1
|
Liu C, Zhang L, Xia Y, Li K, Wu J, Zhang J. Identification, expression, and function analysis of Rbpms2 splicing variants in Japanese flounder gonad. Gen Comp Endocrinol 2024; 359:114628. [PMID: 39414089 DOI: 10.1016/j.ygcen.2024.114628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
Rbpms2, an RNA-binding protein with multiple splicing (Rbpms), can interact with RNAs to involve oocyte development, thereby influencing female sex differentiation in vertebrates. Here, two splicing variants of the Rbpms2 gene from Japanese flounder (Paralichthys olivaceus) were identified, namely Rbpms2.1 and Rbpms2.2. The two variants exhibited 98.22 % amino acid homology, both featuring an RNA recognition motif (RRM) domain spanning positions 98-170 amino acids. They were relatively conserved throughout phylogenetic evolution. Differently, the C-terminal region of the Rbpms2.1 contains five additional sequential amino acids (-VRDQP-) compared to Rbpms2.2. The real-time qPCR results demonstrated that Rbpms2.1 and Rbpms2.2 had relatively abundant expression in the gonads of adult Japanese flounder, with higher expression levels in the ovary compared to the testis (P < 0.05). In situ hybridization results showed strong positive expression of Rbpms2 mRNA in oocytes at stages I-III during the V stage of ovarian development. In the testis atstage IV, the expression of Rbpms2 mRNA was mainly concentrated on primary spermatocytes. Importantly, Rbpms2 binding sites were found in the 3'UTR, 5'UTR, and ORF regions of the sex-related genes including dmrt1, sox9, amh, foxl2, and wnt4. siRNA interference and overexpression analysis of Rbpms2.1 and Rbpms2.2 in primary cells of the ovary and testis showed that Rbpms2 can repress the expression of male-related genes (dmrt1, sox9, and amh) and significantly promote the expression of female-related genes (foxl2 and wnt4). Our results revealed that Rbpms2 may play a critical role by targeting the sex-related genes in the gonad development of Japanese flounder.
Collapse
Affiliation(s)
- Cui Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Longsheng Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - You Xia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Keqi Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Jikui Wu
- Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation, Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Junling Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
2
|
Šimková K, Naraine R, Vintr J, Soukup V, Šindelka R. RNA localization during early development of the axolotl. Front Cell Dev Biol 2023; 11:1260795. [PMID: 37928901 PMCID: PMC10620976 DOI: 10.3389/fcell.2023.1260795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023] Open
Abstract
The asymmetric localization of biomolecules is critical for body plan development. One of the most popular model organisms for early embryogenesis studies is Xenopus laevis but there is a lack of information in other animal species. Here, we compared the early development of two amphibian species-the frog X. laevis and the axolotl Ambystoma mexicanum. This study aimed to identify asymmetrically localized RNAs along the animal-vegetal axis during the early development of A. mexicanum. For that purpose, we performed spatial transcriptome-wide analysis at low resolution, which revealed dynamic changes along the animal-vegetal axis classified into the following categories: profile alteration, de novo synthesis and degradation. Surprisingly, our results showed that many of the vegetally localized genes, which are important for germ cell development, are degraded during early development. Furthermore, we assessed the motif presence in UTRs of degraded mRNAs and revealed the enrichment of several motifs in RNAs of germ cell markers. Our results suggest novel reorganization of the transcriptome during embryogenesis of A. mexicanum to converge to the similar developmental pattern as the X. laevis.
Collapse
Affiliation(s)
- Kateřina Šimková
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Ravindra Naraine
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Jan Vintr
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Vladimír Soukup
- Department of Zoology, Faculty of Science, Charles University, Prague, Czechia
| | - Radek Šindelka
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| |
Collapse
|
3
|
Konduktorova VV, Luchinskaya NN, Belyavsky AV. Expression of the Germes Germ Plasm Gene in Follicular Cells of X. laevis Oocytes. Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422050034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Iegorova V, Naraine R, Psenicka M, Zelazowska M, Sindelka R. Comparison of RNA localization during oogenesis within Acipenser ruthenus and Xenopus laevis. Front Cell Dev Biol 2022; 10:982732. [PMID: 36204678 PMCID: PMC9531136 DOI: 10.3389/fcell.2022.982732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
The oocyte is a unique cell, from which develops a complex organism comprising of germ layers, tissues and organs. In some vertebrate species it is known that the asymmetrical localization of biomolecules within the oocyte is what drives the spatial differentiation of the daughter cells required for embryogenesis. This asymmetry is first established to produce an animal-vegetal (A-V) axis which reflects the future specification of the ectoderm, mesoderm, and endoderm layers. Several pathways for localization of vegetal maternal transcripts have already been described using a few animal models. However, there is limited information about transcripts that are localized to the animal pole, even though there is accumulating evidence indicating its active establishment. Here, we performed comparative TOMO-Seq analysis on two holoblastic cleavage models: Xenopus laevis and Acipenser ruthenus oocytes during oogenesis. We found that there were many transcripts that have a temporal preference for the establishment of localization. In both models, we observed vegetal transcript gradients that were established during either the early or late oogenesis stages and transcripts that started their localization during the early stages but became more pronounced during the later stages. We found that some animal gradients were already established during the early stages, however the majority were formed during the later stages of oogenesis. Some of these temporally localized transcripts were conserved between the models, while others were species specific. Additionally, temporal de novo transcription and also degradation of transcripts within the oocyte were observed, pointing to an active remodeling of the maternal RNA pool.
Collapse
Affiliation(s)
- Viktoriia Iegorova
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Ravindra Naraine
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Martin Psenicka
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodnany, Czechia
| | - Monika Zelazowska
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Radek Sindelka
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
- *Correspondence: Radek Sindelka,
| |
Collapse
|
5
|
Evolutionary conservation of maternal RNA localization in fishes and amphibians revealed by TOMO-Seq. Dev Biol 2022; 489:146-160. [PMID: 35752299 DOI: 10.1016/j.ydbio.2022.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/18/2022] [Accepted: 06/19/2022] [Indexed: 11/24/2022]
Abstract
Asymmetrical localization of biomolecules inside the egg, results in uneven cell division and establishment of many biological processes, cell types and the body plan. However, our knowledge about evolutionary conservation of localized transcripts is still limited to a few models. Our goal was to compare localization profiles along the animal-vegetal axis of mature eggs from four vertebrate models, two amphibians (Xenopus laevis, Ambystoma mexicanum) and two fishes (Acipenser ruthenus, Danio rerio) using the spatial expression method called TOMO-Seq. We revealed that RNAs of many known important transcripts such as germ layer determinants, germ plasm factors and members of key signalling pathways, are localized in completely different profiles among the models. It was also observed that there was a poor correlation between the vegetally localized transcripts but a relatively good correlation between the animally localized transcripts. These findings indicate that the regulation of embryonic development within the animal kingdom is highly diverse and cannot be deduced based on a single model.
Collapse
|
6
|
Jamieson-Lucy AH, Kobayashi M, James Aykit Y, Elkouby YM, Escobar-Aguirre M, Vejnar CE, Giraldez AJ, Mullins MC. A proteomics approach identifies novel resident zebrafish Balbiani body proteins Cirbpa and Cirbpb. Dev Biol 2022; 484:1-11. [PMID: 35065906 PMCID: PMC8967276 DOI: 10.1016/j.ydbio.2022.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 01/17/2023]
Abstract
The Balbiani body (Bb) is the first marker of polarity in vertebrate oocytes. The Bb is a conserved structure found in diverse animals including insects, fish, amphibians, and mammals. During early zebrafish oogenesis, the Bb assembles as a transient aggregate of mRNA, proteins, and membrane-bound organelles at the presumptive vegetal side of the oocyte. As the early oocyte develops, the Bb appears to grow slowly, until at the end of stage I of oogenesis it disassembles and deposits its cargo of localized mRNAs and proteins. In fish and frogs, this cargo includes the germ plasm as well as gene products required to specify dorsal tissues of the future embryo. We demonstrate that the Bb is a stable, solid structure that forms a size exclusion barrier similar to other biological hydrogels. Despite its central role in oocyte polarity, little is known about the mechanism behind the Bb's action. Analysis of the few known protein components of the Bb is insufficient to explain how the Bb assembles, translocates, and disassembles. We isolated Bbs from zebrafish oocytes and performed mass spectrometry to define the Bb proteome. We successfully identified 77 proteins associated with the Bb sample, including known Bb proteins and novel RNA-binding proteins. In particular, we identified Cirbpa and Cirbpb, which have both an RNA-binding domain and a predicted self-aggregation domain. In stage I oocytes, Cirbpa and Cirbpb localize to the Bb rather than the nucleus (as in somatic cells), indicating that they may have a specialized function in the germ line. Both the RNA-binding domain and the self-aggregation domain are sufficient to localize to the Bb, suggesting that Cirbpa and Cirbpb interact with more than just their mRNA targets within the Bb. We propose that Cirbp proteins crosslink mRNA cargo and proteinaceous components of the Bb as it grows. Beyond Cirbpa and Cirbpb, our proteomics dataset presents many candidates for further study, making it a valuable resource for building a comprehensive mechanism for Bb function at a protein level.
