1
|
Humerickhouse C, Pressly M, Lin Z, Guinn D, Samuels S, Pfuma Fletcher E, Schmidt S. Informing the risk assessment related to lactation and drug exposure: A physiologically based pharmacokinetic lactation model for pregabalin. CPT Pharmacometrics Syst Pharmacol 2024; 13:1953-1966. [PMID: 39460526 DOI: 10.1002/psp4.13266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/27/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Breastfeeding is important in childhood development, and medications are often necessary for lactating individuals, yet information on the potential risk of infant drug exposure through human milk is limited. Establishing a lactation modeling framework can advance our understanding of this topic and potentiate clinical decision making. We expanded the modeling framework previously developed for sotalol using pregabalin as a second prototypical probe compound with similar absorption, distribution, metabolism, and elimination (ADME) properties. Adult oral models were developed in PK-Sim® and used to build a lactation model in MoBi® to simulate drug transfer into human milk. The adult model was applied to breastfeeding pediatrics (ages 1 to 23 months) and subsequently integrated with the lactation model to simulate infant drug exposure according to age, size, and breastfeeding frequency. Physiologically based pharmacokinetic (PBPK) model simulations captured the data used for verification both in adults and pediatrics. Lactation simulations captured observed milk and plasma data corresponding to doses of 150 mg administered twice daily to lactating individuals, and estimated a relative infant dose (RID) of approximately 7% of the maternal dose. The infant drug exposure simulations showed peak plasma concentrations of 0.44 μg/mL occurring within the first 2 weeks of life, followed by gradual decline with age after week four. The modeling framework performs well for this second prototypical drug and warrants expansion to other drugs for further validation. PBPK modeling and simulation approaches together with clinical lactation data could ultimately help inform infant drug exposure risk assessments to guide clinical decision making.
Collapse
Affiliation(s)
- Cameron Humerickhouse
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Michelle Pressly
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Zhoumeng Lin
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida, USA
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
| | - Daphne Guinn
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Sherbet Samuels
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Elimika Pfuma Fletcher
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Stephan Schmidt
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of Pharmacy, University of Florida, Orlando, Florida, USA
| |
Collapse
|
2
|
Ahmed HS. The Multifaceted Role of L-Type Amino Acid Transporter 1 at the Blood-Brain Barrier: Structural Implications and Therapeutic Potential. Mol Neurobiol 2024:10.1007/s12035-024-04506-9. [PMID: 39325101 DOI: 10.1007/s12035-024-04506-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024]
Abstract
L-type amino acid transporter 1 (LAT1) is integral to the transport of large neutral amino acids across the blood-brain barrier (BBB), playing a crucial role in brain homeostasis and the delivery of therapeutic agents. This review explores the multifaceted role of LAT1 in neurological disorders, including its structural and functional aspects at the BBB. Studies using advanced BBB models, such as induced pluripotent stem cell (iPSC)-derived systems and quantitative proteomic analyses, have demonstrated LAT1's significant impact on drug permeability and transport efficiency. In Alzheimer's disease, LAT1-mediated delivery of anti-inflammatory and neuroprotective agents shows promise in overcoming BBB limitations. In Parkinson's disease, LAT1's role in transporting L-DOPA and other therapeutic agents highlights its potential in enhancing treatment efficacy. In phenylketonuria, studies have revealed polymorphisms and genetic variations of LAT1, which could be correlated to disease severity. Prodrugs of valproic acid, pregabalin, and gabapentin help use LAT1-mediated transport to increase the therapeutic activity and bioavailability of the prodrug in the brain. LAT1 has also been studied in neurodevelopment disorders like autism spectrum disorders and Rett syndrome, along with neuropsychiatric implications in depression. Its implications in neuro-oncology, especially in transporting therapeutic agents into cancer cells, show immense future potential. Phenotypes of LAT1 have also shown variations in the general population affecting their ability to respond to painkillers and anti-inflammatory drugs. Furthermore, LAT1-targeted approaches, such as functionalized nanoparticles and prodrugs, show promise in overcoming chemoresistance and enhancing drug delivery to the brain. The ongoing exploration of LAT1's structural characteristics and therapeutic applications reiterates its critical role in advancing treatments for neurological disorders.
Collapse
Affiliation(s)
- H Shafeeq Ahmed
- Bangalore Medical College and Research Institute, Bangalore, 560002, Karnataka, India.
| |
Collapse
|
3
|
Zhang XY, Luo M, Qin S, Fu WG, Zhang MY. FXR, MRP-1 and SLC7A5: New Targets for the Treatment of Hepatocellular Carcinoma. Technol Cancer Res Treat 2024; 23:15330338241276889. [PMID: 39194338 PMCID: PMC11363239 DOI: 10.1177/15330338241276889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
Detect the expression of Farnesoid X Receptor(FXR), Multiple Drug Resistance Associated Protein-1(MRP-1) and Solute Carrier Family 7, Member 5 (SLC7A5) in hepatocellular carcinoma(HCC) of rat model, so as to provide new therapeutic targets for gene therapy of HCC. Sixty male Wistar rats were randomly divided into three groups. The rats in experimental group were given 0.2% diethylnitrosamine (DEN) by gavage with a dose of 10 mg/kg, 3 times a week, and it stopped at 12 weeks. The control group rats were given physiological saline by gavage, while the sham operation group did not receive anything by gavage. At 10 weeks, one rat in the experimental group was euthanized, and the changes of livers were recorded. The procedure was repeated at 12 weeks. After 12 weeks, HCC only occurred in the experimental group. After confirming the formation of the tumor through pathological examination, liver tissues and tumor tissues were taken from the three groups. FXR, MRP-1 and SLC7A5 expression in liver tissues and tumor tissues was detected. After 7 weeks the rats in experimental group ate less, and their weight was significantly reduced. Three months later, HCC was detected in 15 rats in the experimental group. The ratio of FXR/GAPDH mRNA, MRP-1/GAPDH mRNA, SLC7A5/GAPDH mRNA were significantly different among the three groups. Under the light microscope the FXR protein, MRP-1 protein, and SLC7A5 protein react with their respective antibodies, and they showed granular expression. Every pathological section included different numbers of positive cells in each group. FXR expression in HCC of rats was significantly lower than that in normal liver tissues, but MRP-1 and SLC7A5 expression in HCC were significantly higher than that in normal liver tissues, suggesting that drugs targeting FXR, MRP-1 and SLC7A5 may be new strategies for the treatment of HCC.
