1
|
Zheng H, Dang Y, Gao Y, Li S, Wu F, Zhang F, Wang X, Du X, Wang L, Song J, Sui N. An mRNA methylase and demethylase regulate sorghum salt tolerance by mediating N6-methyladenosine modification. PLANT PHYSIOLOGY 2024; 196:3048-3070. [PMID: 39405192 DOI: 10.1093/plphys/kiae529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/04/2024] [Indexed: 12/14/2024]
Abstract
N 6-methyladenosine (m6A) modification is a crucial and widespread molecular mechanism governing plant development and stress tolerance. The specific impact of m6A regulation on plants with inherently high salt tolerance remains unclear. Existing research primarily focuses on the overexpression or knockout of individual writer or eraser components to alter m6A levels. However, a comprehensive study simultaneously altering overall m6A modification levels within the same experiment is lacking. Such an investigation is essential to determine whether opposing changes in m6A modification levels exert entirely different effects on plant salt tolerance. In this study, we identified the major writer member mRNA adenosine methylase A (SbMTA) in sorghum (Sorghum bicolor) as critical for sorghum survival. The sbmta mutant exhibits a phenotype characterized by reduced overall m6A, developmental arrest, and, ultimately, lethality. Overexpression of SbMTA increased m6A levels and salt tolerance, while overexpression of the m6A eraser alkylated DNA repair protein AlkB homolog 10B (SbALKBH10B) in sorghum showed the opposite phenotype. Comparative analyses between sorghum with different m6A levels reveal that SbMTA- and SbALKBH10B-mediated m6A alterations significantly impact the stability and expression levels of genes related to the abscisic acid signaling pathway and growth under salt stress. In summary, this study unveils the intricate relationship between m6A modifications and salt tolerance in sorghum, providing valuable insights into how m6A modification levels on specific transcripts influence responses to salt stress.
Collapse
Affiliation(s)
- Hongxiang Zheng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yingying Dang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yinping Gao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Simin Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - FengHui Wu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Fangning Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Xuemei Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Xihua Du
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Lei Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Jie Song
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
2
|
Adamiec M, Luciński R. The Roles of RNA Modifications in Regulating Chloroplast Performance and Photosynthesis Efficiency. Int J Mol Sci 2024; 25:11912. [PMID: 39595982 PMCID: PMC11594162 DOI: 10.3390/ijms252211912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
The regulation of gene expression is crucial for maintaining cellular activities and responding to environmental stimuli. RNA molecules are central to this regulatory network, influencing transcription, post-transcriptional processing, and translation. Recent advancements have expanded our understanding of RNA modifications beyond the nucleus, highlighting their impact on chloroplast function and photosynthesis efficiency. Chloroplasts, essential for photosynthesis, rely on precise genetic regulation to adapt to environmental changes. RNA modifications, such as methylation and pseudouridylation, are critical in regulating chloroplast RNA stability, processing, and translation. This review summarizes current knowledge of how RNA modifications affect chloroplast function and photosynthesis. It discusses the roles of specific RNA modifications occurring in chloroplast RNA, including N6-methyladenosine (m6A), 5-methylcytosine (m5C), and pseudouridylation, as well as the enzymes which are known to be involved in these processes. This review also explores extrachloroplastic RNA modifications that influence chloroplast function, emphasizing the importance of m6A and m5C modifications and their associated enzymes.
Collapse
Affiliation(s)
- Małgorzata Adamiec
- Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
| | | |
Collapse
|
3
|
He Y, Si Z, Mei G, Cheng Y, Zhang J, Jiang T, Chen J, Xiong H, Zhang T, Hu Y. N6-methyladenosine RNA modification regulates photoperiod sensitivity in cotton. PLANT PHYSIOLOGY 2024; 196:1095-1109. [PMID: 39109985 PMCID: PMC11444288 DOI: 10.1093/plphys/kiae371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/01/2024] [Indexed: 10/03/2024]
Abstract
The methylation of N6-methyladenosine (m6A) involves writers, erasers, and readers, acting synergistically in posttranscriptional regulation. These processes influence various biological processes, including plant floral transition. However, the specific role of m6A modifications in photoperiod sensitivity in cotton (Gossypium hirsutum) remains obscure. To elucidate this, in this study, we conducted transcriptome-wide m6A sequencing during critical flowering transition stages in the photoperiod-sensitive wild G. hirsutum var. yucatanense (yucatanense) and the photoperiod-insensitive cultivated cotton G. hirsutum acc. TM-1 (TM-1). Our results revealed significant variations in m6A methylation of 2 cotton varieties, with yucatanense exhibiting elevated m6A modification levels compared with TM-1 under long-day conditions. Notably, distinct m6A peaks between TM-1 and yucatanense correlated significantly with photoperiod sensitivity. Moreover, our study highlighted the role of the demethylase G. hirsutum ALKB homolog 5 (GhALKBH5) in modulating m6A modification levels. Silencing GhALKBH5 led to a decreased mRNA level of key photoperiodic flowering genes (GhADO3, GhAGL24, and GhFT1), resulting in delayed bud emergence and flowering. Reverse transcription quantitative PCR analyses confirmed that silencing GhADO3 and GhAGL24 significantly downregulated the expression of the floral integrator GhFT1. Collectively, our findings unveiled a transcriptional regulatory mechanism in which GhALKBH5-mediated m6A demethylation of crucial photoperiodic flowering transcripts modulated photoperiod sensitivity in cotton.
