1
|
Liu Y, Deng X, Wu D, Jin M, Yu B. PKCδ promotes fertilization of mouse embryos in early development via the Cdc25B signaling pathway. Exp Ther Med 2019; 18:3281-3290. [PMID: 31602201 PMCID: PMC6777331 DOI: 10.3892/etm.2019.7959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 10/03/2018] [Indexed: 12/26/2022] Open
Abstract
Protein kinase C type δ (PKCδ) is involved in B-cell signaling and the regulation of growth, apoptosis and differentiation of a variety of cell types. Cell division cycle 25 (Cdc25) is a key mediator of cell cycle progression that activates cyclin-dependent kinase complexes that drive the cell cycle and participates in the regulation of DNA damage checkpoints. Cdc25B is a member of the Cdc25 family of phosphatases. The present study investigated the role and mechanism of PKCδ in regulating the fertilization of mouse embryos in early development. The expression and subcellular localization of PKCδ and Cdc25B were detected using reverse transcription-quantitative polymerase chain reaction, western blotting and immunofluorescence in one-cell stage mouse embryos. Specific small interfering RNAs targeting PKCδ were used to knockdown the expression of PKCδ. Subsequently, Scansite software was used to predict the target of phosphorylated Cdc25B. Western blotting was used to measure the effects of phosphorylation and dephosphorylation in one-cell stage mouse embryos at different cell cycle phases. PKCδ was expressed during M phase and served a positive role in one-cell stage mouse embryos. Immunofluorescence data revealed that PKCδ and Cdc25B were expressed during G1, S, G2 and M phases of the cell cycle. Furthermore, phosphorylated levels of Cdc25B-Ser96 were observed during G2 and M phases. Microinjection with mimics of phosphorylated Cdc25B-Ser96 mRNA promoted the development of one-cell stage mouse embryos. When PKCδ was suppressed, microinjection with mimics of phosphorylated Cdc25B-Ser96 mRNA reversed the inhibition of PKCδ. To conclude, PKCδ serves a positive role in the first cell cycle of mouse embryos by phosphorylating Cdc25B-Ser96, and provides novel insights for the regulation of early embryonic development.
Collapse
Affiliation(s)
- Yanchun Liu
- Department of Biochemical and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, P.R. China.,Liaoning Blood Center, Shenyang, Liaoning 110044, P.R. China
| | - Xin Deng
- Experimental Center of The Functional Subjects China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Didi Wu
- Department of Biochemical and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Minglin Jin
- Department of Biochemical and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Bingzhi Yu
- Department of Biochemical and Molecular Biology, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
2
|
Zakharova FM, Zakharov VV. Identification of brain proteins BASP1 and GAP-43 in mouse oocytes and zygotes. Russ J Dev Biol 2017. [DOI: 10.1134/s1062360417030110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Martin JH, Bromfield EG, Aitken RJ, Nixon B. Biochemical alterations in the oocyte in support of early embryonic development. Cell Mol Life Sci 2017; 74:469-485. [PMID: 27604868 PMCID: PMC11107538 DOI: 10.1007/s00018-016-2356-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/28/2016] [Accepted: 09/01/2016] [Indexed: 01/01/2023]
Abstract
Notwithstanding the enormous reproductive potential encapsulated within a mature mammalian oocyte, these cells present only a limited window for fertilization before defaulting to an apoptotic cascade known as post-ovulatory oocyte aging. The only cell with the capacity to rescue this potential is the fertilizing spermatozoon. Indeed, the union of these cells sets in train a remarkable series of events that endows the oocyte with the capacity to divide and differentiate into the trillions of cells that comprise a new individual. Traditional paradigms hold that, beyond the initial stimulation of fluctuating calcium (Ca2+) required for oocyte activation, the fertilizing spermatozoon plays limited additional roles in the early embryo. While this model has now been drawn into question in view of the recent discovery that spermatozoa deliver developmentally important classes of small noncoding RNAs and other epigenetic modulators to oocytes during fertilization, it is nevertheless apparent that the primary responsibility for oocyte activation rests with a modest store of maternally derived proteins and mRNA accumulated during oogenesis. It is, therefore, not surprising that widespread post-translational modifications, in particular phosphorylation, hold a central role in endowing these proteins with sufficient functional diversity to initiate embryonic development. Indeed, proteins targeted for such modifications have been linked to oocyte activation, recruitment of maternal mRNAs, DNA repair and resumption of the cell cycle. This review, therefore, seeks to explore the intimate relationship between Ca2+ release and the suite of molecular modifications that sweep through the oocyte to ensure the successful union of the parental germlines and ensure embryogenic fidelity.
