1
|
Dutta P, Mäkinen K. Mapping and quantification of potato virus A RNA genomes within viral particles and polysomes in infected plant cells. J Virol Methods 2025; 332:115066. [PMID: 39549925 DOI: 10.1016/j.jviromet.2024.115066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
Potato virus A belongs to the genus Potyvirus, a group of single-stranded positive sense RNA viruses infecting crops worldwide. To initiate infection in a host, its genome takes part in different activities, viz., translation, replication, encapsidation during the infection cycle. Extensive research has been carried out to scrutinize the stages of potyviral infection cycle and decipher the strategies it employs to cause disease. Nonetheless, the amount of viral RNA taking part in translation and virion formation, at a given time point, is missing. In this study, we quantified the percentage of viral RNA that exists as virions and those that associates with host polysome, relative to total viral RNA in infected plant tissue. We employed a revised version of immuno-capture reverse transcription PCR and polysome profiling to address our queries. We tested three different coating antibody concentrations and further optimized the immuno-capture reverse transcription PCR protocol to address its limitation of binding and retaining viral particles. Our results indicate that most of the viral RNA (69 %) exists as encapsidated genomes, while 3 % of total viral RNA associates with host polysomes. These findings are crucial for correct interpretation of quantitative translational studies in which correlation must be made between the number of polysome-associated transcripts and the amount of protein synthesized.
Collapse
Affiliation(s)
- Pinky Dutta
- Viikki Plants Science Centre and Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Finland
| | - Kristiina Mäkinen
- Viikki Plants Science Centre and Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Finland.
| |
Collapse
|
2
|
Yang Z, Li G, Zhang Y, Li F, Zhou T, Ye J, Wang X, Zhang X, Sun Z, Tao X, Wu M, Wu J, Li Y. Crop antiviral defense: Past and future perspective. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2617-2634. [PMID: 39190125 DOI: 10.1007/s11427-024-2680-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024]
Abstract
Viral pathogens not only threaten the health and life of humans and animals but also cause enormous crop yield losses and contribute to global food insecurity. To defend against viral pathogens, plants have evolved an intricate immune system to perceive and cope with such attacks. Although most of the fundamental studies were carried out in model plants, more recent research in crops has provided new insights into the antiviral strategies employed by crop plants. We summarize recent advances in understanding the biological roles of cellular receptors, RNA silencing, RNA decay, hormone signaling, autophagy, and ubiquitination in manipulating crop host-mediated antiviral responses. The potential functions of circular RNAs, the rhizosphere microbiome, and the foliar microbiome of crops in plant-virus interactions will be fascinating research directions in the future. These findings will be beneficial for the development of modern crop improvement strategies.
Collapse
Affiliation(s)
- Zhirui Yang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Guangyao Li
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tao Zhou
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Jian Ye
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xianbing Wang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100049, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Xiaorong Tao
- Department of Plant Pathology, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ming Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianguo Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yi Li
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
3
|
Kumar R, Dasgupta I. Abscisic acid: An emerging player in plant-virus interactions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109046. [PMID: 39153391 DOI: 10.1016/j.plaphy.2024.109046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
In the evolutionary arm race between plants and viral pathogens, the plant hormone abscisic acid (ABA) has surfaced as a crucial player. This review accumulates substantial evidence that portrays ABA as a crucial regulatory hub, coordinating the complex network of plant antiviral immunity. It is capable of synchronizing resistance pathways, yet it can also be exploited as a susceptibility factor by viral effectors. ABA fortifies multi-layered defenses on one hand, by activating RNA silencing mechanisms that precisely degrade viral genomes, strengthening plasmodesmal gateways with callose barriers, and priming the transcriptional programs of resistance genes. On the other hand, ABA can augment susceptibility by counteracting other defense hormones, dampening oxidative bursts, and inhibiting antiviral defence proteins. Interestingly, a variety of viruses have independently evolved strategies to manipulate ABA signalling pathways. This fascinating paradigm of hormonal conflicts unveils ABA as an important regulatory handle that determines infection trajectories. Future studies should carefully explore the multifaceted impacts of ABA modulation on plant immunity and susceptibility to diverse pathogens before considering practical applications in viral resistance strategies.
Collapse
Affiliation(s)
- Rohit Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Indranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
4
|
Li Z, Huang Y, Shen Z, Wu M, Huang M, Hong SB, Xu L, Zang Y. Advances in functional studies of plant MYC transcription factors. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:195. [PMID: 39103657 DOI: 10.1007/s00122-024-04697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/17/2024] [Indexed: 08/07/2024]
Abstract
Myelocytomatosis (MYC) transcription factors (TFs) belong to the basic helix-loop-helix (bHLH) family in plants and play a central role in governing a wide range of physiological processes. These processes encompass plant growth, development, adaptation to biotic and abiotic stresses, as well as secondary metabolism. In recent decades, significant strides have been made in comprehending the multifaceted regulatory functions of MYCs. This advancement has been achieved through the cloning of MYCs and the characterization of plants with MYC deficiencies or overexpression, employing comprehensive genome-wide 'omics' and protein-protein interaction technologies. MYCs act as pivotal components in integrating signals from various phytohormones' transcriptional regulators to orchestrate genome-wide transcriptional reprogramming. In this review, we have compiled current research on the role of MYCs as molecular switches that modulate signal transduction pathways mediated by phytohormones and phytochromes. This comprehensive overview allows us to address lingering questions regarding the interplay of signals in response to environmental cues and developmental shift. It also sheds light on the potential implications for enhancing plant resistance to diverse biotic and abiotic stresses through genetic improvements achieved by plant breeding and synthetic biology efforts.
Collapse
Affiliation(s)
- Zewei Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Yunshuai Huang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Zhiwei Shen
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Meifang Wu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Mujun Huang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Seung-Beom Hong
- Department of Biotechnology, University of Houston Clear Lake, Houston, TX, 77058-1098, USA
| | - Liai Xu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Yunxiang Zang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
5
|
Ali J, Mukarram M, Ojo J, Dawam N, Riyazuddin R, Ghramh HA, Khan KA, Chen R, Kurjak D, Bayram A. Harnessing Phytohormones: Advancing Plant Growth and Defence Strategies for Sustainable Agriculture. PHYSIOLOGIA PLANTARUM 2024; 176:e14307. [PMID: 38705723 DOI: 10.1111/ppl.14307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
Phytohormones, pivotal regulators of plant growth and development, are increasingly recognized for their multifaceted roles in enhancing crop resilience against environmental stresses. In this review, we provide a comprehensive synthesis of current research on utilizing phytohormones to enhance crop productivity and fortify their defence mechanisms. Initially, we introduce the significance of phytohormones in orchestrating plant growth, followed by their potential utilization in bolstering crop defences against diverse environmental stressors. Our focus then shifts to an in-depth exploration of phytohormones and their pivotal roles in mediating plant defence responses against biotic stressors, particularly insect pests. Furthermore, we highlight the potential impact of phytohormones on agricultural production while underscoring the existing research gaps and limitations hindering their widespread implementation in agricultural practices. Despite the accumulating body of research in this field, the integration of phytohormones into agriculture remains limited. To address this discrepancy, we propose a comprehensive framework for investigating the intricate interplay between phytohormones and sustainable agriculture. This framework advocates for the adoption of novel technologies and methodologies to facilitate the effective deployment of phytohormones in agricultural settings and also emphasizes the need to address existing research limitations through rigorous field studies. By outlining a roadmap for advancing the utilization of phytohormones in agriculture, this review aims to catalyse transformative changes in agricultural practices, fostering sustainability and resilience in agricultural settings.