Collapse
Affiliation(s)
- Allison H Jamieson-Lucy
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Manami Kobayashi
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Y James Aykit
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yaniv M Elkouby
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Matias Escobar-Aguirre
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Charles E Vejnar
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Aharon D, Marlow FL. Sexual determination in zebrafish. Cell Mol Life Sci 2021; 79:8. [PMID: 34936027 PMCID: PMC11072476 DOI: 10.1007/s00018-021-04066-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/12/2021] [Accepted: 11/29/2021] [Indexed: 01/10/2023]
Abstract
Zebrafish have emerged as a major model organism to study vertebrate reproduction due to their high fecundity and external development of eggs and embryos. The mechanisms through which zebrafish determine their sex have come under extensive investigation, as they lack a definite sex-determining chromosome and appear to have a highly complex method of sex determination. Single-gene mutagenesis has been employed to isolate the function of genes that determine zebrafish sex and regulate sex-specific differentiation, and to explore the interactions of genes that promote female or male sexual fate. In this review, we focus on recent advances in understanding of the mechanisms, including genetic and environmental factors, governing zebrafish sex development with comparisons to gene functions in other species to highlight conserved and potentially species-specific mechanisms for specifying and maintaining sexual fate.
Collapse
Affiliation(s)
- Devora Aharon
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy, Place Box 1020, New York, NY, 10029-6574, USA
| | - Florence L Marlow
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy, Place Box 1020, New York, NY, 10029-6574, USA.
| |
Collapse
|
8
|
Abstract
RNA localization is a key biological strategy for organizing the cytoplasm and generating both cellular and developmental polarity. During RNA localization, RNAs are targeted asymmetrically to specific subcellular destinations, resulting in spatially and temporally restricted gene expression through local protein synthesis. First discovered in oocytes and embryos, RNA localization is now recognized as a significant regulatory strategy for diverse RNAs, both coding and non-coding, in a wide range of cell types. Yet, the highly polarized cytoplasm of the oocyte remains a leading model to understand not only the principles and mechanisms underlying RNA localization, but also links to the formation of biomolecular condensates through phase separation. Here, we discuss both RNA localization and biomolecular condensates in oocytes with a particular focus on the oocyte of the frog, Xenopus laevis.
Collapse
Affiliation(s)
- Sarah E Cabral
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Kimberly L Mowry
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States.
| |
Collapse
|
9
|
Akerberg AA, Burns CE, Burns CG. Exploring the Activities of RBPMS Proteins in Myocardial Biology. Pediatr Cardiol 2019; 40:1410-1418. [PMID: 31399780 PMCID: PMC6786954 DOI: 10.1007/s00246-019-02180-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/31/2019] [Indexed: 12/22/2022]
Abstract
Numerous RNA-binding proteins (RBPs) are expressed in the heart, and mutations in several RBPs have been implicated in cardiovascular disease through genetic associations, animal modeling, and mechanistic studies. However, the functions of many more cardiac RBPs, and their relevance to disease states, remain to be elucidated. Recently, we have initiated studies to characterize the functions of the RBPs RBPMS and RBPMS2 in regulating myocardial biology in zebrafish and higher vertebrate species. These studies began when we learned, using an unbiased gene discovery approach, that rbpms2a and rbpms2b in zebrafish are robust markers of embryonic myocardium. This observation, which is consistent with published data, suggests that the encoded proteins are likely to be performing critical functions in regulating one or more aspects of cardiomyocyte differentiation, proliferation, survival, and/or contractility. This notion is supported by recent reports demonstrating that zebrafish embryos with disrupted Rbpms2 function exhibit gross signs of cardiac distress. Interestingly, a 20-year-old study determined that myocardial tissue from the frog, chick, and mouse also express high levels of Rbpms and/or Rbpms2, which is suggestive of evolutionary conservation of function. In this review, we will provide a historical account of how RBPMS and RBPMS2 genes were discovered, attempt to clarify some potentially confusing nomenclature, and summarize published observations that inform our ongoing studies.
Collapse
Affiliation(s)
- Alexander A Akerberg
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129,Harvard Medical School, Boston, MA 02115
| | - Caroline E. Burns
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129,Harvard Medical School, Boston, MA 02115,Harvard Stem Cell Institute, Cambridge, MA 02138,Authors for Correspondence: ()
| | - C. Geoffrey Burns
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA 02129,Harvard Medical School, Boston, MA 02115,Authors for Correspondence: ()
| |
Collapse
|
10
|
Oh D, Houston DW. RNA Localization in the Vertebrate Oocyte: Establishment of Oocyte Polarity and Localized mRNA Assemblages. Results Probl Cell Differ 2019; 63:189-208. [PMID: 28779319 PMCID: PMC6538070 DOI: 10.1007/978-3-319-60855-6_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RNA localization is a fundamental mechanism for controlling cell structure and function. Early development in fish and amphibians requires the localization of specific mRNAs to establish the initial differences in cell fates prior to the onset of zygotic genome activation. RNA localization in these oocytes (e.g., Xenopus and zebrafish) requires that animal-vegetal polarity be established early in oogenesis, mediated by formation of the Balbiani body/mitochondrial cloud. This structure serves as a platform for assembly and transport of germline determinants to the future vegetal pole and also sets up the machinery for the localization of non-germline transcripts later in oogenesis. Understanding these polarization and localization mechanisms is critical for understanding the basis for early embryonic development in these organisms and also for understanding the role of RNA compartmentalization in animal gametogenesis. Here we outline recent advances in elucidating the molecular basis for the establishment of oocyte polarity at the level of Balbiani body assembly as well as the formation of RNP assemblies for early and late pathway mRNA localization in the oocyte.
Collapse
Affiliation(s)
- Denise Oh
- Department of Biology, The University of Iowa, 257 BB, Iowa City, IA, 52242, USA
| | - Douglas W Houston
- Department of Biology, The University of Iowa, 257 BB, Iowa City, IA, 52242, USA.
| |
Collapse
|
11
|
Krishnakumar P, Riemer S, Perera R, Lingner T, Goloborodko A, Khalifa H, Bontems F, Kaufholz F, El-Brolosy MA, Dosch R. Functional equivalence of germ plasm organizers. PLoS Genet 2018; 14:e1007696. [PMID: 30399145 PMCID: PMC6219760 DOI: 10.1371/journal.pgen.1007696] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 09/16/2018] [Indexed: 11/18/2022] Open
Abstract
The proteins Oskar (Osk) in Drosophila and Bucky ball (Buc) in zebrafish act as germ plasm organizers. Both proteins recapitulate germ plasm activities but seem to be unique to their animal groups. Here, we discover that Osk and Buc show similar activities during germ cell specification. Drosophila Osk induces additional PGCs in zebrafish. Surprisingly, Osk and Buc do not show homologous protein motifs that would explain their related function. Nonetheless, we detect that both proteins contain stretches of intrinsically disordered regions (IDRs), which seem to be involved in protein aggregation. IDRs are known to rapidly change their sequence during evolution, which might obscure biochemical interaction motifs. Indeed, we show that Buc binds to the known Oskar interactors Vasa protein and nanos mRNA indicating conserved biochemical activities. These data provide a molecular framework for two proteins with unrelated sequence but with equivalent function to assemble a conserved core-complex nucleating germ plasm. Multicellular organisms use gametes for their propagation. Gametes are formed from germ cells, which are specified during embryogenesis in some animals by the inheritance of RNP granules known as germ plasm. Transplantation of germ plasm induces extra germ cells, whereas germ plasm ablation leads to the loss of gametes and sterility. Therefore, germ plasm is key for germ cell formation and reproduction. However, the molecular mechanisms of germ cell specification by germ plasm in the vertebrate embryo remain an unsolved question. Proteins, which assemble the germ plasm, are known as germ plasm organizers. Here, we show that the two germ plasm organizers Oskar from the fly and Bucky ball from the fish show similar functions by using a cross species approach. Both are intrinsically disordered proteins, which rapidly changed their sequence during evolution. Moreover, both proteins still interact with conserved components of the germ cell specification pathway. These data might provide a first example of two proteins with the same biological role, but distinct sequence.
