1
|
Das SK, Karmakar S, Venkatachalapathy H, Jha RK, Batchelor E, Levens D. Excessive MYC-topoisome activity triggers acute DNA damage, MYC degradation, and replacement by a p53-topoisome. Mol Cell 2024; 84:4059-4078.e10. [PMID: 39481385 PMCID: PMC11560571 DOI: 10.1016/j.molcel.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/28/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024]
Abstract
Hyperproliferation driven by the protooncogene MYC may lead to tumor suppressor p53 activating DNA damage that has been presumed to derive from hypertranscription and over-replication. Here, we report that excessive MYC-topoisome (MYC/topoisomerase 1/topoisomerase 2) activity acutely damages DNA-activating pATM and p53. In turn, MYC is shut off and degraded, releasing TOP1 and TOP2A from MYC topoisomes in vitro and in vivo. To manage the topological and torsional stress generated at its target genes, p53 assembles a separate topoisome. Because topoisomerase activity is intrinsically DNA damaging, p53 topoisomes provoke an initial burst of DNA damage. Because p53, unlike MYC, upregulates the DNA-damage response (DDR) and activates tyrosyl-DNA-phosphodiesterase (TDP) 1 and TDP2, it suppresses further topoisome-mediated damage. The physical coupling and activation of TOP1 and TOP2 by p53 creates a tool that supports p53-target expression while braking MYC-driven proliferation in mammalian cells.
Collapse
Affiliation(s)
- Subhendu K Das
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Sharmistha Karmakar
- Energy Storage and Technology Department, Energy and Environment Science and Technology Division, Idaho National Laboratory, Idaho Falls, ID 83415, USA
| | | | - Rajiv Kumar Jha
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Eric Batchelor
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - David Levens
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Lee TH, Qiao CX, Kuzin V, Shi Y, Ramanaranayan V, Wu T, Zhou X, Corujo D, Buschbeck M, Baranello L, Oberdoerffer P. Epigenetic control of Topoisomerase 1 activity presents a cancer vulnerability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619113. [PMID: 39484415 PMCID: PMC11526978 DOI: 10.1101/2024.10.22.619113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
DNA transactions introduce torsional constraints that pose an inherent risk to genome integrity. While topoisomerase 1 (TOP1) activity is essential for removing DNA supercoiling, aberrant stabilization of TOP1:DNA cleavage complexes (TOP1ccs) can result in cytotoxic DNA lesions. What protects genomic hot spots of topological stress from aberrant TOP1 activity remains unknown. Here, we identify chromatin context as an essential means to coordinate TOP1cc resolution. Through its ability to bind poly(ADP-ribose) (PAR), a protein modification required for TOP1cc repair, the histone variant macroH2A1.1 establishes a TOP1-permissive chromatin environment, while the alternatively spliced macroH2A1.2 isoform is unable to bind PAR or protect from TOP1ccs. By visualizing transcription-induced topological stress in single cells, we find that macroH2A1.1 facilitates PAR-dependent recruitment of the TOP1cc repair effector XRCC1 to protect from ssDNA damage. Impaired macroH2A1.1 splicing, a frequent cancer feature, was predictive of increased sensitivity to TOP1 poisons in a pharmaco-genomic screen in breast cancer cells, and macroH2A1.1 inactivation mirrored this effect. Consistent with this, low macroH2A1.1 expression correlated with improved survival in cancer patients treated with TOP1 inhibitors. We propose that macroH2A1 alternative splicing serves as an epigenetic modulator of TOP1-associated genome maintenance and a potential cancer vulnerability.
Collapse
Affiliation(s)
- Tae-Hee Lee
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Colina X Qiao
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21287
| | - Vladislav Kuzin
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Yuepeng Shi
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21287
| | - Vijayalalitha Ramanaranayan
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21287
| | - Tongyu Wu
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21287
- Present address: Department of Cell Biology, University of Pittsburgh, PA 15261
| | - Xianzhen Zhou
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21287
- Present address: Department of Biochemistry, St Anne’s College, Oxford, UK
| | - David Corujo
- Program of Myeloid Neoplasms, Program of Applied Epigenetics, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Marcus Buschbeck
- Program of Myeloid Neoplasms, Program of Applied Epigenetics, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, 08916 Barcelona, Spain
| | - Laura Baranello
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Philipp Oberdoerffer
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| |
Collapse
|
3
|
Torrecilla I, Ruggiano A, Kiianitsa K, Aljarbou F, Lascaux P, Hoslett G, Song W, Maizels N, Ramadan K. Isolation and detection of DNA-protein crosslinks in mammalian cells. Nucleic Acids Res 2024; 52:525-547. [PMID: 38084926 PMCID: PMC10810220 DOI: 10.1093/nar/gkad1178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 01/26/2024] Open
Abstract
DNA-protein crosslinks (DPCs) are toxic DNA lesions wherein a protein is covalently attached to DNA. If not rapidly repaired, DPCs create obstacles that disturb DNA replication, transcription and DNA damage repair, ultimately leading to genome instability. The persistence of DPCs is associated with premature ageing, cancer and neurodegeneration. In mammalian cells, the repair of DPCs mainly relies on the proteolytic activities of SPRTN and the 26S proteasome, complemented by other enzymes including TDP1/2 and the MRN complex, and many of the activities involved are essential, restricting genetic approaches. For many years, the study of DPC repair in mammalian cells was hindered by the lack of standardised assays, most notably assays that reliably quantified the proteins or proteolytic fragments covalently bound to DNA. Recent interest in the field has spurred the development of several biochemical methods for DPC analysis. Here, we critically analyse the latest techniques for DPC isolation and the benefits and drawbacks of each. We aim to assist researchers in selecting the most suitable isolation method for their experimental requirements and questions, and to facilitate the comparison of results across different laboratories using different approaches.
