1
|
Li X, Zhu H, Huang BT, Li X, Kim H, Tan H, Zhang Y, Choi I, Peng J, Xu P, Sun J, Yue Z. RAB12-LRRK2 complex suppresses primary ciliogenesis and regulates centrosome homeostasis in astrocytes. Nat Commun 2024; 15:8434. [PMID: 39343966 PMCID: PMC11439917 DOI: 10.1038/s41467-024-52723-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
The leucine-rich repeat kinase 2 (LRRK2) phosphorylates a subset of RAB GTPases, and their phosphorylation levels are elevated by Parkinson's disease (PD)-linked mutations of LRRK2. However, the precise function of the LRRK2-regulated RAB GTPase in the brain remains to be elucidated. Here, we identify RAB12 as a robust LRRK2 substrate in the mouse brain through phosphoproteomics profiling and solve the structure of RAB12-LRRK2 protein complex through Cryo-EM analysis. Mechanistically, RAB12 cooperates with LRRK2 to inhibit primary ciliogenesis and regulate centrosome homeostasis in astrocytes through enhancing the phosphorylation of RAB10 and recruiting RILPL1, while the functions of RAB12 require a direct interaction with LRRK2 and LRRK2 activity. Furthermore, the ciliary and centrosome defects caused by the PD-linked LRRK2-G2019S mutation are prevented by Rab12 deletion in astrocytes. Thus, our study reveals a physiological function of the RAB12-LRRK2 complex in regulating ciliogenesis and centrosome homeostasis. The RAB12-LRRK2 structure offers a guidance in the therapeutic development of PD by targeting the RAB12-LRRK2 interaction.
Collapse
Affiliation(s)
- Xingjian Li
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Hanwen Zhu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Bik Tzu Huang
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xianting Li
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Heesoo Kim
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Haiyan Tan
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yuanxi Zhang
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Insup Choi
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Ji Sun
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Zhenyu Yue
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Center for Parkinson's Disease Neurobiology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
2
|
Li X, Zhu H, Huang BT, Li X, Kim H, Tan H, Zhang Y, Choi I, Peng J, Xu P, Sun J, Yue Z. RAB12-LRRK2 Complex Suppresses Primary Ciliogenesis and Regulates Centrosome Homeostasis in Astrocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.603999. [PMID: 39071328 PMCID: PMC11275936 DOI: 10.1101/2024.07.17.603999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) phosphorylates a subset of RAB GTPases, and the phosphorylation levels are elevated by Parkinson's disease (PD)-linked mutations of LRRK2. However, the precise function of the specific RAB GTPase targeted by LRRK2 signaling in the brain remains to be elucidated. Here, we identify RAB12 as a robust LRRK2 substrate in the mouse brains through phosphoproteomics profiling and solve the structure of RAB12-LRRK2 protein complex through Cryo-EM analysis. Mechanistically, RAB12 cooperates with LRRK2 to inhibit primary ciliogenesis and regulate centrosome homeostasis in astrocytes through enhancing the phosphorylation of RAB10 and recruiting Rab interacting lysosomal protein like 1 (RILPL1), while the functions of RAB12 require a direct interaction with LRRK2 and LRRK2 kinase activity. Furthermore, the ciliary deficits and centrosome alteration caused by the PD-linked LRRK2-G2019S mutation are prevented by the deletion of Rab12 in astrocytes. Thus, our study reveals a physiological function of the RAB12-LRRK2 complex in regulating ciliogenesis and centrosome homeostasis. The RAB12-LRRK2 structure offers a guidance in the therapeutic development of PD by targeting the RAB12-LRRK2 interaction.
Collapse
Affiliation(s)
- Xingjian Li
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Hanwen Zhu
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Bik Tzu Huang
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xianting Li
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Heesoo Kim
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Haiyan Tan
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Yuanxi Zhang
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Insup Choi
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Ji Sun
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Zhenyu Yue
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Parkinson’s Disease Neurobiology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
3
|
Alexander KK, Naaldijk Y, Fasiczka R, Brahmia B, Chen T, Hilfiker S, Kennedy EJ. Targeting Rab-RILPL interactions as a strategy to downregulate pathogenic LRRK2 in Parkinson's disease. J Pept Sci 2024; 30:e3563. [PMID: 38135900 DOI: 10.1002/psc.3563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
Familial Parkinson's disease (PD) is frequently linked to multiple disease-causing mutations within Leucine-Rich Repeat Protein Kinase 2 (LRRK2), leading to aberrant kinase activity. Multiple pathogenic effects of enhanced LRRK2 activity have been identified, including loss of cilia and centrosomal cohesion defects. When phosphorylated by LRRK2, Rab8a and Rab10 bind to phospho-specific RILPL effector proteins. RILPL-mediated accumulation of pRabs proximal to the mother centriole is critical for initiating deficits in ciliogenesis and centrosome cohesion mediated by LRRK2. We hypothesized that Rab-derived phospho-mimics may serve to block phosphorylated Rab proteins from docking with RILPL in the context of hyperactive LRRK2 mutants. This would serve as an alternative strategy to downregulate pathogenic signaling mediated by LRRK2, rather than targeting LRRK2 kinase activity itself. To test this theory, we designed a series of constrained peptides mimicking phosphorylated Switch II derived from Rab8. These RILPL interacting peptides, termed RIP, were further shown to permeate cells. Further, several peptides were found to bind RILPL2 and restore ciliogenesis and centrosomal cohesion defects in cells expressing PD-associated mutant LRRK2. This research demonstrates the utility of constrained peptides as downstream inhibitors to target pathogenic LRRK2 activity and may provide an alternative approach to target specific pathways activated by LRRK2.