Collapse
Affiliation(s)
- Xi-yue Zhang
- Clinical Medicine Class 8, 2022, Southwest Medical University, Luzhou, China
| | - Ming Luo
- Department of General Surgery (Hepatobiliary Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shu Qin
- Department of General Surgery (Hepatobiliary Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wen-guang Fu
- Department of General Surgery (Hepatobiliary Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Meng-yu Zhang
- Department of General Surgery (Hepatobiliary Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
4
|
Zhuang X, Martin TA, Ruge F, Zeng J(J, Li X(A, Khan E, Dou Q, Davies E, Jiang WG. Expression of Claudin-9 (CLDN9) in Breast Cancer, the Clinical Significance in Connection with Its Subcoat Anchorage Proteins ZO-1 and ZO-3 and Impact on Drug Resistance. Biomedicines 2023; 11:3136. [PMID: 38137355 PMCID: PMC10740911 DOI: 10.3390/biomedicines11123136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Introduction: Claudin-9 (CLDN9) is a member of the claudin protein family, a critical transmembrane protein family for tight junctions that are implemented in the progression of numerous cancer types. The present study investigated the role that CLDN9, along with the subcoat proteins, Zonula Occludens (ZOs), plays in clinical breast cancer and subsequent impact on drug response of patients. (2) Methods: CLDN9 protein and CLDN9 transcript were determined and correlated with clinical and pathological indicators, together with the status of hormonal receptors. The levels of CLDN9 transcript were also assessed against the therapeutic responses of the patients to chemotherapies by using a dataset from the TCGA database. Breast cancer cell models, representing different molecular subtypes of breast cancer, with differential expression of CLDN9 were created and used to assess the biological impact and response to chemotherapeutic drugs. (3) Results: Breast cancer tissues expressed significantly higher levels of the CLDN9, with the high levels being associated with shorter survival. CLDN9 was significantly correlated with its anchorage proteins ZO-1 and ZO-3. Integrated expression of CLDN9, ZO-1 and ZO-3 formed a signature that was significantly linked to overall survival (OS) (p = 0.013) and relapse-free survival (RFS) (p = 0.024) in an independent matter. CLDN9 transcript was significantly higher in patients who were resistant to chemotherapies (p < 0.000001). CLDN9 connection to chemoresistance was particularly prominent in patients of ER-positive (ER(+)), Her-2-negative((Her-2(-)), ER(+)/Her-2(-) and triple-negative breast cancers (TNBCs), but not in patients with HER-2-positive tumors. In Her-2-negative MCF7 and MDA-MB-231 cancer cells, loss of CLDN9 significantly increased sensitivity to several chemotherapeutic drugs including paclitaxel, gemcitabine and methotrexate, which was not seen in Her-2(+) SKBR3 cells. However, suppressing Her-2 using neratinib, a permanent Her-2 inhibitor, sensitized cellular response to these chemodrugs in cells with CLDN9 knockdown. (4) Conclusions: CLDN9 is an important prognostic indicator for patients with breast cancer and also a pivotal factor in assessing patient responses to chemotherapies. Her-2 is a negating factor for the treatment response prediction value by CLDN9 and negating Her-2 and CLDN9 may enhance breast cancer cellular response to chemotherapeutic drugs.
Collapse
Affiliation(s)
- Xinguo Zhuang
- School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; (X.Z.); (T.A.M.); (F.R.); (X.L.); or (Q.D.)
- Department of Clinical Laboratory, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Tracey A. Martin
- School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; (X.Z.); (T.A.M.); (F.R.); (X.L.); or (Q.D.)
| | - Fiona Ruge
- School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; (X.Z.); (T.A.M.); (F.R.); (X.L.); or (Q.D.)
| | - Jianyuan (Jimmy) Zeng
- School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; (X.Z.); (T.A.M.); (F.R.); (X.L.); or (Q.D.)
| | - Xinyu (Amber) Li
- School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; (X.Z.); (T.A.M.); (F.R.); (X.L.); or (Q.D.)
| | - Elyas Khan
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201, USA;
| | - Qingping Dou
- School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; (X.Z.); (T.A.M.); (F.R.); (X.L.); or (Q.D.)
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201, USA;
| | - Eleri Davies
- Wales Breast Centre, University Llandough Hospital, Cardiff and Vales University Health Board, Cardiff CF64 2XX, UK;
| | - Wen G. Jiang
- School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; (X.Z.); (T.A.M.); (F.R.); (X.L.); or (Q.D.)
| |
Collapse
|