Collapse
Affiliation(s)
- Pritesh Krishnakumar
- Institute for Developmental Biochemistry, University Medical Center, Göttingen, Germany
| | - Stephan Riemer
- Institute for Developmental Biochemistry, University Medical Center, Göttingen, Germany
| | - Roshan Perera
- Institute for Developmental Biochemistry, University Medical Center, Göttingen, Germany
| | - Thomas Lingner
- Institute for Developmental Biochemistry, University Medical Center, Göttingen, Germany
| | - Alexander Goloborodko
- Institute for Developmental Biochemistry, University Medical Center, Göttingen, Germany
| | - Hazem Khalifa
- Institute for Developmental Biochemistry, University Medical Center, Göttingen, Germany
| | - Franck Bontems
- Laboratory of Metabolism, Department of Internal Medicine Specialties, Faculty of Medicine, University of Geneva, Switzerland
| | - Felix Kaufholz
- Institute for Developmental Biochemistry, University Medical Center, Göttingen, Germany
| | - Mohamed A. El-Brolosy
- Institute for Developmental Biochemistry, University Medical Center, Göttingen, Germany
| | - Roland Dosch
- Institute for Developmental Biochemistry, University Medical Center, Göttingen, Germany
- Institute of Human Genetics, University Medical Center, Göttingen, Germany
- * E-mail:
| |
Collapse
|
12
|
Julien DP, Chan AW, Barrios J, Mathiaparanam J, Douglass A, Wolman MA, Sagasti A. Zebrafish expression reporters and mutants reveal that the IgSF cell adhesion molecule Dscamb is required for feeding and survival. J Neurogenet 2018; 32:336-352. [PMID: 30204029 DOI: 10.1080/01677063.2018.1493479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Down syndrome cell adhesion molecules (DSCAMs) are broadly expressed in nervous systems and play conserved roles in programmed cell death, neuronal migration, axon guidance, neurite branching and spacing, and synaptic targeting. However, DSCAMs appear to have distinct functions in different vertebrate animals, and little is known about their functions outside the retina. We leveraged the genetic tractability and optical accessibility of larval zebrafish to investigate the expression and function of a DSCAM family member, dscamb. Using targeted genome editing to create transgenic reporters and loss-of-function mutant alleles, we discovered that dscamb is expressed broadly throughout the brain, spinal cord, and peripheral nervous system, but is not required for overall structural organization of the brain. Despite the absence of obvious anatomical defects, homozygous dscamb mutants were deficient in their ability to ingest food and rarely survived to adulthood. Thus, we have discovered a novel function for dscamb in feeding behavior. The mutant and transgenic lines generated in these studies will provide valuable tools for identifying the molecular and cellular bases of these behaviors.
Collapse
Affiliation(s)
- Donald P Julien
- a Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute , University of California , Los Angeles , CA , USA
| | - Alex W Chan
- a Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute , University of California , Los Angeles , CA , USA
| | - Joshua Barrios
- b Department of Neurobiology and Anatomy , University of Utah , Salt Lake City , UT , USA
| | - Jaffna Mathiaparanam
- c Department of Integrative Biology , University of Wisconsin , Madison , WI , USA
| | - Adam Douglass
- b Department of Neurobiology and Anatomy , University of Utah , Salt Lake City , UT , USA
| | - Marc A Wolman
- c Department of Integrative Biology , University of Wisconsin , Madison , WI , USA
| | - Alvaro Sagasti
- a Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute , University of California , Los Angeles , CA , USA
| |
Collapse
|
13
|
Ye L, Gu L, Caprioli J, Piri N. RNA-binding protein Rbpms is represented in human retinas by isoforms A and C and its transcriptional regulation involves Sp1-binding site. Mol Genet Genomics 2018; 293:819-830. [PMID: 29423656 PMCID: PMC6033630 DOI: 10.1007/s00438-018-1423-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/03/2018] [Indexed: 11/26/2022]
Abstract
Rbpms (RNA-binding protein with multiple splicing) is a member of the RRM (RNA Recognition Motif) family of RNA-binding proteins, which is expressed as multiple alternatively spliced transcripts encoding different protein isoforms. We have shown earlier that Rbpms expression in the retina is restricted to retinal ganglion cells (RGCs), and have characterized this gene as a marker for RGCs. The aim of this study was to identify isoforms representing Rbpms in human retinas and to analyze its transcriptional regulation. We found that Rbpms is expressed as transcription variants 1 and 3 encoding isoforms A and C, respectively. These isoforms are encoded by the same first 6 exons but have different C-terminal ends encoded by exon 8 in variant 1 and exon 7 in variant 3. Computational analysis of the Rbpms 5' untranslated and flanking regions reveals the presence of three CpG islands and four predicted promoter regions (PPRs). The effect of PPR 1 (- 1672/- 1420) and PPR2 (- 330/- 79) on transcriptional activation was minimal, whereas PPR 3 (- 73/+ 177) and PPR4 (+ 274/+ 524) induced the expression by ~ 7 and ninefold compared to control, respectively. The maximum activity, a 30-fold increase above the control level, was obtained from the construct containing both PPRs 3 and 4. Site-directed mutagenesis of several cis-elements within PPR3 and PPR4 including five for Sp1, one for AP1, and two for NF-kB showed that mutation of the first three and especially the first GC box resulted in a threefold downregulation of gene expression. AP1, NF-kB, and two downstream Sp1 sites had no significant effect on expression level. The possible involvement of the GC box 1 at position - 54 in transcriptional regulation of Rbpms was corroborated by EMSA, which showed formation of a DNA-protein complex in the presence of the oligonucleotide corresponding to this Sp1-binding site.
Collapse
Affiliation(s)
- Linda Ye
- Jules Stein Eye Institute, UCLA School of Medicine, 100 Stein Plaza, Los Angeles, CA, 90095, USA
| | - Lei Gu
- Jules Stein Eye Institute, UCLA School of Medicine, 100 Stein Plaza, Los Angeles, CA, 90095, USA
| | - Joseph Caprioli
- Jules Stein Eye Institute, UCLA School of Medicine, 100 Stein Plaza, Los Angeles, CA, 90095, USA
- Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Natik Piri
- Jules Stein Eye Institute, UCLA School of Medicine, 100 Stein Plaza, Los Angeles, CA, 90095, USA.
- Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Kaufman OH, Lee K, Martin M, Rothhämel S, Marlow FL. rbpms2 functions in Balbiani body architecture and ovary fate. PLoS Genet 2018; 14:e1007489. [PMID: 29975683 PMCID: PMC6049948 DOI: 10.1371/journal.pgen.1007489] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 07/17/2018] [Accepted: 06/13/2018] [Indexed: 12/20/2022] Open
Abstract
The most prominent developmental regulators in oocytes are RNA-binding proteins (RNAbps) that assemble their targets into ribonucleoprotein granules where they are stored, transported and translationally regulated. RNA-binding protein of multiple splice forms 2, or Rbpms2, interacts with molecules that are essential to reproduction and egg patterning, including bucky ball, a key factor for Bb formation. Rbpms2 is localized to germ granules in primordial germ cells (PGCs) and to the Balbiani body (Bb) of oocytes, although the mechanisms regulating Rbpms2 localization to these structures are unknown. Using mutant Rbpms2 proteins, we show that Rbpms2 requires distinct protein domains to localize within germ cells and somatic cells. Accumulation and localization to subcellular compartments in the germline requires an intact RNA binding domain. Whereas in zebrafish somatic blastula cells, the conserved C-terminal domain promotes localization to the bipolar centrosomes/spindle. To investigate Rbpms2 functions, we mutated the duplicated and functionally redundant zebrafish rbpms2 genes. The gonads of rbpms2a;2b (rbpms2) mutants initially contain early oocytes, however definitive oogenesis ultimately fails during sexual differentiation and, rbpms2 mutants develop as fertile males. Unlike other genes that promote oogenesis, failure to maintain oocytes in rbpms2 mutants was not suppressed by mutation of Tp53. These findings reveal a novel and essential role for rbpms2 in oogenesis. Ultrastructural and immunohistochemical analyses revealed that rbpms2 is not required for the asymmetric accumulation of mitochondria and Buc protein in oocytes, however its absence resulted in formation of abnormal Buc aggregates and atypical electron-dense cytoplasmic inclusions. Our findings reveal novel and essential roles for rbpms2 in Buc organization and oocyte differentiation. Oocyte development relies on posttranscriptional regulation by RNA binding proteins (RNAbps). RNAbps form large multi-molecular structures called RNPs (ribonucleoproteins) that further aggregate into regulatory granules within germ cells. In zebrafish primary oocytes, a large transient RNP aggregate called the Balbiani body (Bb) is essential for localizing patterning molecules and germline determinants within oocytes. RNA-binding protein of multiple splice forms 2, or Rbpms2, localizes to germ granules and the Bb, and interacts with bucky ball, a key factor for Bb formation. We show that Rbpms2 requires RNA binding for localization within germ cells, and that the C-term and RRM contribute to Rbpms2 subcellular localization in distinct somatic cell types. To investigate Rbpms2 functions we mutated the duplicated zebrafish rbpms2 genes. Consistent with redundant functions, rbpms2a and rbpms2b gene expression overlaps, and single mutants have no discernible phenotypes. Although rbpms2a;2b double mutants have cardiac phenotypes, those that reach adulthood are exclusively fertile males. Genetic analysis shows that rbpms2 mutant oocytes are not maintained even when Tp53, a regulator of cell death is absent. Initial oocyte polarity is established in rbpms2 mutants based on asymmetric distribution of Buc protein and mitochondria; however, abnormal Buc structures and atypical cytoplasmic inclusions form. This work reveals independent Rbpms2 functions in promoting Bb integrity, and as a novel regulator of ovary fate.