Collapse
Affiliation(s)
- Krista K Alexander
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Yahaira Naaldijk
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Rachel Fasiczka
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Besma Brahmia
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Tiancheng Chen
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Sabine Hilfiker
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Eileen J Kennedy
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| |
Collapse
|
4
|
Naaldijk Y, Fernández B, Fasiczka R, Fdez E, Leghay C, Croitoru I, Kwok JB, Boulesnane Y, Vizeneux A, Mutez E, Calvez C, Destée A, Taymans JM, Aragon AV, Yarza AB, Padmanabhan S, Delgado M, Alcalay RN, Chatterton Z, Dzamko N, Halliday G, Ruiz-Martínez J, Chartier-Harlin MC, Hilfiker S. A potential patient stratification biomarker for Parkinson´s disease based on LRRK2 kinase-mediated centrosomal alterations in peripheral blood-derived cells. NPJ Parkinsons Dis 2024; 10:12. [PMID: 38191886 PMCID: PMC10774440 DOI: 10.1038/s41531-023-00624-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024] Open
Abstract
Parkinson´s disease (PD) is a common neurodegenerative movement disorder and leucine-rich repeat kinase 2 (LRRK2) is a promising therapeutic target for disease intervention. However, the ability to stratify patients who will benefit from such treatment modalities based on shared etiology is critical for the success of disease-modifying therapies. Ciliary and centrosomal alterations are commonly associated with pathogenic LRRK2 kinase activity and can be detected in many cell types. We previously found centrosomal deficits in immortalized lymphocytes from G2019S-LRRK2 PD patients. Here, to investigate whether such deficits may serve as a potential blood biomarker for PD which is susceptible to LRKK2 inhibitor treatment, we characterized patient-derived cells from distinct PD cohorts. We report centrosomal alterations in peripheral cells from a subset of early-stage idiopathic PD patients which is mitigated by LRRK2 kinase inhibition, supporting a role for aberrant LRRK2 activity in idiopathic PD. Centrosomal defects are detected in R1441G-LRRK2 and G2019S-LRRK2 PD patients and in non-manifesting LRRK2 mutation carriers, indicating that they accumulate prior to a clinical PD diagnosis. They are present in immortalized cells as well as in primary lymphocytes from peripheral blood. These findings indicate that analysis of centrosomal defects as a blood-based patient stratification biomarker may help nominate idiopathic PD patients who will benefit from LRRK2-related therapeutics.
Collapse
Affiliation(s)
- Yahaira Naaldijk
- Department. of Anesthesiology and Department. of Physiology, Pharmacology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Belén Fernández
- Institute of Parasitology and Biomedicine ´López-Neyra¨, Consejo Superior de Investigaciones Científicas (CSIC), 18016, Granada, Spain
| | - Rachel Fasiczka
- Department. of Anesthesiology and Department. of Physiology, Pharmacology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Elena Fdez
- Institute of Parasitology and Biomedicine ´López-Neyra¨, Consejo Superior de Investigaciones Científicas (CSIC), 18016, Granada, Spain
| | - Coline Leghay
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France
| | - Ioana Croitoru
- Biodonostia Health Research Institute (IIS Biodonostia), San Sebastain, Spain
| | - John B Kwok
- School of Medical Sciences, Faculty of Medicine and Health and the Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Yanisse Boulesnane
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France
| | - Amelie Vizeneux
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France
| | - Eugenie Mutez
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France
| | - Camille Calvez
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France
| | - Alain Destée
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France
| | - Jean-Marc Taymans
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France
| | | | - Alberto Bergareche Yarza
- Biodonostia Health Research Institute (IIS Biodonostia), San Sebastain, Spain
- Donostia University Hospital, San Sebastian, Spain
| | | | - Mario Delgado
- Institute of Parasitology and Biomedicine ´López-Neyra¨, Consejo Superior de Investigaciones Científicas (CSIC), 18016, Granada, Spain
| | - Roy N Alcalay
- Department. of Neurology, Colsumbia University Medical Center, New York, NY, USA
- Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Zac Chatterton
- School of Medical Sciences, Faculty of Medicine and Health and the Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Nicolas Dzamko
- School of Medical Sciences, Faculty of Medicine and Health and the Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Glenda Halliday
- School of Medical Sciences, Faculty of Medicine and Health and the Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Javier Ruiz-Martínez
- Biodonostia Health Research Institute (IIS Biodonostia), San Sebastain, Spain
- Donostia University Hospital, San Sebastian, Spain
| | | | - Sabine Hilfiker
- Department. of Anesthesiology and Department. of Physiology, Pharmacology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA.
| |
Collapse
|