Collapse
Affiliation(s)
- Jamin Ali
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Mohammad Mukarram
- Food and Plant Biology Group, Department of Plant Biology, Universidad de la República, Montevideo, Uruguay
| | - James Ojo
- Department of Crop Production, Kwara State University, Malete, Nigeria
| | - Nancy Dawam
- Department of Zoology, Faculty of Natural and Applied Sciences, Plateau State University Bokkos, Diram, Nigeria
| | | | - Hamed A Ghramh
- Centre of Bee Research and its Products, Research Centre for Advanced Materials Science, King Khalid University, Abha, Saudi Arabia
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Khalid Ali Khan
- Centre of Bee Research and its Products, Research Centre for Advanced Materials Science, King Khalid University, Abha, Saudi Arabia
- Applied College, King Khalid University, Abha, Saudi Arabia
| | - Rizhao Chen
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Daniel Kurjak
- Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia
- Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Ahmet Bayram
- Plant Protection, Faculty of Agriculture, Technical University in Zvolen, Zvolen, Slovakia
| |
Collapse
|
6
|
Wei Y, Xie H, Xu L, Cheng X, Zhu B, Zeng H, Shi H. Coat protein of cassava common mosaic virus targets RAV1 and RAV2 transcription factors to subvert immunity in cassava. PLANT PHYSIOLOGY 2024; 194:1218-1232. [PMID: 37874769 DOI: 10.1093/plphys/kiad569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 10/26/2023]
Abstract
Cassava common mosaic virus (CsCMV, genus Potexvirus) is a prevalent virus associated with cassava mosaic disease, so it is essential to elucidate the underlying molecular mechanisms of the coevolutionary arms race between viral pathogenesis and the cassava (Manihot esculenta Crantz) defense response. However, the molecular mechanism underlying CsCMV infection is largely unclear. Here, we revealed that coat protein (CP) acts as a major pathogenicity determinant of CsCMV via a mutant infectious clone. Moreover, we identified the target proteins of CP-related to abscisic acid insensitive3 (ABI3)/viviparous1 (VP1) (MeRAV1) and MeRAV2 transcription factors, which positively regulated disease resistance against CsCMV via transcriptional activation of melatonin biosynthetic genes (tryptophan decarboxylase 2 (MeTDC2), tryptamine 5-hydroxylase (MeT5H), N-aceylserotonin O-methyltransferase 1 (MeASMT1)) and MeCatalase6 (MeCAT6) and MeCAT7. Notably, the interaction between CP, MeRAV1, and MeRAV2 interfered with the protein phosphorylation of MeRAV1 and MeRAV2 individually at Ser45 and Ser44 by the protein kinase, thereby weakening the transcriptional activation activity of MeRAV1 and MeRAV2 on melatonin biosynthetic genes, MeCAT6 and MeCAT7 dependent on the protein phosphorylation of MeRAV1 and MeRAV2. Taken together, the identification of the CP-MeRAV1 and CP-MeRAV2 interaction module not only illustrates a molecular mechanism by which CsCMV orchestrates the host defense system to benefit its infection and development but also provides a gene network with potential value for the genetic improvement of cassava disease resistance.
Collapse
Affiliation(s)
- Yunxie Wei
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan Province 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province 572025, China
| | - Haoqi Xie
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan Province 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province 572025, China
| | - Lulu Xu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan Province 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province 572025, China
| | - Xiao Cheng
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan Province 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province 572025, China
| | - Binbin Zhu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan Province 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province 572025, China
| | - Hongqiu Zeng
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan Province 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province 572025, China
| | - Haitao Shi
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Sanya, Hainan Province 572025, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan Province 572025, China
| |
Collapse
|
7
|
Yue J, Lu Y, Sun Z, Guo Y, San León D, Pasin F, Zhao M. Methyltransferase-like (METTL) homologues participate in Nicotiana benthamiana antiviral responses. PLANT SIGNALING & BEHAVIOR 2023; 18:2214760. [PMID: 37210738 PMCID: PMC10202045 DOI: 10.1080/15592324.2023.2214760] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/23/2023]
Abstract
Methyltransferase (MTase) enzymes catalyze the addition of a methyl group to a variety of biological substrates. MTase-like (METTL) proteins are Class I MTases whose enzymatic activities contribute to the epigenetic and epitranscriptomic regulation of multiple cellular processes. N6-adenosine methylation (m6A) is a common chemical modification of eukaryotic and viral RNA whose abundance is jointly regulated by MTases and METTLs, demethylases, and m6A binding proteins. m6A affects various cellular processes including RNA degradation, post-transcriptional processing, and antiviral immunity. Here, we used Nicotiana benthamiana and plum pox virus (PPV), an RNA virus of the Potyviridae family, to investigated the roles of MTases in plant-virus interaction. RNA sequencing analysis identified MTase transcripts that are differentially expressed during PPV infection; among these, accumulation of a METTL gene was significantly downregulated. Two N. benthamiana METTL transcripts (NbMETTL1 and NbMETTL2) were cloned and further characterized. Sequence and structural analyses of the two encoded proteins identified a conserved S-adenosyl methionine (SAM) binding domain, showing they are SAM-dependent MTases phylogenetically related to human METTL16 and Arabidopsis thaliana FIONA1. Overexpression of NbMETTL1 and NbMETTL2 caused a decrease of PPV accumulation. In sum, our results indicate that METTL homologues participate in plant antiviral responses.
Collapse
Affiliation(s)
- Jianying Yue
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Yan Lu
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhenqi Sun
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - Yuqing Guo
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| | - David San León
- Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Fabio Pasin
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas – Universitat Politècnica de València (CSIC-UPV), Valencia, Spain
| | - Mingmin Zhao
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
8
|
Scholthof HB, Scholthof KBG. Plant virology: an RNA treasure trove. TRENDS IN PLANT SCIENCE 2023; 28:1277-1289. [PMID: 37495453 DOI: 10.1016/j.tplants.2023.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/12/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023]
Abstract
Key principles pertaining to RNA biology not infrequently have their origins in plant virology. Examples have arisen from studies on viral RNA-intrinsic properties and the infection process from gene expression, replication, movement, and defense evasion to biotechnological applications. Since RNA is at the core of the central dogma in molecular biology, how plant virology assisted in the reinforcement or adaptations of this concept, while at other instances shook up elements of the doctrine, is discussed. Moreover, despite the negative effects of viral diseases in agriculture worldwide, plant viruses can be considered a scientific treasure trove. Today they remain tools of discovery for biotechnology, studying evolution, cell biology, and host-microbe interactions.
Collapse
Affiliation(s)
- Herman B Scholthof
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station TX 77843, USA.
| | - Karen-Beth G Scholthof
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station TX 77843, USA
| |
Collapse
|
9
|
Mäkinen K, Aspelin W, Pollari M, Wang L. How do they do it? The infection biology of potyviruses. Adv Virus Res 2023; 117:1-79. [PMID: 37832990 DOI: 10.1016/bs.aivir.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Affiliation(s)
- Kristiina Mäkinen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
| | - William Aspelin
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Maija Pollari
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Linping Wang
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| |
Collapse
|
10
|
Kawakubo S, Kim H, Takeshita M, Masuta C. Host-specific adaptation drove the coevolution of leek yellow stripe virus and Allium plants. Microbiol Spectr 2023; 11:e0234023. [PMID: 37706684 PMCID: PMC10581216 DOI: 10.1128/spectrum.02340-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 09/15/2023] Open
Abstract
Host adaptation plays a crucial role in virus evolution and is a consequence of long-term interactions between virus and host in a complex arms race between host RNA silencing and viral RNA silencing suppressor (RSS) as counterdefense. Leek yellow stripe virus (LYSV), a potyvirus causing yield loss of garlic, infects several species of Allium plants. The unexpected discovery of an interspecific hybrid of garlic, leek, and great-headed (GH) garlic motivated us to explore the host-adaptive evolution of LYSV. Here, using Bayesian phylogenetic comparative methods and a functional assay of viral RSS activity, we show that the evolutionary context of LYSV has been shaped by the host adaptation of the virus during its coevolution with Allium plants. Our phylogenetic analysis revealed that LYSV isolates from leek and their taxonomic relatives (Allium ampeloprasum complex; AAC) formed a distinct monophyletic clade separate from garlic isolates and are likely to be uniquely adapted to AAC. Our comparative studies on viral accumulation indicated that LYSV accumulated at a low level in leek, whereas LYSVs were abundant in other Allium species such as garlic and its relatives. When RSS activity of the viral P1 and HC-Pro of leek LYSV isolate was analyzed, significant synergism in RSS activity between the two proteins was observed in leek but not in other species, suggesting that viral RSS activity may be important for the viral host-specific adaptation. We thus consider that LYSV may have undergone host-specific evolution at least in leek, which must be driven by speciation of its Allium hosts. IMPORTANCE Potyviruses are the most abundant plant RNA viruses and are extremely diversified in terms of their wide host range. Due to frequent host switching during their evolution, host-specific adaptation of potyviruses may have been shaped by numerous host factors. However, any critical determinants for viral host range remain largely unknown, possibly because of the repeated gain and loss of virus infectivity of plants. Leek yellow stripe virus (LYSV) is a species of the genus Potyvirus, which has a relatively narrow host range, generally limited to hosts in the genus Allium. Our investigations on leek and leek relatives (Allium ampeloprasum complex), which must have been generated through interspecies hybridization, revealed that LYSV accumulation remained low in leek as a result of viral host adaptation in competition with host resistance such as RNA silencing. This study presents LYSV as an ideal model to study the process of host-adaptive evolution and virus-host coevolution.