Collapse
Affiliation(s)
- Odelya H. Kaufman
- Department of Developmental and Molecular Biology; Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - KathyAnn Lee
- Department of Cell, Developmental and Regenerative Biology Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Manon Martin
- Department of Cell, Developmental and Regenerative Biology Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Sophie Rothhämel
- Department of Developmental and Molecular Biology; Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Florence L. Marlow
- Department of Developmental and Molecular Biology; Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Cell, Developmental and Regenerative Biology Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Neuroscience. Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
15
|
Lopez CE, Sheehan HC, Vierra DA, Azzinaro PA, Meedel TH, Howlett NG, Irvine SQ. Proteomic responses to elevated ocean temperature in ovaries of the ascidian Ciona intestinalis. Biol Open 2017; 6:943-955. [PMID: 28500033 PMCID: PMC5550911 DOI: 10.1242/bio.024786] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 05/10/2017] [Indexed: 11/21/2022] Open
Abstract
Ciona intestinalis, a common sea squirt, exhibits lower reproductive success at the upper extreme of the water temperatures it experiences in coastal New England. In order to understand the changes in protein expression associated with elevated temperatures, and possible response to global temperature change, we reared C. intestinalis from embryos to adults at 18°C (a temperature at which they reproduce normally at our collection site in Rhode Island) and 22°C (the upper end of the local temperature range). We then dissected ovaries from animals at each temperature, extracted protein, and measured proteomic levels using shotgun mass spectrometry (LC-MS/MS). 1532 proteins were detected at a 1% false discovery rate present in both temperature groups by our LC-MS/MS method. 62 of those proteins are considered up- or down-regulated according to our statistical criteria. Principal component analysis shows a clear distinction in protein expression pattern between the control (18°C) group and high temperature (22°C) group. Similar to previous studies, cytoskeletal and chaperone proteins are upregulated in the high temperature group. Unexpectedly, we find evidence that proteolysis is downregulated at the higher temperature. We propose a working model for the high temperature response in C. intestinalis ovaries whereby increased temperature induces upregulation of signal transduction pathways involving PTPN11 and CrkL, and activating coordinated changes in the proteome especially in large lipid transport proteins, cellular stress responses, cytoskeleton, and downregulation of energy metabolism.
Collapse
Affiliation(s)
- Chelsea E Lopez
- Departments of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Hannah C Sheehan
- Departments of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - David A Vierra
- Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
| | - Paul A Azzinaro
- Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
| | - Thomas H Meedel
- Biology Department, Rhode Island College, Providence, RI 02908, USA
| | - Niall G Howlett
- Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
| | - Steven Q Irvine
- Departments of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
16
|
Soufari H, Mackereth CD. Conserved binding of GCAC motifs by MEC-8, couch potato, and the RBPMS protein family. RNA (NEW YORK, N.Y.) 2017; 23:308-316. [PMID: 28003515 PMCID: PMC5311487 DOI: 10.1261/rna.059733.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/19/2016] [Indexed: 05/16/2023]
Abstract
Precise regulation of mRNA processing, translation, localization, and stability relies on specific interactions with RNA-binding proteins whose biological function and target preference are dictated by their preferred RNA motifs. The RBPMS family of RNA-binding proteins is defined by a conserved RNA recognition motif (RRM) domain found in metazoan RBPMS/Hermes and RBPMS2, Drosophila couch potato, and MEC-8 from Caenorhabditis elegans In order to determine the parameters of RNA sequence recognition by the RBPMS family, we have first used the N-terminal domain from MEC-8 in binding assays and have demonstrated a preference for two GCAC motifs optimally separated by >6 nucleotides (nt). We have also determined the crystal structure of the dimeric N-terminal RRM domain from MEC-8 in the unbound form, and in complex with an oligonucleotide harboring two copies of the optimal GCAC motif. The atomic details reveal the molecular network that provides specificity to all four bases in the motif, including multiple hydrogen bonds to the initial guanine. Further studies with human RBPMS, as well as Drosophila couch potato, confirm a general preference for this double GCAC motif by other members of the protein family and the presence of this motif in known targets.
Collapse
Affiliation(s)
- Heddy Soufari
- University of Bordeaux, Institut Européen de Chimie et Biologie, F-33607 Pessac, France
- Inserm U1212, CNRS UMR 5320, ARNA Laboratory, F-33076 Bordeaux, France
| | - Cameron D Mackereth
- University of Bordeaux, Institut Européen de Chimie et Biologie, F-33607 Pessac, France
- Inserm U1212, CNRS UMR 5320, ARNA Laboratory, F-33076 Bordeaux, France
| |
Collapse
|
17
|
King ML. Maternal messages to live by: a personal historical perspective. Genesis 2017; 55:10.1002/dvg.23007. [PMID: 28095642 PMCID: PMC5276792 DOI: 10.1002/dvg.23007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 12/17/2022]
Abstract
In the 1980s, the study of localized maternal mRNAs was just emerging as a new research area. Classic embryological studies had linked the inheritance of cytoplasmic domains with specific cell lineages, but the underlying molecular nature of these putative determinants remained a mystery. The model system Xenopus would play a pivotal role in the progress of this new field. In fact, the first localized maternal mRNA to be identified and cloned from any organism was Xenopus vg1, a TGF-beta family member. This seminal finding opened the door to many subsequent studies focused on how RNAs are localized and what functions they had in development. As the field moves into the future, Xenopus remains the system of choice for studies identifying RNA/protein transport particles and maternal RNAs through RNA-sequencing.
Collapse
Affiliation(s)
- Mary Lou King
- Department of Cell Biology, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| |
Collapse
|
18
|
Localization in Oogenesis of Maternal Regulators of Embryonic Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 953:173-207. [DOI: 10.1007/978-3-319-46095-6_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Hermes Regulates Axon Sorting in the Optic Tract by Post-Trancriptional Regulation of Neuropilin 1. J Neurosci 2016; 36:12697-12706. [PMID: 27974617 PMCID: PMC5157111 DOI: 10.1523/jneurosci.2400-16.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/27/2016] [Accepted: 09/30/2016] [Indexed: 01/31/2023] Open
Abstract
The establishment of precise topographic maps during neural development is facilitated by the presorting of axons in the pathway before they reach their targets. In the vertebrate visual system, such topography is seen clearly in the optic tract (OT) and in the optic radiations. However, the molecular mechanisms involved in pretarget axon sorting are poorly understood. Here, we show in zebrafish that the RNA-binding protein Hermes, which is expressed exclusively in retinal ganglion cells (RGCs), is involved in this process. Using a RiboTag approach, we show that Hermes acts as a negative translational regulator of specific mRNAs in RGCs. One of these targets is the guidance cue receptor Neuropilin 1 (Nrp1), which is sensitive to the repellent cue Semaphorin 3A (Sema3A). Hermes knock-down leads to topographic missorting in the OT through the upregulation of Nrp1. Restoring Nrp1 to appropriate levels in Hermes-depleted embryos rescues this effect and corrects the axon-sorting defect in the OT. Our data indicate that axon sorting relies on Hermes-regulated translation of Nrp1. SIGNIFICANCE STATEMENT An important mechanism governing the formation of the mature neural map is pretarget axon sorting within the sensory tract; however, the molecular mechanisms involved in this process remain largely unknown. The work presented here reveals a novel function for the RNA-binding protein Hermes in regulating the topographic sorting of retinal ganglion cell (RGC) axons in the optic tract and tectum. We find that Hermes negatively controls the translation of the guidance cue receptor Neuropilin-1 in RGCs, with Hermes knock-down resulting in aberrant growth cone cue sensitivity and axonal topographic misprojections. We characterize a novel RNA-based mechanism by which axons restrict their translatome developmentally to achieve proper targeting.
Collapse
|
20
|
Abstract
The germ cell lineage in Xenopus is specified by the inheritance of germ plasm that assembles within the mitochondrial cloud or Balbiani body in stage I oocytes. Specific RNAs, such as nanos1, localize to the germ plasm. nanos1 has the essential germline function of blocking somatic gene expression and thus preventing Primordial Germ Cell (PGC) loss and sterility. Hermes/Rbpms protein and nanos RNA co-localize within germinal granules, diagnostic electron dense particles found within the germ plasm. Previous work indicates that nanos accumulates within the germ plasm through a diffusion/entrapment mechanism. Here we show that Hermes/Rbpms interacts with nanos through sequence specific RNA localization signals found in the nanos-3'UTR. Importantly, Hermes/Rbpms specifically binds nanos, but not Vg1 RNA in the nucleus of stage I oocytes. In vitro binding data show that Hermes/Rbpms requires additional factors that are present in stage I oocytes in order to bind nanos1. One such factor may be hnRNP I, identified in a yeast-2-hybrid screen as directly interacting with Hermes/Rbpms. We suggest that Hermes/Rbpms functions as part of a RNP complex in the nucleus that facilitates selection of germline RNAs for germ plasm localization. We propose that Hermes/Rbpms is required for nanos RNA to form within the germinal granules and in this way, participates in the germline specific translational repression and sequestration of nanos RNA.