Collapse
Affiliation(s)
- Ying He
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Zhanfeng Si
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Gaofu Mei
- Key Laboratory of Digital Upland Crops of Zhejiang Province, Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310014, China
| | - Yu Cheng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Jun Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Tao Jiang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Jiani Chen
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Huifang Xiong
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Tianzhen Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
- Precision Breeding and Germplasm Innovation Team for Cotton and Economic Crops, Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Yan Hu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
- Precision Breeding and Germplasm Innovation Team for Cotton and Economic Crops, Hainan Institute of Zhejiang University, Sanya 572025, China
| |
Collapse
|
4
|
Zhang M, Ming Y, Wang HB, Jin HL. Strategies for adaptation to high light in plants. ABIOTECH 2024; 5:381-393. [PMID: 39279858 PMCID: PMC11399379 DOI: 10.1007/s42994-024-00164-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/19/2024] [Indexed: 09/18/2024]
Abstract
Plants absorb light energy for photosynthesis via photosystem complexes in their chloroplasts. However, excess light can damage the photosystems and decrease photosynthetic output, thereby inhibiting plant growth and development. Plants have developed a series of light acclimation strategies that allow them to withstand high light. In the first line of defense against excess light, leaves and chloroplasts move away from the light and the plant accumulates compounds that filter and reflect the light. In the second line of defense, known as photoprotection, plants dissipate excess light energy through non-photochemical quenching, cyclic electron transport, photorespiration, and scavenging of excess reactive oxygen species. In the third line of defense, which occurs after photodamage, plants initiate a cycle of photosystem (mainly photosystem II) repair. In addition to being the site of photosynthesis, chloroplasts sense stress, especially light stress, and transduce the stress signal to the nucleus, where it modulates the expression of genes involved in the stress response. In this review, we discuss current progress in our understanding of the strategies and mechanisms employed by plants to withstand high light at the whole-plant, cellular, physiological, and molecular levels across the three lines of defense.
Collapse
Affiliation(s)
- Man Zhang
- State Key Laboratory of Traditional Chinese Medicine/School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
- Institute of Medical Plant Physiology and Ecology, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Yu Ming
- State Key Laboratory of Traditional Chinese Medicine/School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
- Institute of Medical Plant Physiology and Ecology, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Hong-Bin Wang
- State Key Laboratory of Traditional Chinese Medicine/School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
- Institute of Medical Plant Physiology and Ecology, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
- Key Laboratory of Chinese Medicinal Resource From Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, 510006 China
| | - Hong-Lei Jin
- State Key Laboratory of Traditional Chinese Medicine/School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
- Institute of Medical Plant Physiology and Ecology, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
- Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510375 China
| |
Collapse
|
5
|
Xiang Y, Zhang D, Li L, Xue YX, Zhang CY, Meng QF, Wang J, Tan XL, Li YL. Detection, distribution, and functions of RNA N 6-methyladenosine (m 6A) in plant development and environmental signal responses. FRONTIERS IN PLANT SCIENCE 2024; 15:1429011. [PMID: 39081522 PMCID: PMC11286456 DOI: 10.3389/fpls.2024.1429011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024]
Abstract
The epitranscriptomic mark N 6-methyladenosine (m6A) is the most common type of messenger RNA (mRNA) post-transcriptional modification in eukaryotes. With the discovery of the demethylase FTO (FAT MASS AND OBESITY-ASSOCIATED PROTEIN) in Homo Sapiens, this modification has been proven to be dynamically reversible. With technological advances, research on m6A modification in plants also rapidly developed. m6A modification is widely distributed in plants, which is usually enriched near the stop codons and 3'-UTRs, and has conserved modification sequences. The related proteins of m6A modification mainly consist of three components: methyltransferases (writers), demethylases (erasers), and reading proteins (readers). m6A modification mainly regulates the growth and development of plants by modulating the RNA metabolic processes and playing an important role in their responses to environmental signals. In this review, we briefly outline the development of m6A modification detection techniques; comparatively analyze the distribution characteristics of m6A in plants; summarize the methyltransferases, demethylases, and binding proteins related to m6A; elaborate on how m6A modification functions in plant growth, development, and response to environmental signals; and provide a summary and outlook on the research of m6A in plants.
