA. Imaging the LNPs before and after indentation, as well as recording the retraction curve, enables us to obtain more insight into how the AFM tip penetrates into the particle and to determine whether the deformation of the LNPs is reversible. For pDNA, the indentation by the tip leads to irreversible rupture of the LNPs, while the deformation is reversible for the mRNA-loaded LNPs. Moreover, the forces reached for pDNA are higher than for mRNA. These results pave the way toward the establishment of the link between the LNP formulation and the delivery efficiency.
Collapse
Affiliation(s)
- Sixtine de Chateauneuf-Randon
- Laboratoire Sciences et Ingénierie de la Matière Molle, CNRS UMR 7615, PSL University, Sorbonne University, ESPCI Paris, 10 rue Vauquelin, Cedex 05 75231 Paris, France.
| | - Bruno Bresson
- Laboratoire Sciences et Ingénierie de la Matière Molle, CNRS UMR 7615, PSL University, Sorbonne University, ESPCI Paris, 10 rue Vauquelin, Cedex 05 75231 Paris, France.
| | - Manon Ripoll
- Sanofi Pasteur, 1541 av Marcel Mérieux, 69280 Marcy l'Etoile, France.
| | - Sylvain Huille
- Sanofi R & D, Impasse Des Ateliers, 94400 Vitry-sur-Seine, France.
| | - Etienne Barthel
- Laboratoire Sciences et Ingénierie de la Matière Molle, CNRS UMR 7615, PSL University, Sorbonne University, ESPCI Paris, 10 rue Vauquelin, Cedex 05 75231 Paris, France.
| | - Cécile Monteux
- Laboratoire Sciences et Ingénierie de la Matière Molle, CNRS UMR 7615, PSL University, Sorbonne University, ESPCI Paris, 10 rue Vauquelin, Cedex 05 75231 Paris, France.
| |
Collapse
|
5
|
John R, Monpara J, Swaminathan S, Kalhapure R. Chemistry and Art of Developing Lipid Nanoparticles for Biologics Delivery: Focus on Development and Scale-Up. Pharmaceutics 2024; 16:131. [PMID: 38276502 PMCID: PMC10819224 DOI: 10.3390/pharmaceutics16010131] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Lipid nanoparticles (LNPs) have gained prominence as primary carriers for delivering a diverse array of therapeutic agents. Biological products have achieved a solid presence in clinical settings, and the anticipation of creating novel variants is increasing. These products predominantly encompass therapeutic proteins, nucleic acids and messenger RNA. The advancement of efficient LNP-based delivery systems for biologics that can overcome their limitations remains a highly favorable formulation strategy. Moreover, given their small size, biocompatibility, and biodegradation, LNPs can proficiently transport therapeutic moiety into the cells without significant toxicity and adverse reactions. This is especially crucial for the existing and upcoming biopharmaceuticals since large molecules as a group present several challenges that can be overcome by LNPs. This review describes the LNP technology for the delivery of biologics and summarizes the developments in the chemistry, manufacturing, and characterization of lipids used in the development of LNPs for biologics. Finally, we present a perspective on the potential opportunities and the current challenges pertaining to LNP technology.
Collapse
Affiliation(s)
- Rijo John
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph’s University, Philadelphia, PA 19104, USA; (R.J.); (J.M.)
| | - Jasmin Monpara
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph’s University, Philadelphia, PA 19104, USA; (R.J.); (J.M.)
| | - Shankar Swaminathan
- Drug Product Development, Astellas Institute of Regenerative Medicine, Westborough, MA 01581, USA;
| | - Rahul Kalhapure
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
- Odin Pharmaceuticals LLC, 300 Franklin Square Dr, Somerset, NJ 08873, USA
| |
Collapse
|
6
|
Takechi-Haraya Y. [Atomic Force Microscopy to Measure the Mechanical Property of Nanosized Lipid Vesicles and Its Applications]. YAKUGAKU ZASSHI 2024; 144:511-519. [PMID: 38692926 DOI: 10.1248/yakushi.23-00178-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Nanoparticles, including liposomes and lipid nanoparticles, have garnered global attention due to their potential applications in pharmaceuticals, vaccines, and gene therapies. These particles enable targeted delivery of new drug modalities such as highly active small molecules and nucleic acids. However, for widespread use of nanoparticle-based formulations, it is crucial to comprehensively analyze their characteristics to ensure both efficacy and safety, as well as enable consistent production. In this context, this review focuses on our research using atomic force microscopy (AFM) to study liposomes and lipid nanoparticles. Our work significantly contributes to the capability of AFM to measure various types of liposomes in an aqueous medium, providing valuable insights into the mechanical properties of these nanoparticles. We discuss the applications of this AFM technique in assessing the quality of nanoparticle-based pharmaceuticals and developing membrane-active peptides.
Collapse
|
7
|
Characterization of structures and molecular interactions of RNA and lipid carriers using atomic force microscopy. Adv Colloid Interface Sci 2023; 313:102855. [PMID: 36774766 DOI: 10.1016/j.cis.2023.102855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/25/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
Ribonucleic acid (RNA) and lipid are essential biomolecules in many biological processes, and hold a great prospect for biomedical applications, such as gene therapy, vaccines and therapeutic drug delivery. The characterization of morphology and intra-/inter-molecular interactions of RNA and lipid molecules is critical for understanding their functioning mechanisms. Atomic force microscopy (AFM) is a sophisticated technique for characterizing biomolecules featured by its piconewton force sensitivity, sub-nanometer spatial resolution, and flexible operation conditions in both air and liquid. The goal of this review is to highlight the representative and outstanding discoveries of the characterization of RNA and lipid molecules through morphology identification, physicochemical property determination and intermolecular force measurements by AFM. The first section introduces the AFM imaging of RNA molecules to obtain high-resolution morphologies and nanostructures in air and liquid, followed by the discussion of employing AFM force spectroscopy in understanding the nanomechanical properties and intra-/inter-molecular interactions of RNA molecules, including RNA-RNA and RNA-biomolecule interactions. The second section focuses on the studies of lipid and RNA encapsulated in lipid carrier (RNA-lipid) by AFM as well as the sample preparation and factors influencing the morphology and structure of lipid/RNA-lipid complexes. Particularly, the nanomechanical properties of lipid and RNA-lipid characterized by nanomechanical imaging and force measurements are discussed. The future perspectives and remaining challenges on the characterization of RNA and lipid offered by the versatile AFM techniques are also discussed. This review provides useful insights on the characterization of RNA and lipids nanostructures along with their molecular interactions, and also enlightens the application of AFM techniques in investigating a broad variety of biomolecules.
Collapse
|