Collapse
Affiliation(s)
- Jacinta H Martin
- Discipline of Biological Sciences and Priority Research Center for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia.
| | - Elizabeth G Bromfield
- Discipline of Biological Sciences and Priority Research Center for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - R John Aitken
- Discipline of Biological Sciences and Priority Research Center for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Brett Nixon
- Discipline of Biological Sciences and Priority Research Center for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| |
Collapse
|
4
|
Yeste M, Jones C, Amdani SN, Coward K. Oocyte Activation and Fertilisation: Crucial Contributors from the Sperm and Oocyte. Results Probl Cell Differ 2017; 59:213-239. [PMID: 28247051 DOI: 10.1007/978-3-319-44820-6_8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This chapter intends to summarise the importance of sperm- and oocyte-derived factors in the processes of sperm-oocyte binding and oocyte activation. First, we describe the initial interaction between sperm and the zona pellucida, with particular regard to acrosome exocytosis. We then describe how sperm and oocyte membranes fuse, with special reference to the discovery of the sperm protein IZUMO1 and its interaction with the oocyte membrane receptor JUNO. We then focus specifically upon oocyte activation, the fundamental process by which the oocyte is alleviated from metaphase II arrest by a sperm-soluble factor. The identity of this sperm factor has been the source of much debate recently, although mounting evidence, from several different laboratories, provides strong support for phospholipase C ζ (PLCζ), a sperm-specific phospholipase. Herein, we discuss the evidence in support of PLCζ and evaluate the potential role of other candidate proteins, such as post-acrosomal WW-binding domain protein (PAWP/WBP2NL). Since the cascade of downstream events triggered by the sperm-borne oocyte activation factor heavily relies upon specialised cellular machinery within the oocyte, we also discuss the critical role of oocyte-borne factors, such as the inositol trisphosphate receptor (IP3R), protein kinase C (PKC), store-operated calcium entry (SOCE) and calcium/calmodulin-dependent protein kinase II (CaMKII), during the process of oocyte activation. In order to place the implications of these various factors and processes into a clinical context, we proceed to describe their potential association with oocyte activation failure and discuss how clinical techniques such as the in vitro maturation of oocytes may affect oocyte activation ability. Finally, we contemplate the role of artificial oocyte activating agents in the clinical rescue of oocyte activation deficiency and discuss options for more endogenous alternatives.
Collapse
Affiliation(s)
- Marc Yeste
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, C/ Maria Aurèlia Campany, 69, Campus Montilivi, E-17071, Girona, Spain. .,Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, UK.
| | - Celine Jones
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, UK
| | - Siti Nornadhirah Amdani
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, UK
| | - Kevin Coward
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, UK
| |
Collapse
|
5
|
Urizar-Arenaza I, Estomba H, Muñoa-Hoyos I, Matorras R, Esposito A, Candenas L, Pinto FM, Valdivia A, Irazusta J, Subirán N. The opioid peptide beta-endorphin stimulates acrosome reaction in human spermatozoa. Andrology 2015; 4:143-51. [DOI: 10.1111/andr.12133] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 10/21/2015] [Accepted: 10/26/2015] [Indexed: 12/11/2022]
Affiliation(s)
- I. Urizar-Arenaza
- Department of Physiology; Faculty of Medicine and Dentistry; University of the Basque Country (UPV/EHU); Leioa Bizkaia Spain
| | - H. Estomba
- Department of Physiology; Faculty of Medicine and Dentistry; University of the Basque Country (UPV/EHU); Leioa Bizkaia Spain
| | - I. Muñoa-Hoyos
- Department of Physiology; Faculty of Medicine and Dentistry; University of the Basque Country (UPV/EHU); Leioa Bizkaia Spain
| | - R. Matorras
- Human Reproduction Unit; Cruces Hospital; BioCruces; University of the Basque Country; Basque Country Spain
| | - A. Esposito
- Human Reproduction Unit; Cruces Hospital; BioCruces; University of the Basque Country; Basque Country Spain
| | - L. Candenas
- Biological Chemistry Chemical Research Institute - CSIC/University of Seville; Seville Spain
| | - F. M. Pinto
- Biological Chemistry Chemical Research Institute - CSIC/University of Seville; Seville Spain
| | - A. Valdivia
- Department of Cellular Biology and Histology; Faculty of Pharmacy; University of the Basque Country(UPN/EHU); Vitoria-Gasteiz Alava Spain
| | - J. Irazusta
- Department of Physiology; Faculty of Medicine and Dentistry; University of the Basque Country (UPV/EHU); Leioa Bizkaia Spain
| | - N. Subirán
- Department of Physiology; Faculty of Medicine and Dentistry; University of the Basque Country (UPV/EHU); Leioa Bizkaia Spain
| |
Collapse
|
6
|
Yeste M, Jones C, Amdani SN, Patel S, Coward K. Oocyte activation deficiency: a role for an oocyte contribution? Hum Reprod Update 2015; 22:23-47. [DOI: 10.1093/humupd/dmv040] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 08/13/2015] [Indexed: 12/11/2022] Open