Collapse
Affiliation(s)
- Shusuke Kawakubo
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Hangil Kim
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Minoru Takeshita
- Faculty of Agriculture, Department of Agricultural and Environmental Sciences, University of Miyazaki, Miyazaki, Japan
| | - Chikara Masuta
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
11
|
Hoffmann G, Shukla A, López-González S, Hafrén A. Cauliflower mosaic virus disease spectrum uncovers novel susceptibility factor NCED9 in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4751-4764. [PMID: 37249342 PMCID: PMC10433934 DOI: 10.1093/jxb/erad204] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
Viruses are intimately linked with their hosts and especially dependent on gene-for-gene interactions to establish successful infections. On the host side, defence mechanisms such as tolerance and resistance can occur within the same species, leading to differing virus accumulation in relation to symptomology and plant fitness. The identification of novel resistance genes against viruses and susceptibility factors is an important part of understanding viral patho-genesis and securing food production. The model plant Arabidopsis thaliana displays a wide symptom spectrum in response to RNA virus infections, and unbiased genome-wide association studies have proven a powerful tool to identify novel disease-genes. In this study we infected natural accessions of A. thaliana with the pararetrovirus cauliflower mosaic virus (CaMV) to study the phenotypic variations between accessions and their correlation with virus accumulation. Through genome-wide association mapping of viral accumulation differences, we identified several susceptibility factors for CaMV, the strongest of which was the abscisic acid synthesis gene NCED9. Further experiments confirmed the importance of abscisic acid homeostasis and its disruption for CaMV disease.
Collapse
Affiliation(s)
- Gesa Hoffmann
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
- Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | - Aayushi Shukla
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
- Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | - Silvia López-González
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
- Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | - Anders Hafrén
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
- Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| |
Collapse
|
12
|
Bello EO, Yang Y, Fang Y, Chai M, Jiang X, Luan Y, Wang Y, Guo Y, Wu XY, Cheng X, Wu XX. P1 of turnip mosaic virus interacts with NOD19 for vigorous infection. Front Microbiol 2023; 14:1216950. [PMID: 37426031 PMCID: PMC10326430 DOI: 10.3389/fmicb.2023.1216950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/02/2023] [Indexed: 07/11/2023] Open
Abstract
P1 protein, the most divergent protein of virus members in the genus Potyvirus of the family Potyviridae, is required for robust infection and host adaptation. However, how P1 affects viral proliferation is still largely elusive. In this work, a total number of eight potential P1-interacting Arabidopsis proteins were identified by the yeast-two-hybrid screening using the turnip mosaic virus (TuMV)-encoded P1 protein as the bait. Among which, the stress upregulated NODULIN 19 (NOD19) was selected for further characterization. The bimolecular fluorescent complementation assay confirmed the interaction between TuMV P1 and NOD19. Expression profile, structure, and subcellular localization analyses showed that NOD19 is a membrane-associated protein expressed mainly in plant aerial parts. Viral infectivity assay showed that the infection of turnip mosaic virus and soybean mosaic virus was attenuated in the null mutant of Arabidopsis NOD19 and NOD19-knockdown soybean seedlings, respectively. Together, these data indicate that NOD19 is a P1-interacting host factor required for robust infection.
Collapse
Affiliation(s)
- Esther O. Bello
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of the Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yingshuai Yang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of the Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yue Fang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of the Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Mengzhu Chai
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of the Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xue Jiang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of the Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yameng Luan
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of the Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yuting Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of the Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yating Guo
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of the Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiao-Yun Wu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of the Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiaofei Cheng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of the Ministry of Education, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiao-Xia Wu
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
13
|
A Zinc Finger Motif in the P1 N Terminus, Highly Conserved in a Subset of Potyviruses, Is Associated with the Host Range and Fitness of Telosma Mosaic Virus. J Virol 2023; 97:e0144422. [PMID: 36688651 PMCID: PMC9972955 DOI: 10.1128/jvi.01444-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
P1 is the first protein translated from the genomes of most viruses in the family Potyviridae, and it contains a C-terminal serine-protease domain that cis-cleaves the junction between P1 and HCPro in most cases. Intriguingly, P1 is the most divergent among all mature viral factors, and its roles during viral infection are still far from understood. In this study, we found that telosma mosaic virus (TelMV, genus Potyvirus) in passion fruit, unlike TelMV isolates present in other hosts, has two stretches at the P1 N terminus, named N1 and N2, with N1 harboring a Zn finger motif. Further analysis revealed that at least 14 different potyviruses, mostly belonging to the bean common mosaic virus subgroup, encode a domain equivalent to N1. Using the newly developed TelMV infectious cDNA clones from passion fruit, we demonstrated that N1, but not N2, is crucial for viral infection in both Nicotiana benthamiana and passion fruit. The regulatory effects of N1 domain on P1 cis cleavage, as well as the accumulation and RNA silencing suppression (RSS) activity of its cognate HCPro, were comprehensively investigated. We found that N1 deletion decreases HCPro abundance at the posttranslational level, likely by impairing P1 cis cleavage, thus reducing HCPro-mediated RSS activity. Remarkably, disruption of the Zn finger motif in N1 did not impair P1 cis cleavage and HCPro accumulation but severely debilitated TelMV fitness. Therefore, our results suggest that the Zn finger motif in P1s plays a critical role in viral infection that is independent of P1 protease activity and self-release, as well as HCPro accumulation and silencing suppression. IMPORTANCE Viruses belonging to the family Potyviridae represent the largest group of plant-infecting RNA viruses, including a variety of agriculturally and economically important viral pathogens. Like all picorna-like viruses, potyvirids employ polyprotein processing as the gene expression strategy. P1, the first protein translated from most potyvirid genomes, is the most variable viral factor and has attracted great scientific interest. Here, we defined a Zn finger motif-encompassing domain (N1) at the N terminus of P1 among diverse potyviruses phylogenetically related to bean common mosaic virus. Using TelMV as a model virus, we demonstrated that the N1 domain is key for viral infection, as it is involved both in regulating the abundance of its cognate HCPro and in an as-yet-undefined key function unrelated to protease processing and RNA silencing suppression. These results advance our knowledge of the hypervariable potyvirid P1s and highlight the importance for infection of a previously unstudied Zn finger domain at the P1 N terminus.
Collapse
|
14
|
Verhoeven A, Kloth KJ, Kupczok A, Oymans GH, Damen J, Rijnsburger K, Jiang Z, Deelen C, Sasidharan R, van Zanten M, van der Vlugt RAA. Arabidopsis latent virus 1, a comovirus widely spread in Arabidopsis thaliana collections. THE NEW PHYTOLOGIST 2023; 237:1146-1153. [PMID: 36073550 PMCID: PMC10087574 DOI: 10.1111/nph.18466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Transcriptome studies of Illumina RNA-Seq datasets of different Arabidopsis thaliana natural accessions and T-DNA mutants revealed the presence of two virus-like RNA sequences which showed the typical two-segmented genome characteristics of a comovirus. This comovirus did not induce any visible symptoms in infected A. thaliana plants cultivated under standard laboratory conditions. Hence it was named Arabidopsis latent virus 1 (ArLV1). Virus infectivity in A. thaliana plants was confirmed by quantitative reverse transcription polymerase chain reaction, transmission electron microscopy and mechanical inoculation. Arabidopsis latent virus 1 can also mechanically infect Nicotiana benthamiana, causing distinct mosaic symptoms. A bioinformatics investigation of A. thaliana RNA-Seq repositories, including nearly 6500 Sequence Read Archives (SRAs) in the NCBI SRA database, revealed the presence of ArLV1 in 25% of all archived natural A. thaliana accessions and in 8.5% of all analyzed SRAs. Arabidopsis latent virus 1 could also be detected in A. thaliana plants collected from the wild. Arabidopsis latent virus 1 is highly seed-transmissible with up to 40% incidence on the progeny derived from infected A. thaliana plants. This has probably led to a worldwide distribution in the model plant A. thaliana with as yet unknown effects on plant performance in a substantial number of studies.