Collapse
|
21
|
Yang J, Aguero T, King ML. The Xenopus Maternal-to-Zygotic Transition from the Perspective of the Germline. Curr Top Dev Biol 2015; 113:271-303. [PMID: 26358876 DOI: 10.1016/bs.ctdb.2015.07.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In Xenopus, the germline is specified by the inheritance of germ-plasm components synthesized at the beginning of oogenesis. Only the cells in the early embryo that receive germ plasm, the primordial germ cells (PGCs), are competent to give rise to the gametes. Thus, germ-plasm components continue the totipotent potential exhibited by the oocyte into the developing embryo at a time when most cells are preprogrammed for somatic differentiation as dictated by localized maternal determinants. When zygotic transcription begins at the mid-blastula transition, the maternally set program for somatic differentiation is realized. At this time, genetic control is ceded to the zygotic genome, and developmental potential gradually becomes more restricted within the primary germ layers. PGCs are a notable exception to this paradigm and remain transcriptionally silent until the late gastrula. How the germ-cell lineage retains full potential while somatic cells become fate restricted is a tale of translational repression, selective degradation of somatic maternal determinants, and delayed activation of zygotic transcription.
Collapse
Affiliation(s)
- Jing Yang
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Tristan Aguero
- Department of Cell Biology, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Mary Lou King
- Department of Cell Biology, University of Miami, Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
22
|
Farazi TA, Leonhardt CS, Mukherjee N, Mihailovic A, Li S, Max KE, Meyer C, Yamaji M, Cekan P, Jacobs NC, Gerstberger S, Bognanni C, Larsson E, Ohler U, Tuschl T. Identification of the RNA recognition element of the RBPMS family of RNA-binding proteins and their transcriptome-wide mRNA targets. RNA (NEW YORK, N.Y.) 2014; 20:1090-102. [PMID: 24860013 PMCID: PMC4114688 DOI: 10.1261/rna.045005.114] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Recent studies implicated the RNA-binding protein with multiple splicing (RBPMS) family of proteins in oocyte, retinal ganglion cell, heart, and gastrointestinal smooth muscle development. These RNA-binding proteins contain a single RNA recognition motif (RRM), and their targets and molecular function have not yet been identified. We defined transcriptome-wide RNA targets using photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) in HEK293 cells, revealing exonic mature and intronic pre-mRNA binding sites, in agreement with the nuclear and cytoplasmic localization of the proteins. Computational and biochemical approaches defined the RNA recognition element (RRE) as a tandem CAC trinucleotide motif separated by a variable spacer region. Similar to other mRNA-binding proteins, RBPMS family of proteins relocalized to cytoplasmic stress granules under oxidative stress conditions suggestive of a support function for mRNA localization in large and/or multinucleated cells where it is preferentially expressed.
Collapse
Affiliation(s)
- Thalia A. Farazi
- Laboratory of RNA Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - Carl S. Leonhardt
- Laboratory of RNA Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - Neelanjan Mukherjee
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Aleksandra Mihailovic
- Laboratory of RNA Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - Song Li
- Biology Department, Duke University, Durham, North Carolina 27708, USA
| | - Klaas E.A. Max
- Laboratory of RNA Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - Cindy Meyer
- Laboratory of RNA Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - Masashi Yamaji
- Laboratory of RNA Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - Pavol Cekan
- Laboratory of RNA Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - Nicholas C. Jacobs
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Stefanie Gerstberger
- Laboratory of RNA Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - Claudia Bognanni
- Laboratory of RNA Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | - Erik Larsson
- Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, SE-405 30, Sweden
| | - Uwe Ohler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
- Corresponding authorE-mail
| |
Collapse
|
23
|
Heim AE, Hartung O, Rothhämel S, Ferreira E, Jenny A, Marlow FL. Oocyte polarity requires a Bucky ball-dependent feedback amplification loop. Development 2014; 141:842-54. [PMID: 24496621 DOI: 10.1242/dev.090449] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In vertebrates, the first asymmetries are established along the animal-vegetal axis during oogenesis, but the underlying molecular mechanisms are poorly understood. Bucky ball (Buc) was identified in zebrafish as a novel vertebrate-specific regulator of oocyte polarity, acting through unknown molecular interactions. Here we show that endogenous Buc protein localizes to the Balbiani body, a conserved, asymmetric structure in oocytes that requires Buc for its formation. Asymmetric distribution of Buc in oocytes precedes Balbiani body formation, defining Buc as the earliest marker of oocyte polarity in zebrafish. Through a transgenic strategy, we determined that excess Buc disrupts polarity and results in supernumerary Balbiani bodies in a 3'UTR-dependent manner, and we identified roles for the buc introns in regulating Buc activity. Analyses of mosaic ovaries indicate that oocyte pattern determines the number of animal pole-specific micropylar cells that are associated with an egg via a close-range signal or direct cell contact. We demonstrate interactions between Buc protein and buc mRNA with two conserved RNA-binding proteins (RNAbps) that are localized to the Balbiani body: RNA binding protein with multiple splice isoforms 2 (Rbpms2) and Deleted in azoospermia-like (Dazl). Buc protein and buc mRNA interact with Rbpms2; buc and dazl mRNAs interact with Dazl protein. Cumulatively, these studies indicate that oocyte polarization depends on tight regulation of buc: Buc establishes oocyte polarity through interactions with RNAbps, initiating a feedback amplification mechanism in which Buc protein recruits RNAbps that in turn recruit buc and other RNAs to the Balbiani body.
Collapse
Affiliation(s)
- Amanda E Heim
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
24
|
RNA-binding protein Hermes/RBPMS inversely affects synapse density and axon arbor formation in retinal ganglion cells in vivo. J Neurosci 2013; 33:10384-95. [PMID: 23785151 DOI: 10.1523/jneurosci.5858-12.2013] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The RNA-binding protein Hermes [RNA-binding protein with multiple splicing (RBPMS)] is expressed exclusively in retinal ganglion cells (RGCs) in the CNS, but its function in these cells is not known. Here we show that Hermes protein translocates in granules from RGC bodies down the growing axons. Hermes loss of function in both Xenopus laevis and zebrafish embryos leads to a significant reduction in retinal axon arbor complexity in the optic tectum, and expression of a dominant acting mutant Hermes protein, defective in RNA-granule localization, causes similar defects in arborization. Time-lapse analysis of branch dynamics reveals that the decrease in arbor complexity is caused by a reduction in new branches rather than a decrease in branch stability. Surprisingly, Hermes depletion also leads to enhanced early visual behavior and an increase in the density of presynaptic puncta, suggesting that reduced arborization is accompanied by increased synaptogenesis to maintain synapse number.
Collapse
|
25
|
Nijjar S, Woodland HR. Localisation of RNAs into the germ plasm of vitellogenic Xenopus oocytes. PLoS One 2013; 8:e61847. [PMID: 23626739 PMCID: PMC3633952 DOI: 10.1371/journal.pone.0061847] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 03/14/2013] [Indexed: 11/21/2022] Open
Abstract
We have studied the localisation of mRNAs in full-grown Xenopus laevis oocytes by injecting fluorescent RNAs, followed by confocal microscopy of the oocyte cortex. Concentrating on RNA encoding the Xenopus Nanos homologue, nanos1 (formerly Xcat2), we find that it consistently localised into aggregated germ plasm ribonucleoprotein (RNP) particles, independently of cytoskeletal integrity. This implies that a diffusion/entrapment-mediated mechanism is active, as previously reported for previtellogenic oocytes. Sometimes this was accompanied by localisation into scattered particles of the “late”, Vg1/VegT pathway; occasionally only late pathway localisation was seen. The Xpat RNA behaved in an identical fashion and for neither RNA was the localisation changed by any culture conditions tested. The identity of the labelled RNP aggregates as definitive germ plasm was confirmed by their inclusion of abundant mitochondria and co-localisation with the germ plasm protein Hermes. Further, the nanos1/Hermes RNP particles are interspersed with those containing the germ plasm protein Xpat. These aggregates may be followed into the germ plasm of unfertilized eggs, but with a notable reduction in its quantity, both in terms of injected molecules and endogenous structures. Our results conflict with previous reports that there is no RNA localisation in large oocytes, and that during mid-oogenesis even germ plasm RNAs localise exclusively by the late pathway. We find that in mid oogenesis nanos1 RNA also localises to germ plasm but also by the late pathway. Late pathway RNAs, Vg1 and VegT, also may localise into germ plasm. Our results support the view that mechanistically the two modes of localisation are extremely similar, and that in an injection experiment RNAs might utilise either pathway, the distinction in fates being very subtle and subject to variation. We discuss these results in relation to their biological significance and the results of others.