|
7
|
Ma W, Baumann C, Viveiros MM. Lack of protein kinase C-delta (PKCδ) disrupts fertilization and embryonic development. Mol Reprod Dev 2015. [PMID: 26202826 DOI: 10.1002/mrd.22528] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study tested the function of protein kinase C delta (PKCδ) during fertilization and embryonic development using gene-knockout (Prkcd(-/-)) mice. Fertility analysis revealed that Prkcd(-/-) mating pairs produce significantly fewer pups per litter than wild-type pairs (P < 0.05), and exhibit a high incidence of embryonic loss post-implantation. Both Prkcd(-/-) male as well as Prkcd(-/-) female mice mated to Prkcd(+/+) controls also showed reduced litter sizes, with a selective loss of Prkcd-null pups. Further analysis of the females demonstrated comparable in vitro fertilization outcomes between control and Prkcd(-/-) oocytes fertilized with wild-type sperm. Pregnant Prkcd(-/-) females, however, exhibited a reduced number of total implantations, suggesting a possible disruption in early embryo quality and/or implantation. In turn, male gamete analysis revealed that Prkcd(-/-) sperm demonstrated a decreased capacity to penetrate the zona pellucida (P < 0.05), necessary for successful fertilization. Moreover, we identified phosphorylated PKCδ as a component of the sperm acrosome, indicating a potential role for this kinase in acrosome exocytosis. Therefore, loss of PKCδ disrupts key reproductive functions in both males and females that limit fertility.
Collapse
Affiliation(s)
- Wei Ma
- Department of Physiology and Pharmacology, University of Georgia, College of Veterinary Medicine, Athens, Georgia
| | - Claudia Baumann
- Department of Physiology and Pharmacology, University of Georgia, College of Veterinary Medicine, Athens, Georgia
| | - Maria M Viveiros
- Department of Physiology and Pharmacology, University of Georgia, College of Veterinary Medicine, Athens, Georgia
| |
Collapse
|
8
|
Amdani SN, Jones C, Coward K. Phospholipase C zeta (PLCζ): oocyte activation and clinical links to male factor infertility. Adv Biol Regul 2013; 53:292-308. [PMID: 23916605 DOI: 10.1016/j.jbior.2013.07.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 07/08/2013] [Indexed: 06/02/2023]
Abstract
Mounting scientific and clinical evidence supports the key role played by phospholipase C zeta (PLCζ), a sperm-specific protein, in the activation of oocytes following fertilisation. Lacking a pleckstrin homology domain, PLCζ remains the smallest known mammalian PLC and was first identified in 2002. Since then, PLCζ has been the target for a multitude of studies in both mammalian and non-mammalian species focused upon its fundamental biochemical activity and crucial role as the mediator of oocyte activation. The earliest event subsequent to gamete fusion is the onset of a series of intracellular calcium oscillations within the oocyte, which are known to modulate cortical granule exocytosis, release meiotic arrest, regulate gene expression, recruit maternal mRNA, and initiate embryogenesis. Collectively these processes are known as 'oocyte activation' and together, represent a fundamental mechanism for early embryonic development. Evidence suggests that these processes are initiated and controlled by calcium release from ooplasmic sources in response to PLCζ activity via the inositol-1,4,5-triphosphate (IP3) pathway. While the biochemical action of PLCζ has been extensively studied, especially in relation to the EF-hands, X-Y linker, and C2 domain, all of which play critical roles for in vivo activity, there are still key gaps in our knowledge, particularly in terms of regulation and interaction with other proteins within the oocyte. Moreover, increasing clinical evidence has revealed a strong correlation between certain types of male infertility and the aberrant expression, localisation, structure and function of PLCζ in human sperm, particularly in cases of recurrent intracytoplasmic sperm injection (ICSI) failure, globozoospermia, and oocyte activation deficiency (OAD). In addition, two heterozygous substitution mutations have been identified in the coding sequence of PLCζ in one particular patient causing disruption to the catalytic X and Y domains and resulting in infertility. Although, such cases can be treated via the use of artificial oocyte activators (AOAs) such as calcium ionophores, significant concern remains over the use of such chemical agents, largely due to the fact that calcium release manifests as a single transient, rather than a series of oscillations as observed during normal fertilisation. Current interest in PLCζ is thus to develop a series of prognostic, diagnostic and therapeutic approaches which could first identify male patients that are deficient in PLCζ and then rescue oocyte activation ability via assisted reproductive technology (ART) and a pure, functionally-active, recombinant human PLCζ protein. While significant progress has been made in such areas over recent years, there is a clear need to translate scientific findings to clinical settings in order to maximise successful outcome for patients.