Collapse
Affiliation(s)
- Ava Verhoeven
- Laboratory of VirologyWageningen University and ResearchDroevendaalsesteeg 16708PBWageningenthe Netherlands
- Plant‐Environment SignalingUtrecht UniversityPadualaan 83584 CHUtrechtthe Netherlands
- Plant Stress ResilienceUtrecht UniversityPadualaan 83584 CHUtrechtthe Netherlands
| | - Karen J. Kloth
- Laboratory of EntomologyWageningen University and ResearchDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Anne Kupczok
- Bioinformatics GroupWageningen University and ResearchDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Geert H. Oymans
- Laboratory of VirologyWageningen University and ResearchDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Janna Damen
- Laboratory of VirologyWageningen University and ResearchDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Karin Rijnsburger
- Laboratory of VirologyWageningen University and ResearchDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Zhang Jiang
- Plant‐Environment SignalingUtrecht UniversityPadualaan 83584 CHUtrechtthe Netherlands
- Plant Stress ResilienceUtrecht UniversityPadualaan 83584 CHUtrechtthe Netherlands
| | - Cas Deelen
- Plant‐Environment SignalingUtrecht UniversityPadualaan 83584 CHUtrechtthe Netherlands
| | - Rashmi Sasidharan
- Plant‐Environment SignalingUtrecht UniversityPadualaan 83584 CHUtrechtthe Netherlands
- Plant Stress ResilienceUtrecht UniversityPadualaan 83584 CHUtrechtthe Netherlands
| | - Martijn van Zanten
- Plant Stress ResilienceUtrecht UniversityPadualaan 83584 CHUtrechtthe Netherlands
- Molecular Plant PhysiologyUtrecht UniversityPadualaan 83584 CHUtrechtthe Netherlands
| | - René A. A. van der Vlugt
- Laboratory of VirologyWageningen University and ResearchDroevendaalsesteeg 16708PBWageningenthe Netherlands
- Biointeractions and Plant HealthWageningen Plant ResearchDroevendaalsesteeg 16708PBWageningenthe Netherlands
| |
Collapse
|
15
|
Vuong UT, Iswanto ABB, Nguyen Q, Kang H, Lee J, Moon J, Kim SH. Engineering plant immune circuit: walking to the bright future with a novel toolbox. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:17-45. [PMID: 36036862 PMCID: PMC9829404 DOI: 10.1111/pbi.13916] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Plant pathogens destroy crops and cause severe yield losses, leading to an insufficient food supply to sustain the human population. Apart from relying on natural plant immune systems to combat biological agents or waiting for the appropriate evolutionary steps to occur over time, researchers are currently seeking new breakthrough methods to boost disease resistance in plants through genetic engineering. Here, we summarize the past two decades of research in disease resistance engineering against an assortment of pathogens through modifying the plant immune components (internal and external) with several biotechnological techniques. We also discuss potential strategies and provide perspectives on engineering plant immune systems for enhanced pathogen resistance and plant fitness.
Collapse
Affiliation(s)
- Uyen Thi Vuong
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Arya Bagus Boedi Iswanto
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Quang‐Minh Nguyen
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Hobin Kang
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Jihyun Lee
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Jiyun Moon
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
| | - Sang Hee Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research CenterGyeongsang National UniversityJinjuRepublic of Korea
- Division of Life ScienceGyeongsang National UniversityJinjuRepublic of Korea
| |
Collapse
|
16
|
Pollari M, Sipari N, Poque S, Himanen K, Mäkinen K. Effects of Poty-Potexvirus Synergism on Growth, Photosynthesis and Metabolite Status of Nicotiana benthamiana. Viruses 2022; 15:121. [PMID: 36680161 PMCID: PMC9867248 DOI: 10.3390/v15010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Mixed virus infections threaten crop production because interactions between the host and the pathogen mix may lead to viral synergism. While individual infections by potato virus A (PVA), a potyvirus, and potato virus X (PVX), a potexvirus, can be mild, co-infection leads to synergistic enhancement of PVX and severe symptoms. We combined image-based phenotyping with metabolite analysis of single and mixed PVA and PVX infections and compared their effects on growth, photosynthesis, and metabolites in Nicotiana benthamiana. Viral synergism was evident in symptom severity and impaired growth in the plants. Indicative of stress, the co-infection increased leaf temperature and decreased photosynthetic parameters. In contrast, singly infected plants sustained photosynthetic activity. The host's metabolic response differed significantly between single and mixed infections. Over 200 metabolites were differentially regulated in the mixed infection: especially defense-related metabolites and aromatic and branched-chain amino acids increased compared to the control. Changes in the levels of methionine cycle intermediates and a low S-adenosylmethionine/S-adenosylhomocysteine ratio suggested a decline in the methylation potential in co-infected plants. The decreased ratio between reduced glutathione, an important scavenger of reactive oxygen species, and its oxidized form, indicated that severe oxidative stress developed during co-infection. Based on the results, infection-associated oxidative stress is successfully controlled in the single infections but not in the synergistic infection, where activated defense pathways are not sufficient to counter the impact of the infections on plant growth.
Collapse
Affiliation(s)
- Maija Pollari
- Department of Microbiology, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Nina Sipari
- Viikki Metabolomics Unit, Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Sylvain Poque
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Kristiina Himanen
- National Plant Phenotyping Infrastructure, HiLIFE, Biocenter Finland, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Kristiina Mäkinen
- Department of Microbiology, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
17
|
Zhdanov VP. Interplay of Cellular mRNA, miRNA and Viral miRNA during Infection of a Cell. Int J Mol Sci 2022; 24:ijms24010122. [PMID: 36613566 PMCID: PMC9820072 DOI: 10.3390/ijms24010122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/29/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The understanding of the kinetics of gene expression in cells infected by viruses is currently limited. As a rule, the corresponding models do not take viral microRNAs (miRNAs) into account. Such RNAs are, however, operative during the replication of some viruses, including, e.g., herpesvirus. To clarify the kinetics of this category (with emphasis on the information available for herpesvirus), I introduce a generic model describing the transient interplay of cellular mRNA, protein, miRNA and viral miRNA. In the absence of viral miRNA, the cellular miRNA is considered to suppress the populations of mRNA and protein due to association with mRNA and subsequent degradation. During infection, the viral miRNA suppresses the population of cellular miRNA and via this pathway makes the mRNA and protein populations larger. This effect becomes appreciable with the progress of intracellular viral replication. Using biologically reasonable parameters, I investigate the corresponding mean-field kinetics and show the scale of the effect of viral miRNAs on cellular miRNA and mRNA. The scale of fluctuations of the populations of these species is illustrated as well by employing Monte Carlo simulations.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
18
|
Yue J, Wei Y, Sun Z, Chen Y, Wei X, Wang H, Pasin F, Zhao M. AlkB RNA demethylase homologues and N 6 -methyladenosine are involved in Potyvirus infection. MOLECULAR PLANT PATHOLOGY 2022; 23:1555-1564. [PMID: 35700092 PMCID: PMC9452765 DOI: 10.1111/mpp.13239] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 05/28/2023]
Abstract
Proteins of the alkylation B (AlkB) superfamily show RNA demethylase activity removing methyl adducts from N6 -methyladenosine (m6 A). m6 A is a reversible epigenetic mark of RNA that regulates human virus replication but has unclear roles in plant virus infection. We focused on Potyvirus-the largest genus of plant RNA viruses-and report here the identification of AlkB domains within P1 of endive necrotic mosaic virus (ENMV) and an additional virus of a putative novel species within Potyvirus. We show that Nicotiana benthamiana m6 A levels are reduced by infection of plum pox virus (PPV) and potato virus Y (PVY). The two potyviruses lack AlkB and the results suggest a general involvement of RNA methylation in potyvirus infection and evolution. Methylated RNA immunoprecipitation sequencing of virus-infected samples showed that m6 A peaks are enriched in plant transcript 3' untranslated regions and in discrete internal and 3' terminal regions of PPV and PVY genomes. Down-regulation of N. benthamiana AlkB homologues of the plant-specific ALKBH9 clade caused a significant decrease in PPV and PVY accumulation. In summary, our study provides evolutionary and experimental evidence that supports the m6 A implication and the proviral roles of AlkB homologues in Potyvirus infection.