Collapse
|
6
|
Schmid LM, Manavski N, Chi W, Meurer J. Chloroplast Ribosome Biogenesis Factors. PLANT & CELL PHYSIOLOGY 2024; 65:516-536. [PMID: 37498958 DOI: 10.1093/pcp/pcad082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/13/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023]
Abstract
The formation of chloroplasts can be traced back to an ancient event in which a eukaryotic host cell containing mitochondria ingested a cyanobacterium. Since then, chloroplasts have retained many characteristics of their bacterial ancestor, including their transcription and translation machinery. In this review, recent research on the maturation of rRNA and ribosome assembly in chloroplasts is explored, along with their crucial role in plant survival and their implications for plant acclimation to changing environments. A comparison is made between the ribosome composition and auxiliary factors of ancient and modern chloroplasts, providing insights into the evolution of ribosome assembly factors. Although the chloroplast contains ancient proteins with conserved functions in ribosome assembly, newly evolved factors have also emerged to help plants acclimate to changes in their environment and internal signals. Overall, this review offers a comprehensive analysis of the molecular mechanisms underlying chloroplast ribosome assembly and highlights the importance of this process in plant survival, acclimation and adaptation.
Collapse
Affiliation(s)
- Lisa-Marie Schmid
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, Planegg-Martinsried 82152, Germany
| | - Nikolay Manavski
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, Planegg-Martinsried 82152, Germany
| | - Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, Planegg-Martinsried 82152, Germany
| |
Collapse
|
7
|
Liu H, Lin M, Wang H, Li X, Zhou D, Bi X, Zhang Y. N 6-methyladenosine analysis unveils key mechanisms underlying long-term salt stress tolerance in switchgrass (Panicum virgatum). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112023. [PMID: 38320658 DOI: 10.1016/j.plantsci.2024.112023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/15/2024] [Accepted: 02/01/2024] [Indexed: 02/08/2024]
Abstract
N6-methyladenosine (m6A) RNA modification is critical for plant growth, development, and environmental stress response. While short-term stress impacts on m6A are well-documented, the consequences of prolonged stress remain underexplored. This study conducts a thorough transcriptome-wide analysis of m6A modifications following 28-day exposure to 200 mM NaCl. We detected 11,149 differentially expressed genes (DEGs) and 12,936 differentially methylated m6A peaks, along with a global decrease in m6A levels. Notably, about 62% of m6A-modified DEGs, including demethylase genes like PvALKBH6_N, PvALKBH9_K, and PvALKBH10_N, showed increased expression and reduced m6A peaks, suggesting that decreased m6A methylation may enhance gene expression under salt stress. Consistent expression and methylation patterns were observed in key genes related to ion homeostasis (e.g., H+-ATPase 1, High-affinity K+transporter 5), antioxidant defense (Catalase 1/2, Copper/zinc superoxide dismutase 2, Glutathione synthetase 1), and osmotic regulation (delta 1-pyrroline-5-carboxylate synthase 2, Pyrroline-5-carboxylate reductase). These findings provide insights into the adaptive mechanisms of switchgrass under long-term salt stress and highlight the potential of regulating m6A modifications as a novel approach for crop breeding strategies focused on stress resistance.