Collapse
Affiliation(s)
- Siti Nornadhirah Amdani
- Nuffield Department of Obstetrics & Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | | | | |
Collapse
|
9
|
Curia CA, Ernesto JI, Stein P, Busso D, Schultz RM, Cuasnicu PS, Cohen DJ. Fertilization induces a transient exposure of phosphatidylserine in mouse eggs. PLoS One 2013; 8:e71995. [PMID: 23951277 PMCID: PMC3737209 DOI: 10.1371/journal.pone.0071995] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/10/2013] [Indexed: 01/01/2023] Open
Abstract
Phosphatidylserine (PS) is normally localized to the inner leaflet of the plasma membrane and the requirement of PS translocation to the outer leaflet in cellular processes other than apoptosis has been demonstrated recently. In this work we investigated the occurrence of PS mobilization in mouse eggs, which express flippase Atp8a1 and scramblases Plscr1 and 3, as determined by RT-PCR; these enzyme are responsible for PS distribution in cell membranes. We find a dramatic increase in binding of flouresceinated-Annexin-V, which specifically binds to PS, following fertilization or parthenogenetic activation induced by SrCl2 treatment. This increase was not observed when eggs were first treated with BAPTA-AM, indicating that an increase in intracellular Ca2+ concentration was required for PS exposure. Fluorescence was observed over the entire egg surface with the exception of the regions overlying the meiotic spindle and sperm entry site. PS exposure was also observed in activated eggs obtained from CaMKIIγ null females, which are unable to exit metaphase II arrest despite displaying Ca2+ spikes. In contrast, PS exposure was not observed in TPEN-activated eggs, which exit metaphase II arrest in the absence of Ca2+ release. PS exposure was also observed when eggs were activated with ethanol but not with a Ca2+ ionophore, suggesting that the Ca2+ source and concentration are relevant for PS exposure. Last, treatment with cytochalasin D, which disrupts microfilaments, or jasplakinolide, which stabilizes microfilaments, prior to egg activation showed that PS externalization is an actin-dependent process. Thus, the Ca2+ rise during egg activation results in a transient exposure of PS in fertilized eggs that is not associated with apoptosis.