Collapse
Affiliation(s)
- Sarbjit Nijjar
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Hugh R. Woodland
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
Regulation of cell polarity and RNA localization in vertebrate oocytes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 306:127-85. [PMID: 24016525 DOI: 10.1016/b978-0-12-407694-5.00004-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It has long been appreciated that the inheritance of maternal cytoplasmic determinants from different regions of the egg can lead to differential specification of blastomeres during cleavage. Localized RNAs are important determinants of cell fate in eggs and embryos but are also recognized as fundamental regulators of cell structure and function. This chapter summarizes recent molecular and genetic experiments regarding: (1) mechanisms that regulate polarity during different stages of vertebrate oogenesis, (2) pathways that localize presumptive protein and RNA determinants within the polarized oocyte and egg, and (3) how these determinants act in the embryo to determine the ultimate cell fates. Emphasis is placed on studies done in Xenopus, where extensive work has been done in these areas, and comparisons are drawn with fish and mammals. The prospects for future work using in vivo genome manipulation and other postgenomic approaches are also discussed.
Collapse
|
27
|
King ML, Messitt TJ, Mowry KL. Putting RNAs in the right place at the right time: RNA localization in the frog oocyte. Biol Cell 2012; 97:19-33. [PMID: 15601255 DOI: 10.1042/bc20040067] [Citation(s) in RCA: 243] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Localization of maternal mRNAs in many developing organisms provides the basis for both initial polarity during oogenesis and patterning during embryogenesis. Prominent examples of this phenomenon are found in Xenopus laevis, where localized maternal mRNAs generate developmental polarity along the animal/vegetal axis. Targeting of mRNA molecules to specific subcellular regions is a fundamental mechanism for spatial regulation of gene expression, and considerable progress has been made in defining the underlying molecular pathways.
Collapse
Affiliation(s)
- Mary Lou King
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, 1011 NW 15th St., Miami, FL 33136, USA.
| | | | | |
Collapse
|
28
|
Schisa JA. New insights into the regulation of RNP granule assembly in oocytes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 295:233-89. [PMID: 22449492 DOI: 10.1016/b978-0-12-394306-4.00013-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In a variety of cell types in plants, animals, and fungi, ribonucleoprotein (RNP) complexes play critical roles in regulating RNA metabolism. These RNP granules include processing bodies and stress granules that are found broadly across cell types, as well as RNP granules unique to the germline, such as P granules, polar granules, sponge bodies, and germinal granules. This review focuses on RNP granules localized in oocytes of the major model systems, Caenorhabditis elegans, Drosophila, Xenopus, mouse, and zebrafish. The signature families of proteins within oocyte RNPs include Vasa and other RNA-binding proteins, decapping activators and enzymes, Argonaute family proteins, and translation initiation complex proteins. This review describes the many recent insights into the dynamics and functions of RNP granules, including their roles in mRNA degradation, mRNA localization, translational regulation, and fertility. The roles of the cytoskeleton and cell organelles in regulating RNP granule assembly are also discussed.
Collapse
Affiliation(s)
- Jennifer A Schisa
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan, USA
| |
Collapse
|
29
|
Cuykendall TN, Houston DW. Identification of germ plasm-associated transcripts by microarray analysis of Xenopus vegetal cortex RNA. Dev Dyn 2010; 239:1838-48. [PMID: 20503379 DOI: 10.1002/dvdy.22304] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
RNA localization is a common mechanism for regulating cell structure and function. Localized RNAs in Xenopus oocytes are critical for early development, including germline specification by the germ plasm. Despite the importance of these localized RNAs, only approximately 25 have been identified and fewer are functionally characterized. Using microarrays, we identified a large set of localized RNAs from the vegetal cortex. Overall, our results indicate a minimum of 275 localized RNAs in oocytes, or 2-3% of maternal transcripts, which are in general agreement with previous findings. We further validated vegetal localization for 24 candidates and further characterized three genes expressed in the germ plasm. We identified novel germ plasm expression for reticulon 3.1, exd2 (a novel exonuclease-domain encoding gene), and a putative noncoding RNA. Further analysis of these and other localized RNAs will likely identify new functions of germ plasm and facilitate the identification of cis-acting RNA localization elements.
Collapse
Affiliation(s)
- Tawny N Cuykendall
- The University of Iowa, Department of Biology, Iowa City, Iowa 52242-1324, USA
| | | |
Collapse
|
30
|
Claussen M, Pieler T. Identification of vegetal RNA-localization elements in Xenopus oocytes. Methods 2010; 51:146-51. [PMID: 20178845 DOI: 10.1016/j.ymeth.2010.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 02/15/2010] [Accepted: 02/16/2010] [Indexed: 11/17/2022] Open
Abstract
Localized mRNAs have been identified in a large variety of cell types where they contribute to the establishment of cell asymmetries and can function as cell fate determinants. In Xenopus, RNAs that localize to the vegetal cortex during oogenesis function in early embryonic patterning as well as in the development of primordial germ cells. Based on their temporal and spatial localization patterns, vegetally localizing RNAs are referred to as either early-pathway RNAs which transiently localize in the mitochondrial cloud, or as late-pathway RNAs. Vegetal RNA-localization is driven by cis-acting signal sequences that, in most cases, were found to reside in the 3'-UTRs and which are recognized by trans-acting localization factors. Here we describe the methods of how vegetal RNA-localization elements can be identified by injection of fluorescently-labeled or tagged RNAs.
Collapse
Affiliation(s)
- Maike Claussen
- Department of Developmental Biochemistry, Göttingen Center for Molecular Biosciences, Justus-von-Liebig-Weg 11, Göttingen, Germany
| | | |
Collapse
|
31
|
Arthur PK, Claussen M, Koch S, Tarbashevich K, Jahn O, Pieler T. Participation of Xenopus Elr-type proteins in vegetal mRNA localization during oogenesis. J Biol Chem 2009; 284:19982-92. [PMID: 19458392 DOI: 10.1074/jbc.m109.009928] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Directional transport of specific mRNAs is of primary biological relevance. In Xenopus oocytes, mRNA localization to the vegetal pole is important for germ layer formation and germ cell development. Using a biochemical approach, we identified Xenopus Elr-type proteins, homologs of the Hu/ELAV proteins, as novel components of the vegetal mRNA localization machinery. They bind specifically to the localization elements of several different vegetally localizing Xenopus mRNAs, and they are part of one RNP together with other localization proteins, such as Vg1RBP and XStaufen 1. Blocking Elr-type protein binding by either localization element mutagenesis or antisense morpholino oligonucleotide-mediated masking of their target RNA structures, as well as overexpression of wild type and mutant ElrB proteins, interferes with vegetal localization in Xenopus oocytes.
Collapse
Affiliation(s)
- Patrick K Arthur
- Department of Developmental Biochemistry, Göttingen Center for Molecular Biosciences, University of Göttingen, 37077 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Marlow FL, Mullins MC. Bucky ball functions in Balbiani body assembly and animal-vegetal polarity in the oocyte and follicle cell layer in zebrafish. Dev Biol 2008; 321:40-50. [PMID: 18582455 PMCID: PMC2606906 DOI: 10.1016/j.ydbio.2008.05.557] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 05/17/2008] [Accepted: 05/27/2008] [Indexed: 12/19/2022]
Abstract
The Balbiani body is an evolutionarily conserved asymmetric aggregate of organelles that is present in early oocytes of all animals examined, including humans. Although first identified more than 150 years ago, genes acting in the assembly of the Balbiani body have not been identified in a vertebrate. Here we show that the bucky ball gene in the zebrafish is required to assemble this universal aggregate of organelles. In the absence of bucky ball the Balbiani body fails to form, and vegetal mRNAs are not localized in oocytes. In contrast, animal pole localized oocyte markers are expanded into vegetal regions in bucky ball mutants, but patterning within the expanded animal pole remains intact. Interestingly, in bucky ball mutants an excessive number of cells within the somatic follicle cell layer surrounding the oocyte develop as micropylar cells, an animal pole specific cell fate. The single micropyle permits sperm to fertilize the egg in zebrafish. In bucky ball mutants, excess micropyles cause polyspermy. Thus bucky ball provides the first genetic access to Balbiani body formation in a vertebrate. We demonstrate that bucky ball functions during early oogenesis to regulate polarity of the oocyte, future egg and embryo. Finally, the expansion of animal identity in oocytes and somatic follicle cells suggests that somatic cell fate and oocyte polarity are interdependent.
Collapse
Affiliation(s)
- Florence L. Marlow
- University of Pennsylvania School of Medicine, Department of Cell and Developmental Biology, 1211 BRB II, 421 Curie Blvd, Philadelphia, PA 19104-6058
| | - Mary C. Mullins
- University of Pennsylvania School of Medicine, Department of Cell and Developmental Biology, 1211 BRB II, 421 Curie Blvd, Philadelphia, PA 19104-6058
| |
Collapse
|
33
|
Kirilenko P, Weierud FK, Zorn AM, Woodland HR. The efficiency of Xenopus primordial germ cell migration depends on the germplasm mRNA encoding the PDZ domain protein Grip2. Differentiation 2007; 76:392-403. [PMID: 17924960 DOI: 10.1111/j.1432-0436.2007.00229.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A microarray analysis of vegetal pole sequences in the egg and early Xenopus laevis embryo identified Unigene Xl.14891 as a vegetally localized RNA. Analysis of the Xenopus tropicalis genome showed this Unigene to be localized near the 3' end of the Grip2 (glutamate receptor interacting protein 2) transcription unit. RACE showed that the Unigene represented the 3' UTR of Grip2 mRNA. Grip2 mRNA is present in the mitochondrial cloud of late pre-vitellogenic oocytes and then in the germplasm through oogenesis and early development until tailbud tadpole stages. Interference with Grip2 mRNA translation using two antisense morpholino oligos (MOs) impairs primordial germ cell (PGC) migration to the germinal ridges. Both MOs also inhibit swimming movements of the tailbud tadpole, known to involve glutamate receptors. We conclude that Grip2 has several functions in the embryo, including enabling efficient PGC migration.