Collapse
Affiliation(s)
- Jianying Yue
- College of Horticulture and Plant ProtectionInner Mongolia Agricultural UniversityHohhotChina
| | - Yao Wei
- College of Horticulture and Plant ProtectionInner Mongolia Agricultural UniversityHohhotChina
| | - Zhenqi Sun
- College of Horticulture and Plant ProtectionInner Mongolia Agricultural UniversityHohhotChina
| | - Yahan Chen
- College of Plant ProtectionGansu Agricultural UniversityLanzhouChina
| | - Xuefeng Wei
- Development of Fine ChemicalsGuizhou UniversityGuizhouChina
| | - Haijuan Wang
- College of Horticulture and Plant ProtectionInner Mongolia Agricultural UniversityHohhotChina
| | - Fabio Pasin
- Instituto de Biología Molecular y Celular de Plantas (IBMCP)Consejo Superior de Investigaciones Científicas—Universitat Politècnica de València (CSIC‐UPV)ValenciaSpain
- School of ScienceUniversity of PaduaPaduaItaly
| | - Mingmin Zhao
- College of Horticulture and Plant ProtectionInner Mongolia Agricultural UniversityHohhotChina
| |
Collapse
|
19
|
Bera S, Arena GD, Ray S, Flannigan S, Casteel CL. The Potyviral Protein 6K1 Reduces Plant Proteases Activity during Turnip mosaic virus Infection. Viruses 2022; 14:1341. [PMID: 35746814 PMCID: PMC9229136 DOI: 10.3390/v14061341] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/30/2022] [Accepted: 06/12/2022] [Indexed: 12/25/2022] Open
Abstract
Potyviral genomes encode just 11 major proteins and multifunctionality is associated with most of these proteins at different stages of the virus infection cycle. Some potyviral proteins modulate phytohormones and protein degradation pathways and have either pro- or anti-viral/insect vector functions. Our previous work demonstrated that the potyviral protein 6K1 has an antagonistic effect on vectors when expressed transiently in host plants, suggesting plant defenses are regulated. However, to our knowledge the mechanisms of how 6K1 alters plant defenses and how 6K1 functions are regulated are still limited. Here we show that the 6K1 from Turnip mosaic virus (TuMV) reduces the abundance of transcripts related to jasmonic acid biosynthesis and cysteine protease inhibitors when expressed in Nicotiana benthamiana relative to controls. 6K1 stability increased when cysteine protease activity was inhibited chemically, showing a mechanism to the rapid turnover of 6K1 when expressed in trans. Using RNAseq, qRT-PCR, and enzymatic assays, we demonstrate TuMV reprograms plant protein degradation pathways on the transcriptional level and increases 6K1 stability at later stages in the infection process. Moreover, we show 6K1 decreases plant protease activity in infected plants and increases TuMV accumulation in systemic leaves compared to controls. These results suggest 6K1 has a pro-viral function in addition to the anti-insect vector function we observed previously. Although the host targets of 6K1 and the impacts of 6K1-induced changes in protease activity on insect vectors are still unknown, this study enhances our understanding of the complex interactions occurring between plants, potyviruses, and vectors.
Collapse
Affiliation(s)
- Sayanta Bera
- School of Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14850, USA; (S.B.); (S.R.); (S.F.)
| | - Gabriella D. Arena
- Laboratório de Biologia Molecular Aplicada, Instituto Biológico de São Paulo, São Paulo 04014-002, Brazil;
| | - Swayamjit Ray
- School of Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14850, USA; (S.B.); (S.R.); (S.F.)
| | - Sydney Flannigan
- School of Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14850, USA; (S.B.); (S.R.); (S.F.)
| | - Clare L. Casteel
- School of Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14850, USA; (S.B.); (S.R.); (S.F.)
| |
Collapse
|
20
|
Moreno M, Ojeda B, Hernández-Walias FJ, Sanz-García E, Canto T, Tenllado F. Water Deficit Improves Reproductive Fitness in Nicotiana benthamiana Plants Infected by Cucumber mosaic virus. PLANTS (BASEL, SWITZERLAND) 2022; 11:1240. [PMID: 35567241 PMCID: PMC9105947 DOI: 10.3390/plants11091240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022]
Abstract
Plants are concurrently exposed to biotic and abiotic stresses, including infection by viruses and drought. Combined stresses result in plant responses that are different from those observed for each individual stress. We investigated compensatory effects induced by virus infection on the fitness of hosts grown under water deficit, and the hypothesis that water deficit improves tolerance, estimated as reproductive fitness, to virus infection. Our results show that infection by Turnip mosaic virus (TuMV) or Cucumber mosaic virus (CMV) promotes drought tolerance in Arabidopsis thaliana and Nicotiana benthamiana. However, neither CMV nor TuMV had a positive impact on host reproductive fitness following withdrawal of water, as determined by measuring the number of individuals producing seeds, seed grains, and seed germination rates. Importantly, infection by CMV but not by TuMV improved the reproductive fitness of N. benthamiana plants when exposed to drought compared to watered, virus-infected plants. However, no such conditional phenotype was found in Arabidopsis plants infected with CMV. Water deficit did not affect the capacity of infected plants to transmit CMV through seeds. These findings highlight a conditional improvement in biological efficacy of N. benthamiana plants infected with CMV under water deficit, and lead to the prediction that plants can exhibit increased tolerance to specific viruses under some of the projected climate change scenarios.
Collapse
Affiliation(s)
| | | | | | | | | | - Francisco Tenllado
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain; (M.M.); (B.O.); (F.J.H.-W.); (E.S.-G.); (T.C.)
| |
Collapse
|
21
|
Xu Y, Ji X, Xu Z, Yuan Y, Chen X, Kong D, Zhang Y, Sun D. Transcriptome Profiling Reveals a Petunia Transcription Factor, PhCOL4, Contributing to Antiviral RNA Silencing. FRONTIERS IN PLANT SCIENCE 2022; 13:876428. [PMID: 35498675 PMCID: PMC9047179 DOI: 10.3389/fpls.2022.876428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/21/2022] [Indexed: 06/12/2023]
Abstract
RNA silencing is a common antiviral mechanism in eukaryotic organisms. However, the transcriptional regulatory mechanism that controls the RNA silencing process remains elusive. Here, we performed high-depth transcriptome analysis on petunia (Petunia hybrida) leaves infected with tobacco rattle virus (TRV) strain PPK20. A total of 7,402 differentially expressed genes (DEGs) were identified. Of them, some RNA silencing-related transcripts, such as RNA-dependent RNA polymerases (RDRs), Dicer-like RNase III enzymes (DCLs), and Argonautes (AGOs), were induced by viral attack. Furthermore, we performed TRV-based virus-induced gene silencing (VIGS) assay on 39 DEGs encoding putative transcription factors (TFs), using green fluorescent protein (GFP) and phytoene desaturase (PhPDS) as reporters. Results showed that the down-regulation of PhbHLH41, PhbHLH93, PhZPT4-3, PhCOL4, PhHSF-B3A, PhNAC90, and PhWRKY75 led to enhanced TRV accumulation and inhibited PhPDS-silenced photobleaching phenotype. In contrast, silencing of PhERF22 repressed virus accumulation and promoted photobleaching development. Thus, these TFs were identified as potential positive and negative regulators of antiviral RNA silencing, respectively. One positive regulator PhCOL4, belonging to the B-box zinc finger family, was selected for further functional characterization. Silencing and transient overexpression of PhCOL4 resulted in decreased and increased expression of several RNA silencing-related genes. DNA affinity purification sequencing analysis revealed that PhCOL4 targeted PhRDR6 and PhAGO4. Dual luciferase and yeast one-hybrid assays determined the binding of PhCOL4 to the PhRDR6 and PhAGO4 promoters. Our findings suggest that TRV-GFP-PhPDS-based VIGS could be helpful to identify transcriptional regulators of antiviral RNA silencing.