Collapse
Affiliation(s)
- Claudio A. Curia
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científico y Técnicas, Buenos Aires, Argentina
| | - Juan I. Ernesto
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científico y Técnicas, Buenos Aires, Argentina
| | - Paula Stein
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Dolores Busso
- Department of Nutrition, Diabetes and Metabolism, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Richard M. Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Patricia S. Cuasnicu
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científico y Técnicas, Buenos Aires, Argentina
| | - Débora J. Cohen
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científico y Técnicas, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
10
|
Gonzalez-Garcia JR, Machaty Z, Lai FA, Swann K. The dynamics of PKC-induced phosphorylation triggered by Ca2+ oscillations in mouse eggs. J Cell Physiol 2013; 228:110-9. [PMID: 22566126 PMCID: PMC3746124 DOI: 10.1002/jcp.24110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 04/25/2012] [Indexed: 12/31/2022]
Abstract
Fertilization of mammalian eggs is characterized by a series of Ca(2+) oscillations triggered by a phospholipase C activity. These Ca(2+) increases and the parallel generation of diacylglycerol (DAG) stimulate protein kinase C (PKC). However, the dynamics of PKC activity have not been directly measured in living eggs. Here, we have monitored the dynamics of PKC-induced phosphorylation in mouse eggs, alongside Ca(2+) oscillations, using fluorescent C-kinase activity reporter (CKAR) probes. Ca(2+) oscillations triggered either by sperm, phospholipase C zeta (PLCζ) or Sr(2+) all caused repetitive increases in PKC-induced phosphorylation, as detected by CKAR in the cytoplasm or plasma membrane. The CKAR responses lasted for several minutes in both the cytoplasm and plasma membrane then returned to baseline values before subsequent Ca(2+) transients. High frequency oscillations caused by PLCζ led to an integration of PKC-induced phosphorylation. The conventional PKC inhibitor, Gö6976, could inhibit CKAR increases in response to thapsigargin or ionomycin, but not the repetitive responses seen at fertilization. Repetitive increases in PKCδ activity were also detected during Ca(2+) oscillations using an isoform-specific δCKAR. However, PKCδ may already be mostly active in unfertilized eggs, since phorbol esters were effective at stimulating δCKAR only after fertilization, and the PKCδ-specific inhibitor, rottlerin, decreased the CKAR signals in unfertilized eggs. These data show that PKC-induced phosphorylation outlasts each Ca(2+) increase in mouse eggs but that signal integration only occurs at a non-physiological, high Ca(2+) oscillation frequency. The results also suggest that Ca(2+) -induced DAG formation on intracellular membranes may stimulate PKC activity oscillations at fertilization.
Collapse
Affiliation(s)
| | - Zoltan Machaty
- Department of Animal Sciences, Purdue UniversityWest Lafayette, Indiana
| | - F Anthony Lai
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff UniversityCardiff, UK
| | - Karl Swann
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff UniversityCardiff, UK
| |
Collapse
|
11
|
Sobinoff AP, Sutherland JM, Mclaughlin EA. Intracellular signalling during female gametogenesis. Mol Hum Reprod 2012; 19:265-78. [PMID: 23247812 DOI: 10.1093/molehr/gas065] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Female reproductive potential is dictated by the size of the primordial follicle pool and the correct regulation of oocyte maturation and activation--events essential for production of viable offspring. Although a substantial body of work underpins our understanding of these processes, the molecular mechanisms of follicular and oocyte development are not fully understood. This review summarizes recent findings which have improved our conception of how folliculogenesis and oocyte competence are regulated, and discusses their implications for assisted reproductive techniques. We highlight evidence provided by genetically modified mouse models and in vitro studies which have refined our understanding of Pi3k/Akt and mTOR signalling in the oocyte and have discovered a role for Jak/Stat/Socs signalling in granulosa cells during primordial follicle activation. We also appraise a novel role for the metal ion zinc in the regulation of meiosis I and meiosis II progression through early meiosis inhibitor (Emi2) and Mos-Mapk signalling, and examine studies which expand our understanding of intracellular calcium signalling and extrinsic Plcζ in stimulating oocyte activation.
Collapse
Affiliation(s)
- A P Sobinoff
- Priority Research Centre in Chemical Biology, School of Environmental and Life Sciences, University of Newcastle, Callaghan NSW2308, Australia
| | | | | |
Collapse
|
12
|
Actin cytoskeleton in cell polarity and asymmetric division during mouse oocyte maturation. Cytoskeleton (Hoboken) 2012; 69:727-37. [DOI: 10.1002/cm.21048] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/18/2012] [Accepted: 06/21/2012] [Indexed: 12/22/2022]
|
13
|
Sheremet YA, Emets AI, Azmi A, Vissenberg K, Verbelen JP, Blume YB. Effect of serine/threonine protein kinases and protein phosphatases inhibitors on mitosis progression in a synchronized tobacco BY-2 culture. CYTOL GENET+ 2012. [DOI: 10.3103/s009545271202003x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Kalive M, Baluch DP, Capco DG. Involvement of PKCζ and GSK3β in the stability of the metaphase spindle. In Vitro Cell Dev Biol Anim 2011; 48:97-111. [PMID: 22179679 DOI: 10.1007/s11626-011-9476-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 11/21/2011] [Indexed: 02/03/2023]
Abstract
In the somatic cell, the mitotic spindle apparatus is centrosomal, and several isoforms of protein kinase C (PKC) have been associated with the mitotic spindle, but their role in stabilizing the mitotic spindle is still unclear. Other protein kinases such as, glycogen synthase kinase 3β (GSK3β) have also been shown to be associated with the mitotic spindle apparatus. In this study, we show the enrichment of active (phosphorylated) PKCζ at the centrosomal region of the spindle apparatus in metaphase stage of 3T3 cells. In order to understand whether the two kinases PKC and GSK3β are associated with the mitotic spindle, first, the co-localization of phosphorylated PKC isoforms with GSK3β was studied at the poles in metaphase cells. Fluorescence resonance energy transfer (FRET) analysis was used to demonstrate close molecular proximity of phospho-PKCζ with phospho(ser9)GSK3β. Second, the involvement of inactive GSK3β in maintaining an intact mitotic spindle in 3T3 cells was shown. Third, this study also showed that addition of a phospho-PKCζ specific inhibitor to cells can disrupt the mitotic spindle microtubules and some of the proteins associated with it. The mitotic spindle at metaphase in mouse fibroblasts appears to be maintained by PKCζ acting through GSK3β. Phospho-PKCζ is in close molecular proximity to GSK3β, whereas the other isoforms of PKC such as pPKCβII, pPKCγ, pPKCμ, and pPKCθ are not close enough to have significant FRET readings. The close molecular proximity supports the idea that GSK3β may be a substrate of PKCζ.