Collapse
Affiliation(s)
- Pavel Kirilenko
- Department of Biological Science, University of Warwick, Coventry CV4 7AL, U.K
| | | | | | | |
Collapse
|
34
|
Kaneshiro K, Miyauchi M, Tanigawa Y, Ikenishi K, Komiya T. The mRNA coding for Xenopus glutamate receptor interacting protein 2 (XGRIP2) is maternally transcribed, transported through the late pathway and localized to the germ plasm. Biochem Biophys Res Commun 2007; 355:902-6. [PMID: 17320814 DOI: 10.1016/j.bbrc.2007.02.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2007] [Accepted: 02/11/2007] [Indexed: 10/23/2022]
Abstract
Using a large-scale in situ hybridization screening, we found that the mRNA coding for Xenopus glutamate receptor interacting protein 2 (XGRIP2) was localized to the germ plasm of Xenopus laevis. The mRNA is maternally transcribed in oocytes and, during maturation, transported to the vegetal germ plasm through the late pathway where VegT and Vg1 mRNAs are transported. In the 3'-untranslated region (UTR) of the mRNA, there are clusters of E2 and VM1 localization motifs that were reported to exist in the mRNAs classified as the late pathway group. With in situ hybridization to the sections of embryos, the signal could be detected in the cytoplasm of migrating presumptive primordial germ cells (pPGCs) until stage 35. At stage 40, when the cells cease to migrate and reach the dorsal mesentery, the signal disappeared. A possible role of XGRIP2 in pPGCs of Xenopus will be discussed.
Collapse
Affiliation(s)
- Kazuki Kaneshiro
- Department of Biological Function, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | | | | | | | | |
Collapse
|
35
|
Berekelya LA, Mikryukov AA, Luchinskaya NN, Ponomarev MB, Woodland HR, Belyavsky AV. The protein encoded by the germ plasm RNA Germes associates with dynein light chains and functions in Xenopus germline development. Differentiation 2007; 75:546-58. [PMID: 17309602 DOI: 10.1111/j.1432-0436.2006.00160.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Germ plasm plays a prominent role in germline formation in a large number of animal taxons. We previously identified a novel maternal RNA named Germes associated with Xenopus germ plasm. In the present work, we addressed possible involvement of Germes protein in germ plasm function. Expression in oocytes followed by confocal microscopy revealed that the EGFP fused to Germes, in contrast to the free EGFP, co-localized with the germ plasm. Overexpression of intact Germes and Germes lacking both leucine zipper motifs (GermesDeltaLZs) resulted in a statistically significant reduction of the number of primordial germ cells (PGCs). Furthermore, the GermesDeltaLZs mutant inhibited PGC migration and produced abnormalities in germ plasm intra-cellular distribution at tailbud stages. To begin unraveling biochemical interactions of Germes during embryogenesis, we searched for Germes partners using yeast two-hybrid (YTH) system. Two closely related sequences were identified, encoding Xenopus dynein light chains dlc8a and dlc8b. Tagged versions of Germes and dlc8s co-localize in VERO cells upon transient expression and can be co-immunoprecipitated after injection of the corresponding RNAs in Xenopus embryos, indicating that their interactions occur in vivo. We conclude that Germes is involved in organization and functioning of germ plasm in Xenopus, probably through interaction with motor complexes.
Collapse
|
36
|
Song HW, Cauffman K, Chan AP, Zhou Y, King ML, Etkin LD, Kloc M. Hermes RNA-binding protein targets RNAs-encoding proteins involved in meiotic maturation, early cleavage, and germline development. Differentiation 2007; 75:519-28. [PMID: 17309605 DOI: 10.1111/j.1432-0436.2006.00155.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The early development of metazoans is mainly regulated by differential translation and localization of maternal mRNAs in the embryo. In general, these processes are orchestrated by RNA-binding proteins interacting with specific sequence motifs in the 3'-untranslated region (UTR) of their target RNAs. Hermes is an RNA-binding protein, which contains a single RNA recognition motif (RRM) and is found in various vertebrate species from fish to human. In Xenopus laevis, Hermes mRNA and protein are localized in the vegetal region of oocytes. A subpopulation of Hermes protein is concentrated in a specific structure in the vegetal cortex, called the germ plasm (believed to contain determinants of the germ cell fate) where Hermes protein co-localizes with Xcat2 and RINGO/Spy mRNAs. The level of total Hermes protein decreases during maturation. The precocious depletion of Hermes protein by injection of Hermes antisense morpholino oligonucleotide (HE-MO) accelerates the process of maturation and results in cleavage defects in vegetal blastomeres of the embryo. It is known that several maternal mRNAs including RINGO/Spy and Mos are regulated at the translational level during meiotic maturation and early cleavage in Xenopus. The ectopic expression of RINGO/Spy or Mos causes resumption of meiotic maturation and cleavage arrests, which resemble the loss of Hermes phenotypes. We found that the injection of HE-MO enhances the acceleration of maturation caused by the injection of RINGO/Spy mRNA, and that Hermes protein is present as mRNP complex containing RINGO/Spy, Mos, and Xcat2 mRNAs in vivo. We propose that as an RNA-binding protein, Hermes may be involved in maturation, cleavage events at the vegetal pole and germ cell development by negatively regulating the expression of RINGO/Spy, Mos, and Xcat2 mRNAs.
Collapse
Affiliation(s)
- Hye-Won Song
- Department of Molecular Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Kosaka K, Kawakami K, Sakamoto H, Inoue K. Spatiotemporal localization of germ plasm RNAs during zebrafish oogenesis. Mech Dev 2007; 124:279-89. [PMID: 17293094 DOI: 10.1016/j.mod.2007.01.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 12/27/2006] [Accepted: 01/09/2007] [Indexed: 11/29/2022]
Abstract
In zebrafish, primordial germ cells (PGCs) are determined by a specialized maternal cytoplasm, the germ plasm, which forms at the distal ends of the cleavage furrows in 4-cell embryos. The germ plasm includes maternal mRNAs from the germline-specific genes such as vasa and nanos1, and vegetally localized dazl RNA is also incorporated into the germ plasm. However, little is known about the distributions and assembly mechanisms of germ plasm components, especially during oogenesis. Here we report that the germ plasm RNAs vasa, nanos1, and dazl co-localize with the mitochondrial cloud (MC) and are transported to the vegetal cortex during early oogenesis. We found that a mitochondrial cloud localization element (MCLE) previously identified in the 3' untranslated region (3'UTR) of Xenopus Xcat2 gene can direct RNA localization to the vegetal cortex via the MC in zebrafish oocytes. In addition, the RNA-binding protein Hermes is a component of the MC in zebrafish oocytes, as is the case in Xenopus. Moreover, we provide evidence that the dazl 3'UTR possesses at least three types of cis-acting elements that direct multiple steps in the localization process: MC localization, anchorage at the vegetal cortex, and localization at the cleavage furrows. Taken together, the data show that the MC functions as a conserved feature that participates in transport of the germ plasm RNAs in Xenopus and zebrafish oocytes. Furthermore, we propose that the germ plasm components are assembled in a stepwise and spatiotemporally-regulated manner during oogenesis and early embryogenesis in zebrafish.
Collapse
Affiliation(s)
- Kyoko Kosaka
- Department of Biology, Graduate School of Science and Technology, Kobe University, 1-1 Rokkodaicho, Nadaku, Kobe 657-8501, Japan
| | | | | | | |
Collapse
|
38
|
Sun Y, Ding L, Zhang H, Han J, Yang X, Yan J, Zhu Y, Li J, Song H, Ye Q. Potentiation of Smad-mediated transcriptional activation by the RNA-binding protein RBPMS. Nucleic Acids Res 2006; 34:6314-26. [PMID: 17099224 PMCID: PMC1669761 DOI: 10.1093/nar/gkl914] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 10/15/2006] [Accepted: 10/16/2006] [Indexed: 11/25/2022] Open
Abstract
Smad2, Smad3 and Smad4 proteins are considered to be key mediators of transforming growth factor-beta (TGF-beta) signaling. However, the identities of the Smad partners mediating TGF-beta signaling are not fully understood. Here, we show that RNA-binding protein with multiple splicing (RBPMS), a member of the RNA-binding protein family, physically interacts with Smad2, Smad3 and Smad4 both in vitro and in vivo. The presence of TGF-beta increases the binding of RBPMS with these Smad proteins. Consistent with the binding results, overexpression of RBPMS enhances Smad-dependent transcriptional activity in a TGF-beta-dependent manner, whereas knockdown of RBPMS decreases this activity. RBPMS interacts with TGF-beta receptor type I (TbetaR-I), increases phosphorylation of C-terminal SSXS regions in Smad2 and Smad3, and promotes the nuclear accumulation of the Smad proteins. Moreover, RBPMS fails to enhance the transcriptional activity of Smad2 and Smad3 that lack the C-terminal phosphorylation sites. Our data provide the first evidence for an RNA-binding protein playing a role in regulation of Smad-mediated transcriptional activity and suggest that RBPMS stimulates Smad-mediated transactivation possibly through enhanced phosphorylation of Smad2 and Smad3 at the C-terminus and promotion of the nuclear accumulation of the Smad proteins.