Collapse
Affiliation(s)
- Ignacio Torrecilla
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Annamaria Ruggiano
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Kostantin Kiianitsa
- Department of Immunology, University of Washington, Seattle, WA 98195-7350, USA
| | - Ftoon Aljarbou
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Pauline Lascaux
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Gwendoline Hoslett
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Wei Song
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Nancy Maizels
- Department of Immunology, University of Washington, Seattle, WA 98195-7350, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350, USA
| | - Kristijan Ramadan
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| |
Collapse
|
4
|
Cameron DP, Grosser J, Ladigan S, Kuzin V, Iliopoulou E, Wiegard A, Benredjem H, Jackson K, Liffers ST, Lueong S, Cheung PF, Vangala D, Pohl M, Viebahn R, Teschendorf C, Wolters H, Usta S, Geng K, Kutter C, Arsenian-Henriksson M, Siveke JT, Tannapfel A, Schmiegel W, Hahn SA, Baranello L. Coinhibition of topoisomerase 1 and BRD4-mediated pause release selectively kills pancreatic cancer via readthrough transcription. SCIENCE ADVANCES 2023; 9:eadg5109. [PMID: 37831776 PMCID: PMC10575591 DOI: 10.1126/sciadv.adg5109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023]
Abstract
Pancreatic carcinoma lacks effective therapeutic strategies resulting in poor prognosis. Transcriptional dysregulation due to alterations in KRAS and MYC affects initiation, development, and survival of this tumor type. Using patient-derived xenografts of KRAS- and MYC-driven pancreatic carcinoma, we show that coinhibition of topoisomerase 1 (TOP1) and bromodomain-containing protein 4 (BRD4) synergistically induces tumor regression by targeting promoter pause release. Comparing the nascent transcriptome with the recruitment of elongation and termination factors, we found that coinhibition of TOP1 and BRD4 disrupts recruitment of transcription termination factors. Thus, RNA polymerases transcribe downstream of genes for hundreds of kilobases leading to readthrough transcription. This occurs during replication, perturbing replisome progression and inducing DNA damage. The synergistic effect of TOP1 + BRD4 inhibition is specific to cancer cells leaving normal cells unaffected, highlighting the tumor's vulnerability to transcriptional defects. This preclinical study provides a mechanistic understanding of the benefit of combining TOP1 and BRD4 inhibitors to treat pancreatic carcinomas addicted to oncogenic drivers of transcription and replication.
Collapse
Affiliation(s)
- Donald P. Cameron
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jan Grosser
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Swetlana Ladigan
- Ruhr University Bochum, Faculty of Medicine, Department of Molecular GI Oncology, Bochum, Germany
- Ruhr University Bochum, Knappschaftskrankenhaus, Department of Internal Medicine, Bochum, Germany
| | - Vladislav Kuzin
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Evanthia Iliopoulou
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Anika Wiegard
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hajar Benredjem
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kathryn Jackson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sven T. Liffers
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Smiths Lueong
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Phyllis F. Cheung
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Deepak Vangala
- Ruhr University Bochum, Faculty of Medicine, Department of Molecular GI Oncology, Bochum, Germany
- Ruhr University Bochum, Knappschaftskrankenhaus, Department of Internal Medicine, Bochum, Germany
| | - Michael Pohl
- Ruhr University Bochum, Knappschaftskrankenhaus, Department of Internal Medicine, Bochum, Germany
| | - Richard Viebahn
- Ruhr University Bochum, Knappschaftskrankenhaus, Department of Surgery, Bochum, Germany
| | | | - Heiner Wolters
- Department of Visceral and General Surgery, St. Josef-Hospital, Dortmund, Germany
| | - Selami Usta
- Department of Visceral and General Surgery, St. Josef-Hospital, Dortmund, Germany
| | - Keyi Geng
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Claudia Kutter
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | | | - Jens T. Siveke
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany
| | | | - Wolff Schmiegel
- Ruhr University Bochum, Knappschaftskrankenhaus, Department of Internal Medicine, Bochum, Germany
| | - Stephan A. Hahn
- Ruhr University Bochum, Faculty of Medicine, Department of Molecular GI Oncology, Bochum, Germany
| | - Laura Baranello
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|