Collapse
Affiliation(s)
- Madhavi Kalive
- School of Life Sciences, Cell and Molecular Biosciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | | | | |
Collapse
|
15
|
Ca2+ signaling during mammalian fertilization: requirements, players, and adaptations. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a006767. [PMID: 21441584 DOI: 10.1101/cshperspect.a006767] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Changes in the intracellular concentration of calcium ([Ca(2+)](i)) represent a vital signaling mechanism enabling communication among cells and between cells and the environment. The initiation of embryo development depends on a [Ca(2+)](i) increase(s) in the egg, which is generally induced during fertilization. The [Ca(2+)](i) increase signals egg activation, which is the first stage in embryo development, and that consist of biochemical and structural changes that transform eggs into zygotes. The spatiotemporal patterns of [Ca(2+)](i) at fertilization show variability, most likely reflecting adaptations to fertilizing conditions and to the duration of embryonic cell cycles. In mammals, the focus of this review, the fertilization [Ca(2+)](i) signal displays unique properties in that it is initiated after gamete fusion by release of a sperm-derived factor and by periodic and extended [Ca(2+)](i) responses. Here, we will discuss the events of egg activation regulated by increases in [Ca(2+)](i), the possible downstream targets that effect these egg activation events, and the property and identity of molecules both in sperm and eggs that underpin the initiation and persistence of the [Ca(2+)](i) responses in these species.
Collapse
|
16
|
Effect of age, GV transfer and modified nucleocytoplasmic ratio on PKCα in mouse oocytes and early embryos. ZYGOTE 2011; 20:87-95. [DOI: 10.1017/s0967199410000626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SummaryProtein kinase C (PKC) is a family of Ser/Thr protein kinases that can be activated by Ca2+, phospholipid and diacylglycerol. There is evidence that PKC plays key roles in the meiotic maturation and activation of mammalian oocytes. The present study aimed to monitor the effect of age, germinal vesicle (GV) transfer and modified nucleoplasmic ratio on the subcellular distribution profile of PKCα, an important isozyme of PKC, in mouse oocytes undergoing meiotic maturation and following egg activation. Germinal vesicle oocytes were collected from 6–8-week-old and 12-month-old mice. Germinal vesicle-reconstructed oocytes and GV oocytes with one-half or one-third of the original oocyte volume were created using micromanipulation and electrofusion. The subcellular localization of PKCα was detected by immunocytochemistry and laser confocal microscopy. Our study showed that PKCα had a similar location pattern in oocytes and early embryos from young and old mice. PKCα was localized evenly in ooplasm, with weak staining in GV at the GV stage, and present in the entire meiosis II (MII) spindle at the MII stage. In pronuclear and 2-cell embryos, PKCα was concentrated in the nucleus except for the nucleolus. After the GV oocytes were reconstructed, the resultant MII oocytes and embryos showed a similar distribution of PKCα between reconstructed and unreconstructed controls. After one-half or two-thirds of the cytoplasm was removed from the GV oocytes, PKCα still had a similar location pattern in MII oocytes and early embryos from the GV oocytes with modified nucleoplasmic ratio. Our study showed that age, GV transfer and modified nucleocytoplasmic ratio does not affect distribution of PKCα during mouse oocyte maturation, activation, and early embryonic mitosis.