Collapse
Affiliation(s)
- Yan Sun
- Beijing Institute of Biotechnology, Beijing 100850People's Republic of China
- The 307 Hospital, Beijing 100071People's Republic of China
- Beijing Institute of Radiation Medicine, Beijing 100850People's Republic of China
| | - Lihua Ding
- Beijing Institute of Biotechnology, Beijing 100850People's Republic of China
- The 307 Hospital, Beijing 100071People's Republic of China
- Beijing Institute of Radiation Medicine, Beijing 100850People's Republic of China
| | - Hao Zhang
- Beijing Institute of Biotechnology, Beijing 100850People's Republic of China
- The 307 Hospital, Beijing 100071People's Republic of China
- Beijing Institute of Radiation Medicine, Beijing 100850People's Republic of China
| | - Juqiang Han
- Beijing Institute of Biotechnology, Beijing 100850People's Republic of China
- The 307 Hospital, Beijing 100071People's Republic of China
- Beijing Institute of Radiation Medicine, Beijing 100850People's Republic of China
| | - Xiao Yang
- Beijing Institute of Biotechnology, Beijing 100850People's Republic of China
- The 307 Hospital, Beijing 100071People's Republic of China
- Beijing Institute of Radiation Medicine, Beijing 100850People's Republic of China
| | - Jinghua Yan
- Beijing Institute of Biotechnology, Beijing 100850People's Republic of China
- The 307 Hospital, Beijing 100071People's Republic of China
- Beijing Institute of Radiation Medicine, Beijing 100850People's Republic of China
| | - Yunfeng Zhu
- The 307 Hospital, Beijing 100071People's Republic of China
| | - Jiezhi Li
- Beijing Institute of Biotechnology, Beijing 100850People's Republic of China
- The 307 Hospital, Beijing 100071People's Republic of China
- Beijing Institute of Radiation Medicine, Beijing 100850People's Republic of China
| | - Haifeng Song
- Beijing Institute of Radiation Medicine, Beijing 100850People's Republic of China
| | - Qinong Ye
- To whom correspondence should be addressed. Tel: +8610 6818 0809; Fax: +8610 6824 8045;
| |
Collapse
|
39
|
Horvay K, Claussen M, Katzer M, Landgrebe J, Pieler T. Xenopus Dead end mRNA is a localized maternal determinant that serves a conserved function in germ cell development. Dev Biol 2006; 291:1-11. [PMID: 16448642 DOI: 10.1016/j.ydbio.2005.06.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 06/06/2005] [Accepted: 06/13/2005] [Indexed: 11/15/2022]
Abstract
Germ plasm formation is considered to define the first step in germ cell development. Xenopus Dead end represents a germ plasm specific transcript that is homologous to the previously characterized zebrafish dead end, which is required for germ cell migration and survival. XDead end mRNA localizes to the vegetal pole of Xenopus oocytes; in contrast to all other known germ plasm associated transcripts in Xenopus, XDead end is transported via the late transport pathway, suggesting a different mode of germ plasm restriction. Vegetal localization in the oocyte is achieved via a localization element mapping to a 251 nucleotide element in the 3'-UTR. This RNA sequence binds to a set of proteins characteristic for the late localization pathway and to one additional protein of 38 kDa. Inhibition of XDead end translation in Xenopus embryos results in a loss of primordial germ cells at tadpole stages of development. Early specification events do not seem to be affected, but the primordial germ cells fail to migrate dorsally and eventually disappear. This phenotype is very similar to what has been observed in the zebrafish, indicating that the role of XDead end in germ cell development has been conserved in evolution.
Collapse
Affiliation(s)
- Katja Horvay
- Institut für Biochemie und Molekulare Zellbiologie, Georg-August-Universität, Justus-von-Liebig Weg 11, D-37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
40
|
Wilmore HP, McClive PJ, Smith CA, Sinclair AH. Expression profile of the RNA-binding protein gene hermes during chicken embryonic development. Dev Dyn 2005; 233:1045-51. [PMID: 15895363 DOI: 10.1002/dvdy.20392] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The hermes gene encodes an RNA-binding protein containing an RNA-recognition motif. Its expression has been described previously in Xenopus and in the developing heart of very young chicken embryos. We have analyzed the expression of cHermes in later heart development, where expression is maintained in the myocardium, and also in previously undescribed sites. cHermes expression first appears in the somites in the first terminally differentiated myocytes of both the epaxial and the hypaxial myotome. Expression is also seen in the primordium of the allantois and continues in the developing allantoic sac. cHermes expression in the pronephric and mesonephric kidneys coincides temporally and spatially with the appearance of the vascular components of the glomeruli. In addition, cHermes expression was seen in the mesoderm of the gut and in the notochord.
Collapse
Affiliation(s)
- Helen P Wilmore
- Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, VIC 3052, Australia
| | | | | | | |
Collapse
|
41
|
Machado RJ, Moore W, Hames R, Houliston E, Chang P, King ML, Woodland HR. Xenopus Xpat protein is a major component of germ plasm and may function in its organisation and positioning. Dev Biol 2005; 287:289-300. [PMID: 16216237 DOI: 10.1016/j.ydbio.2005.08.044] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 08/23/2005] [Accepted: 08/26/2005] [Indexed: 01/27/2023]
Abstract
In many animals, including Drosophila, C. elegans, zebrafish and Xenopus, the germ line is specified by maternal determinants localised in a distinct cytoplasmic structure called the germ plasm. This is consists of dense granules, mitochondria, and specific localised RNAs. We have characterised the expression and properties of the protein encoded by Xpat, an RNA localised to the germ plasm of Xenopus. Immunofluorescence and immunoblotting showed that this novel protein is itself a major constituent of germ plasm throughout oogenesis and early development, although it is also present in other regions of oocytes and embryos, including their nuclei. We found that an Xpat-GFP fusion protein can localise correctly in cultured oocytes, in early oocytes to the 'mitochondrial cloud', from which germ plasm originates, and in later oocytes to the vegetal cortex. The localisation process was microtubule-dependent, while cortical anchoring required microfilaments. Xpat-GFP expressed in late stage oocytes assembled into circular fields of multi-particulate structures resembling endogenous fields of germ plasm islands. Furthermore these structures could be induced to form at ectopic sites by manipulation of culture conditions. Ectopic Xpat-GFP islands were able to recruit mitochondria, a major germ plasm component. These data suggest that Xpat protein has an important role in Xenopus germ plasm formation, positioning and maintenance.
Collapse
Affiliation(s)
- Rachel J Machado
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | | | | | | | | | |
Collapse
|
42
|
Kloc M, Wilk K, Vargas D, Shirato Y, Bilinski S, Etkin LD. Potential structural role of non-coding and coding RNAs in the organization of the cytoskeleton at the vegetal cortex of Xenopus oocytes. Development 2005; 132:3445-57. [PMID: 16000384 DOI: 10.1242/dev.01919] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The localization of RNA within a cell or embryo is crucial for proper cellular function or development. There is evidence that the cytoskeleton and RNA may function in the anchoring of localized RNAs at the vegetal cortex of Xenopus laevis oocytes. We found that the organization of the cytokeratin filaments but not the actin cytoskeleton depends on the presence of intact VegT mRNA and a noncoding RNA, Xlsirts. Destruction of either of these transcripts results in disruption of the cytokeratin cytoskeleton in a transcript-specific manner and interferes with proper formation of the germinal granules and subsequent development of the germline. Analysis of the distribution of endogenous VegT and Xlsirts in live oocytes using molecular beacons showed that these RNAs are integrated into the cytokeratin cytoskeleton. These results demonstrate a novel structural role of coding and noncoding RNAs in the organization of the vegetal cortex of Xenopus oocytes.
Collapse
Affiliation(s)
- Malgorzata Kloc
- Department of Molecular Genetics, University of Texas, M. D. Anderson Cancer Center, Houston TX 77030, USA
| | | | | | | | | | | |
Collapse
|
43
|
Affiliation(s)
- Malgorzata Kloc
- Department of Molecular Genetics, M. D. Anderson Cancer Center, University of Texas, Houston, Texas 77030, USA
| | | | | |
Collapse
|