Collapse
Affiliation(s)
- Yingru Xu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, China
| | - Xiaotong Ji
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, China
| | - Zhuangzhuang Xu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, China
| | - Yanping Yuan
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, China
| | - Xiling Chen
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, China
| | - Derong Kong
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, China
| | - Yanlong Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, China
- National Engineering Technology Research Center for Oil Peony, Northwest A&F University, Yangling, China
| | - Daoyang Sun
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, China
- National Engineering Technology Research Center for Oil Peony, Northwest A&F University, Yangling, China
| |
Collapse
|
22
|
Wang W, Gao L, Cui X. A New Year's spotlight on two years of publication. PLANT COMMUNICATIONS 2022; 3:100274. [PMID: 35059635 PMCID: PMC8760135 DOI: 10.1016/j.xplc.2021.100274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
|
23
|
Pasin F, Daròs JA, Tzanetakis IE. OUP accepted manuscript. FEMS Microbiol Rev 2022; 46:6534904. [PMID: 35195244 PMCID: PMC9249622 DOI: 10.1093/femsre/fuac011] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Potyviridae, the largest family of known RNA viruses (realm Riboviria), belongs to the picorna-like supergroup and has important agricultural and ecological impacts. Potyvirid genomes are translated into polyproteins, which are in turn hydrolyzed to release mature products. Recent sequencing efforts revealed an unprecedented number of potyvirids with a rich variability in gene content and genomic layouts. Here, we review the heterogeneity of non-core modules that expand the structural and functional diversity of the potyvirid proteomes. We provide a family-wide classification of P1 proteinases into the functional Types A and B, and discuss pretty interesting sweet potato potyviral ORF (PISPO), putative zinc fingers, and alkylation B (AlkB)—non-core modules found within P1 cistrons. The atypical inosine triphosphate pyrophosphatase (ITPase/HAM1), as well as the pseudo tobacco mosaic virus-like coat protein (TMV-like CP) are discussed alongside homologs of unrelated virus taxa. Family-wide abundance of the multitasking helper component proteinase (HC-pro) is revised. Functional connections between non-core modules are highlighted to support host niche adaptation and immune evasion as main drivers of the Potyviridae evolutionary radiation. Potential biotechnological and synthetic biology applications of potyvirid leader proteinases and non-core modules are finally explored.
Collapse
Affiliation(s)
- Fabio Pasin
- Corresponding author: Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), UPV Building 8E, Ingeniero Fausto Elio, 46011 Valencia, Spain. E-mail:
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València (CSIC-UPV), 46011 Valencia, Spain
| | - Ioannis E Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, 72701 Fayetteville, AR, USA
| |
Collapse
|
24
|
Investigation of P1/HC-Pro-Mediated ABA/Calcium Signaling Responses via Gene Silencing through High- and Low-Throughput RNA-seq Approaches. Viruses 2021; 13:v13122349. [PMID: 34960618 PMCID: PMC8708664 DOI: 10.3390/v13122349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/17/2022] Open
Abstract
The P1/HC-Pro viral suppressor of potyvirus suppresses posttranscriptional gene silencing (PTGS). The fusion protein of P1/HC-Pro can be cleaved into P1 and HC-Pro through the P1 self-cleavage activity, and P1 is necessary and sufficient to enhance PTGS suppression of HC-Pro. To address the modulation of gene regulatory relationships induced by turnip mosaic virus (TuMV) P1/HC-Pro (P1/HC-ProTu), a comparative transcriptome analysis of three types of transgenic plants (P1Tu, HC-ProTu, and P1/HC-ProTu) were conducted using both high-throughput (HTP) and low-throughput (LTP) RNA-Seq strategies. The results showed that P1/HC-ProTu disturbed the endogenous abscisic acid (ABA) accumulation and genes in the signaling pathway. Additionally, the integrated responses of stress-related genes, in particular to drought stress, cold stress, senescence, and stomatal dynamics, altered the expressions by the ABA/calcium signaling. Crosstalk among the ABA, jasmonic acid, and salicylic acid pathways might simultaneously modulate the stress responses triggered by P1/HC-ProTu. Furthermore, the LTP network analysis revealed crucial genes in common with those identified by the HTP network in this study, demonstrating the effectiveness of the miniaturization of the HTP profile. Overall, our findings indicate that P1/HC-ProTu-mediated suppression in RNA silencing altered the ABA/calcium signaling and a wide range of stress responses.
Collapse
|
25
|
Transcriptomic Analysis of Genes Involved in Plant Defense Response to the Cucumber Green Mottle Mosaic Virus Infection. Life (Basel) 2021; 11:life11101064. [PMID: 34685435 PMCID: PMC8541684 DOI: 10.3390/life11101064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 11/17/2022] Open
Abstract
Plants have evolved a complex multilayered defense system to counteract various invading pathogens during their life cycle. In addition to silencing, considered to be a major molecular defense response against viruses, different signaling pathways activated by phytohormones trigger the expression of secondary metabolites and proteins preventing virus entry and propagation. In this study, we explored the response of cucumber plants to one of the global pathogens, cucumber green mottle mosaic virus (CGMMV), which causes severe symptoms on leaves and fruits. The inbred line of Cucumis sativus L., which is highly susceptible to CGMMV, was chosen for inoculation. Transcriptomes of infected plants at the early and late stages of infection were analyzed in comparison with the corresponding transcriptomes of healthy plants using RNA-seq. The changes in the signaling pathways of ethylene and salicylic and jasmonic acids, as well as the differences in silencing response and expression of pathogenesis-related proteins and transcription factors, were revealed. The results show that silencing was strongly suppressed in infected plants, while the salicylic acid and ethylene signaling pathways were induced. The genes encoding pathogenesis-related proteins and the genes involved in the jasmonic acid pathway changed their expression insignificantly. It was also found that WRKY and NAC were the most sensitive to CGMMV infection among the transcription factors detected.
Collapse
|
26
|
Investigating the Viral Suppressor HC-Pro Inhibiting Small RNA Methylation through Functional Comparison of HEN1 in Angiosperm and Bryophyte. Viruses 2021; 13:v13091837. [PMID: 34578418 PMCID: PMC8473176 DOI: 10.3390/v13091837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 12/27/2022] Open
Abstract
In plants, HEN1-facilitated methylation at 3′ end ribose is a critical step of small-RNA (sRNA) biogenesis. A mutant of well-studied Arabidopsis HEN1 (AtHEN1), hen1-1, showed a defective developmental phenotype, indicating the importance of sRNA methylation. Moreover, Marchantia polymorpha has been identified to have a HEN1 ortholog gene (MpHEN1); however, its function remained unfathomed. Our in vivo and in vitro data have shown MpHEN1 activity being comparable with AtHEN1, and their substrate specificity towards duplex microRNA (miRNA) remained consistent. Furthermore, the phylogenetic tree and multiple alignment highlighted the conserved molecular evolution of the HEN1 family in plants. The P1/HC-Pro of the turnip mosaic virus (TuMV) is a known RNA silencing suppressor and inhibits HEN1 methylation of sRNAs. Here, we report that the HC-Pro physically binds with AtHEN1 through FRNK motif, inhibiting HEN1’s methylation activity. Moreover, the in vitro EMSA data indicates GST-HC-Pro of TuMV lacks sRNA duplex-binding ability. Surprisingly, the HC-Pro also inhibits MpHEN1 activity in a dosage-dependent manner, suggesting the possibility of interaction between HC-Pro and MpHEN1 as well. Further investigations on understanding interaction mechanisms of HEN1 and various HC-Pros can advance the knowledge of viral suppressors.
Collapse
|
27
|
WRKY Transcription Factors in Cassava Contribute to Regulation of Tolerance and Susceptibility to Cassava Mosaic Disease through Stress Responses. Viruses 2021; 13:v13091820. [PMID: 34578401 PMCID: PMC8473359 DOI: 10.3390/v13091820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/04/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022] Open
Abstract
Among the numerous biological constraints that hinder cassava (Manihot esculenta Crantz) production, foremost is cassava mosaic disease (CMD) caused by virus members of the family Geminiviridae, genus Begomovirus. The mechanisms of CMD tolerance and susceptibility are not fully understood; however, CMD susceptible T200 and tolerant TME3 cassava landraces have been shown to exhibit different large-scale transcriptional reprogramming in response to South African cassava mosaic virus (SACMV). Recent identification of 85 MeWRKY transcription factors in cassava demonstrated high orthology with those in Arabidopsis, however, little is known about their roles in virus responses in this non-model crop. Significant differences in MeWRKY expression and regulatory networks between the T200 and TME3 landraces were demonstrated. Overall, WRKY expression and associated hormone and enriched biological processes in both landraces reflect oxidative and other biotic stress responses to SACMV. Notably, MeWRKY11 and MeWRKY81 were uniquely up and downregulated at 12 and 67 days post infection (dpi) respectively in TME3, implicating a role in tolerance and symptom recovery. AtWRKY28 and AtWRKY40 homologs of MeWRKY81 and MeWRKY11, respectively, have been shown to be involved in regulation of jasmonic and salicylic acid signaling in Arabidopsis. AtWRKY28 is an interactor in the RPW8-NBS resistance (R) protein network and downregulation of its homolog MeWRKY81 at 67 dpi in TME3 suggests a negative role for this WRKY in SACMV tolerance. In contrast, in T200, nine MeWRKYs were differentially expressed from early (12 dpi), middle (32 dpi) to late (67 dpi) infection. MeWRKY27 (homolog AtWRKY33) and MeWRKY55 (homolog AtWRKY53) were uniquely up-regulated at 12, 32 and 67 dpi in T200. AtWRKY33 and AtWRKY53 are positive regulators of leaf senescence and oxidative stress in Arabidopsis, suggesting MeWRKY55 and 27 contribute to susceptibility in T200.