Collapse
Affiliation(s)
- Huayue Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Mengzhuo Lin
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hui Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xue Li
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Die Zhou
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaojing Bi
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Yunwei Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
8
|
Ma C, Ma S, Yu Y, Feng H, Wang Y, Liu C, He S, Yang M, Chen Q, Xin D, Wang J. Transcriptome-wide m 6A methylation profiling identifies GmAMT1;1 as a promoter of lead and cadmium tolerance in soybean nodules. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133263. [PMID: 38118200 DOI: 10.1016/j.jhazmat.2023.133263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 12/22/2023]
Abstract
Lead (Pb) and cadmium (Cd) are common heavy metal pollutants that are often found in the soil in soybean agricultural production, adversely impacting symbiotic nitrogen fixation in soybean nodules. In this study, the exposure of soybean nodules to Pb and Cd stress was found to reduce nitrogenase activity. Shifts in the RNA methylation profiles of nodules were subsequently examined by profiling the differential expression of genes responsible for regulating m6A modifications and conducting transcriptome-wide analyses of m6A methylation profiles under Pb and Cd stress condition. Differentially methylated genes (DMGs) that were differentially expressed were closely related to reactive oxygen species activity and integral membrane components. Overall, 19 differentially expressed DMGs were ultimately determined to be responsive to both Pb and Cd stress, including Glyma.20G082450, which encodes GmAMT1;1 and was confirmed to be a positive regulator of nodules tolerance to Pb and Cd. Together, these results are the first published data corresponding to transcriptome-wide m6A methylation patterns in soybean nodules exposed to Cd and Pb stress, and provide novel molecular insight into the regulation of Pb and Cd stress responses in nodules, highlighting promising candidate genes related to heavy metal tolerance, that may also be amenable to application in agricultural production. ENVIRONMENTAL IMPLICATIONS: Lead (Pb) and cadmium (Cd) are prevalent heavy metal pollutants in soil, and pose a major threat to crop production, food security and human health. Here, MeRIP-seq approach was employed to analyze the regulatory network activated in soybean nodules under Pb and Cd stress, ultimately leading to the identification of 19 shared differentially expressed DMGs. When overexpressed, GmATM1;1 was found to enhance the Pb and Cd tolerance of soybean nodules. These results provide a theoretical basis for studies on tolerance to heavy metals in symbiotic nitrogen fixation, and provide an approach to enhancing Pb and Cd tolerance in soybean production.
Collapse
Affiliation(s)
- Chao Ma
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, People's Republic of China
| | - Shengnan Ma
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, People's Republic of China
| | - Yanyu Yu
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, People's Republic of China
| | - Haojie Feng
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, People's Republic of China
| | - Yue Wang
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, People's Republic of China
| | - Chunyan Liu
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, People's Republic of China
| | - Shanshan He
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, People's Republic of China
| | - Mingliang Yang
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, People's Republic of China
| | - Qingshan Chen
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, People's Republic of China
| | - Dawei Xin
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, People's Republic of China.
| | - Jinhui Wang
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, People's Republic of China.
| |
Collapse
|
9
|
Jiang B, Zhong Z, Gu L, Zhang X, Wei J, Ye C, Lin G, Qu G, Xiang X, Wen C, Hummel M, Bailey-Serres J, Wang Q, He C, Wang X, Lin C. Light-induced LLPS of the CRY2/SPA1/FIO1 complex regulating mRNA methylation and chlorophyll homeostasis in Arabidopsis. NATURE PLANTS 2023; 9:2042-2058. [PMID: 38066290 PMCID: PMC10724061 DOI: 10.1038/s41477-023-01580-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 10/30/2023] [Indexed: 12/17/2023]
Abstract
Light regulates chlorophyll homeostasis and photosynthesis via various molecular mechanisms in plants. The light regulation of transcription and protein stability of nuclear-encoded chloroplast proteins have been extensively studied, but how light regulation of mRNA metabolism affects abundance of nuclear-encoded chloroplast proteins and chlorophyll homeostasis remains poorly understood. Here we show that the blue light receptor cryptochrome 2 (CRY2) and the METTL16-type m6A writer FIONA1 (FIO1) regulate chlorophyll homeostasis in response to blue light. In contrast to the CRY2-mediated photo-condensation of the mRNA adenosine methylase (MTA), photoexcited CRY2 co-condenses FIO1 only in the presence of the CRY2-signalling protein SUPPRESSOR of PHYTOCHROME A (SPA1). CRY2 and SPA1 synergistically or additively activate the RNA methyltransferase activity of FIO1 in vitro, whereas CRY2 and FIO1, but not MTA, are required for the light-induced methylation and translation of the mRNAs encoding multiple chlorophyll homeostasis regulators in vivo. Our study demonstrates that the light-induced liquid-liquid phase separation of the photoreceptor/writer complexes is commonly involved in the regulation of photoresponsive changes of mRNA methylation, whereas the different photo-condensation mechanisms of the CRY/FIO1 and CRY/MTA complexes explain, at least partially, the writer-specific functions in plant photomorphogenesis.
Collapse
Affiliation(s)
- Bochen Jiang
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China.
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA, USA.
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
| | - Zhenhui Zhong
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lianfeng Gu
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xueyang Zhang
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiangbo Wei
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Chang Ye
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Guifang Lin
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Gaoping Qu
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xian Xiang
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chenjin Wen
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Maureen Hummel
- Center for Plant Cell Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Julia Bailey-Serres
- Center for Plant Cell Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Qin Wang
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Xu Wang
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China.
- Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang, China.
| | - Chentao Lin
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China.
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA, USA.
| |
Collapse
|