Collapse
|
28
|
Nigam D. Genomic Variation and Diversification in Begomovirus Genome in Implication to Host and Vector Adaptation. PLANTS (BASEL, SWITZERLAND) 2021; 10:1706. [PMID: 34451752 PMCID: PMC8398267 DOI: 10.3390/plants10081706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 01/02/2023]
Abstract
Begomoviruses (family Geminiviridae, genus Begomovirus) are DNA viruses transmitted in a circulative, persistent manner by the whitefly Bemisia tabaci (Gennadius). As revealed by their wide host range (more than 420 plant species), worldwide distribution, and effective vector transmission, begomoviruses are highly adaptive. Still, the genetic factors that facilitate their adaptation to a diverse array of hosts and vectors remain poorly understood. Mutations in the virus genome may confer a selective advantage for essential functions, such as transmission, replication, evading host responses, and movement within the host. Therefore, genetic variation is vital to virus evolution and, in response to selection pressure, is demonstrated as the emergence of new strains and species adapted to diverse hosts or with unique pathogenicity. The combination of variation and selection forms a genetic imprint on the genome. This review focuses on factors that contribute to the evolution of Begomovirus and their global spread, for which an unforeseen diversity and dispersal has been recognized and continues to expand.
Collapse
Affiliation(s)
- Deepti Nigam
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
29
|
Cui W, Wang S, Han K, Zheng E, Ji M, Chen B, Wang X, Chen J, Yan F. Ferredoxin 1 is downregulated by the accumulation of abscisic acid in an ABI5-dependent manner to facilitate rice stripe virus infection in Nicotiana benthamiana and rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1183-1197. [PMID: 34153146 DOI: 10.1111/tpj.15377] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/14/2021] [Indexed: 05/07/2023]
Abstract
Ferredoxin 1 (FD1) accepts and distributes electrons in the electron transfer chain of plants. Its expression is universally downregulated by viruses and its roles in plant immunity have been brought into focus over the past decade. However, the mechanism by which viruses regulate FD1 remains to be defined. In a previous report, we found that the expression of Nicotiana benthamiana FD1 (NbFD1) was downregulated following infection with potato virus X (PVX) and that NbFD1 regulates callose deposition at plasmodesmata to play a role in defense against PVX infection. We now report that NbFD1 is downregulated by rice stripe virus (RSV) infection and that silencing of NbFD1 also facilitates RSV infection, while viral infection was inhibited in a transgenic line overexpressing NbFD1, indicating that NbFD1 also functions in defense against RSV infection. Next, a RSV-derived small interfering RNA was identified that contributes to the downregulation of FD1 transcripts. Further analysis showed that the abscisic acid (ABA) which accumulates in RSV-infected plants also represses NbFD1 transcription. It does this by stimulating expression of ABA insensitive 5 (ABI5), which binds the ABA response element motifs in the NbFD1 promoter, resulting in negative regulation. Regulation of FD1 by ABA was also confirmed in RSV-infected plants of the natural host rice. The results therefore suggest a mechanism by which virus regulates chloroplast-related genes to suppress their defense roles.
Collapse
Affiliation(s)
- Weijun Cui
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Shu Wang
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Nebraska, NE 68583, USA
| | - Kelei Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Ersong Zheng
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Mengfei Ji
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Binghua Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Xuming Wang
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jianping Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
30
|
Differences in Virulence among PVY Isolates of Different Geographical Origins When Infecting an Experimental Host under Two Growing Environments Are Not Determined by HCPro. PLANTS 2021; 10:plants10061086. [PMID: 34071353 PMCID: PMC8228399 DOI: 10.3390/plants10061086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/29/2022]
Abstract
The contribution of the HCPro factors expressed by several PVY isolates of different geographical origins (one from Scotland, one from Spain, and several from Tunisia) to differences in their virulence in Nicotiana benthamiana plants was investigated under two growing conditions: standard (st; 26 °C and current ambient levels of CO2), and climate change-associated (cc; 31 °C and elevated levels of CO2). In all cases, relative infection symptoms and viral titers were determined. The viral HCPro cistrons were also sequenced and amino-acid features of the encoded proteins were established, as well as phylogenetic distances. Additionally, the abilities of the HCPros of several isolates to suppress silencing were assessed under either growing condition. Overall, viral titers and infection symptoms decreased under cc vs. st conditions. However, within each growing condition, relative titers and symptoms were found to be isolate-specific, with titers and symptom severities not always correlating. Crucially, isolates expressing identical HCPros displayed different symptoms. In addition, all HCPro variants tested displayed comparable silencing suppression strengths. Therefore, HCPro alone could not be the main determinant of the relative differences in pathogenicity observed among the PVY isolates tested in this host, under the environments considered.
Collapse
|
31
|
Manacorda CA, Gudesblat G, Sutka M, Alemano S, Peluso F, Oricchio P, Baroli I, Asurmendi S. TuMV triggers stomatal closure but reduces drought tolerance in Arabidopsis. PLANT, CELL & ENVIRONMENT 2021; 44:1399-1416. [PMID: 33554358 DOI: 10.1111/pce.14024] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Compatible plant viral infections are a common cause of agricultural losses worldwide. Characterization of the physiological responses controlling plant water management under combined stresses is of great interest in the current climate change scenario. We studied the outcome of TuMV infection on stomatal closure and water balance, hormonal balance and drought tolerance in Arabidopsis. TuMV infection reduced stomatal aperture concomitantly with diminished gas exchange rate, daily water consumption and rosette initial dehydration rate. Infected plants overaccumulated salicylic acid and abscisic acid and showed altered expression levels of key ABA homeostasis genes including biosynthesis and catabolism. Also the expression of ABA signalling gene ABI2 was induced and ABCG40 (which imports ABA into guard cells) was highly induced upon infection. Hypermorfic abi2-1 mutant plants, but no other ABA or SA biosynthetic, signalling or degradation mutants tested abolished both stomatal closure and low stomatal conductance phenotypes caused by TuMV. Notwithstanding lower relative water loss during infection, plants simultaneously subjected to drought and viral stresses showed higher mortality rates than mock-inoculated drought stressed controls, alongside downregulation of drought-responsive gene RD29A. Our findings indicate that despite stomatal closure triggered by TuMV, additional phenomena diminish drought tolerance upon infection.
Collapse
Affiliation(s)
- Carlos Augusto Manacorda
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Argentina
| | - Gustavo Gudesblat
- Departamento de Fisiología, Biología Molecular y Celular "Profesor Héctor Maldonado"- Instituto de Biociencias, Biotecnología y Biología Translacional (IB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Moira Sutka
- Departamento de Biodiversidad y Biología Experimental, Instituto de Biodiversidad, Biología Experimental y Aplicada (IBBEA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Sergio Alemano
- Laboratorio de Fisiología Vegetal, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, UNRC. Instituto de Investigaciones Agrobiotecnológicas (INIAB-CONICET), Río Cuarto, Argentina
| | - Franco Peluso
- Instituto de Clima y Agua, CIRN, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Argentina
| | - Patricio Oricchio
- Instituto de Clima y Agua, CIRN, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Argentina
| | - Irene Baroli
- Departamento de Biodiversidad y Biología Experimental, Instituto de Biodiversidad, Biología Experimental y Aplicada (IBBEA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Sebastián Asurmendi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Argentina
| |
Collapse
|
32
|
Ross BT, Zidack NK, Flenniken ML. Extreme Resistance to Viruses in Potato and Soybean. FRONTIERS IN PLANT SCIENCE 2021; 12:658981. [PMID: 33889169 PMCID: PMC8056081 DOI: 10.3389/fpls.2021.658981] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/12/2021] [Indexed: 05/31/2023]
Abstract
Plant pathogens, including viruses, negatively impact global crop production. Plants have evolved complex immune responses to pathogens. These responses are often controlled by nucleotide-binding leucine-rich repeat proteins (NLRs), which recognize intracellular, pathogen-derived proteins. Genetic resistance to plant viruses is often phenotypically characterized by programmed cell death at or near the infection site; a reaction termed the hypersensitive response. Although visualization of the hypersensitive response is often used as a hallmark of resistance, the molecular mechanisms leading to the hypersensitive response and associated cell death vary. Plants with extreme resistance to viruses rarely exhibit symptoms and have little to no detectable virus replication or spread beyond the infection site. Both extreme resistance and the hypersensitive response can be activated by the same NLR genes. In many cases, genes that normally provide an extreme resistance phenotype can be stimulated to cause a hypersensitive response by experimentally increasing cellular levels of pathogen-derived elicitor protein(s). The molecular mechanisms of extreme resistance and its relationship to the hypersensitive response are largely uncharacterized. Studies on potato and soybean cultivars that are resistant to strains of Potato virus Y (PVY), Potato virus X (PVX), and Soybean mosaic virus (SMV) indicate that abscisic acid (ABA)-mediated signaling and NLR nuclear translocation are important for the extreme resistance response. Recent research also indicates that some of the same proteins are involved in both extreme resistance and the hypersensitive response. Herein, we review and synthesize published studies on extreme resistance in potato and soybean, and describe studies in additional species, including model plant species, to highlight future research avenues that may bridge the gaps in our knowledge of plant antiviral defense mechanisms.
Collapse
Affiliation(s)
- Brian T. Ross
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
| | - Nina K. Zidack
- Montana State Seed Potato Certification Lab, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
| | - Michelle L. Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
- Montana State Seed Potato Certification Lab, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
33
|
Gene Expression Analysis of Induced Plum pox virus (Sharka) Resistance in Peach ( Prunus persica) by Almond ( P. dulcis) Grafting. Int J Mol Sci 2021; 22:ijms22073585. [PMID: 33808287 PMCID: PMC8036523 DOI: 10.3390/ijms22073585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023] Open
Abstract
No natural sources of resistance to Plum pox virus (PPV, sharka disease) have been identified in peach. However, previous studies have demonstrated that grafting a “Garrigues” almond scion onto “GF305” peach rootstock seedlings heavily infected with PPV can progressively reduce disease symptoms and virus accumulation. Furthermore, grafting a “Garrigues” scion onto the “GF305” rootstock has been shown to completely prevent virus infection. This study aims to analyse the rewiring of gene expression associated with this resistance to PPV transmitted by grafting through the phloem using RNA-Seq and RT-qPCR analysis. A total of 18 candidate genes were differentially expressed after grafting “Garrigues” almond onto healthy “GF305” peach. Among the up-regulated genes, a HEN1 homolog stands out, which, together with the differential expression of RDR- and DCL2-homologs, suggests that the RNA silencing machinery is activated by PPV infection and can contribute to the resistance induced by “Garrigues” almond. Glucan endo-1,3-beta D-glucosidase could be also relevant for the “Garrigues”-induced response, since its expression is much higher in “Garrigues” than in “GF305”. We also discuss the potential relevance of the following in PPV infection and “Garrigues”-induced resistance: several pathogenesis-related proteins; no apical meristem proteins; the transcription initiation factor, TFIIB; the speckle-type POZ protein; in addition to a number of proteins involved in phytohormone signalling.
Collapse
|
34
|
Pasin F. Oligonucleotide abundance biases aid design of a type IIS synthetic genomics framework with plant virome capacity. Biotechnol J 2021; 16:e2000354. [PMID: 33410597 DOI: 10.1002/biot.202000354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/23/2022]
Abstract
Synthetic genomics-driven dematerialization of genetic resources facilitates flexible hypothesis testing and rapid product development. Biological sequences have compositional biases, which, I reasoned, could be exploited for engineering of enhanced synthetic genomics systems. In proof-of-concept assays reported herein, the abundance of random oligonucleotides in viral genomic components was analyzed and used for the rational design of a synthetic genomics framework with plant virome capacity (SynViP). Type IIS endonucleases with low abundance in the plant virome, as well as Golden Gate and No See'm principles were combined with DNA chemical synthesis for seamless viral clone assembly by one-step digestion-ligation. The framework described does not require subcloning steps, is insensitive to insert terminal sequences, and was used with linear and circular DNA molecules. Based on a digital template, DNA fragments were chemically synthesized and assembled by one-step cloning to yield a scar-free infectious clone of a plant virus suitable for Agrobacterium-mediated delivery. SynViP allowed rescue of a genuine virus without biological material, and has the potential to greatly accelerate biological characterization and engineering of plant viruses as well as derived biotechnological tools. Finally, computational identification of compositional biases in biological sequences might become a common standard to aid scalable biosystems design and engineering.
Collapse
Affiliation(s)
- Fabio Pasin
- School of Science, University of Padova, Padova, Italy.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
35
|
A Newly Identified Virus in the Family Potyviridae Encodes Two Leader Cysteine Proteases in Tandem That Evolved Contrasting RNA Silencing Suppression Functions. J Virol 2020; 95:JVI.01414-20. [PMID: 33055249 DOI: 10.1128/jvi.01414-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
Potyviridae is the largest family of plant-infecting RNA viruses and includes many agriculturally and economically important viral pathogens. The viruses in the family, known as potyvirids, possess single-stranded, positive-sense RNA genomes with polyprotein processing as a gene expression strategy. The N-terminal regions of potyvirid polyproteins vary greatly in sequence. Previously, we identified a novel virus species within the family, Areca palm necrotic spindle-spot virus (ANSSV), which was predicted to encode two cysteine proteases, HCPro1 and HCPro2, in tandem at the N-terminal region. Here, we present evidence showing self-cleavage activity of these two proteins and define their cis-cleavage sites. We demonstrate that HCPro2 is a viral suppressor of RNA silencing (VSR), and both the variable N-terminal and conserved C-terminal (protease domain) moieties have antisilencing activity. Intriguingly, the N-terminal region of HCPro1 also has RNA silencing suppression activity, which is, however, suppressed by its C-terminal protease domain, leading to the functional divergence of HCPro1 and HCPro2 in RNA silencing suppression. Moreover, the deletion of HCPro1 or HCPro2 in a newly created infectious clone abolishes viral infection, and the deletion mutants cannot be rescued by addition of corresponding counterparts of a potyvirus. Altogether, these data suggest that the two closely related leader proteases of ANSSV have evolved differential and essential functions to concertedly maintain viral viability.IMPORTANCE The Potyviridae represent the largest group of known plant RNA viruses and account for more than half of the viral crop damage worldwide. The leader proteases of viruses within the family vary greatly in size and arrangement and play key roles during the infection. Here, we experimentally demonstrate the presence of a distinct pattern of leader proteases, HCPro1 and HCPro2 in tandem, in a newly identified member within the family. Moreover, HCPro1 and HCPro2, which are closely related and typically characterized with a short size, have evolved contrasting RNA silencing suppression activity and seem to function in a coordinated manner to maintain viral infectivity. Altogether, the new knowledge fills a missing piece in the evolutionary relationship history of potyvirids and improves our understanding of the diversification of potyvirid genomes.
Collapse
|
36
|
Zhao M, García B, Gallo A, Tzanetakis IE, Simón-Mateo C, García JA, Pasin F. Home-made enzymatic premix and Illumina sequencing allow for one-step Gibson assembly and verification of virus infectious clones. PHYTOPATHOLOGY RESEARCH 2020; 2:36. [PMID: 33768973 PMCID: PMC7990137 DOI: 10.1186/s42483-020-00077-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/13/2020] [Indexed: 05/06/2023]
Abstract
An unprecedented number of viruses have been discovered by leveraging advances in high-throughput sequencing. Infectious clone technology is a universal approach that facilitates the study of biology and role in disease of viruses. In recent years homology-based cloning methods such as Gibson assembly have been used to generate virus infectious clones. We detail herein the preparation of home-made cloning materials for Gibson assembly. The home-made materials were used in one-step generation of the infectious cDNA clone of a plant RNA virus into a T-DNA binary vector. The clone was verified by a single Illumina reaction and a de novo read assembly approach that required no primer walking, custom primers or reference sequences. Clone infectivity was finally confirmed by Agrobacterium-mediated delivery to host plants. We anticipate that the convenient home-made materials, one-step cloning and Illumina verification strategies described herein will accelerate characterization of viruses and their role in disease development.
Collapse
Affiliation(s)
- Mingmin Zhao
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Beatriz García
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Araiz Gallo
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
| | - Ioannis E. Tzanetakis
- Department of Entomology and Plant Pathology, Division of Agriculture, University of Arkansas System, 72701 Fayetteville, USA
| | | | | | - Fabio Pasin
- Centro Nacional de Biotecnología (CNB-CSIC), 28049 Madrid, Spain
- University of Padova, 35122 Padova, Italy
| |
Collapse
|