Collapse
|
17
|
Brunet S, Verlhac MH. Positioning to get out of meiosis: the asymmetry of division. Hum Reprod Update 2010; 17:68-75. [DOI: 10.1093/humupd/dmq044] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
18
|
Stricker SA. Roles of protein kinase C isotypes during seawater-versus cAMP-induced oocyte maturation in a marine worm. Mol Reprod Dev 2009; 76:693-707. [DOI: 10.1002/mrd.20993] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Carbone MC, Tatone C. Alterations in the protein kinase C signaling activated by a parthenogenetic agent in oocytes from reproductively old mice. Mol Reprod Dev 2009; 76:122-31. [PMID: 18449882 DOI: 10.1002/mrd.20923] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
To investigate the effect of female age on oocyte developmental competence, we focused on protein kinase C (PKC), a major component of the signalling pathway involved in oocyte activation, and put forward the hypothesis that, as it occurs in many organs and tissues, aging affects PKC function in mouse oocytes. Biochemical activity of PKC along with the expression and subcellular distribution of some PKC isoforms were monitored in young and old mouse oocytes parthenogenetically activated by SrCl(2). We found that PKC activity increased reaching a level that was lower in old compared to young oocytes in association with an incomplete translocation of PKCbetaI to the plasma membrane. Moreover, old oocytes exhibited a reduced expression of PKCbeta1 and PKCalpha at the protein level, without significant effects on the expression of the Ca(2+)-independent PKCdelta. Detectable amounts of PKCbeta1 mRNA were observed in young and old oocytes at GV stage with no difference between the two groups of age. When meiotic progression to anaphase II up to first cleavage were analyzed, a delay in meiosis resumption and significantly lower rates of pronuclei formation and first cleavage were observed in old compared to young oocytes. Moreover, we found that, in contrast to SrCl(2), PMA (12-O-tetradecanoyl phorbol-13-acetate), a PKC agonist, was ineffective in activating old oocytes. Present findings provide evidence that aging affects the correct storage and activation of some PKCs, functional components of the machinery involved in oocyte activation, and suggest that these changes may negatively influence the activation competence of old oocytes.
Collapse
Affiliation(s)
- M C Carbone
- Department of Biomedical Sciences and Technologies, University of L'Aquila, L'Aquila, Italy
| | | |
Collapse
|
20
|
Kalive M, Faust JJ, Koeneman BA, Capco DG. Involvement of the PKC family in regulation of early development. Mol Reprod Dev 2009; 77:95-104. [DOI: 10.1002/mrd.21112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
21
|
Regulation of diacylglycerol production and protein kinase C stimulation during sperm- and PLCzeta-mediated mouse egg activation. Biol Cell 2008; 100:633-43. [PMID: 18471090 PMCID: PMC2615188 DOI: 10.1042/bc20080033] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION At fertilization in mammalian eggs, the sperm induces a series of Ca(2+) oscillations via the production of inositol 1,4,5-trisphosphate. Increased inositol 1,4,5-trisphosphate production appears to be triggered by a sperm-derived PLCzeta (phospholipase C-zeta) that enters the egg after gamete fusion. The specific phosphatidylinositol 4,5-bisphosphate hydrolytic activity of PLCzeta implies that DAG (diacylglycerol) production, and hence PKC (protein kinase C) stimulation, also occurs during mammalian egg fertilization. Fertilization-mediated increase in PKC activity has been demonstrated; however, its precise role is unclear. RESULTS We investigated PLCzeta- and fertilization-mediated generation of DAG in mouse eggs by monitoring plasma-membrane translocation of a fluorescent DAG-specific reporter. Consistent plasma-membrane DAG formation at fertilization, or after injection of physiological concentrations of PLCzeta, was barely detectable. However, when PLCzeta is overexpressed in eggs, significant plasma-membrane DAG production occurs in concert with a series of unexpected secondary high-frequency Ca(2+) oscillations. We show that these secondary Ca(2+) oscillations can be mimicked in a variety of situations by the stimulation of PKC and that they can be prevented by PKC inhibition. The way PKC leads to secondary Ca(2+) oscillations appears to involve Ca(2+) influx and the loading of thapsigargin-sensitive Ca(2+) stores. CONCLUSIONS Our results suggest that overproduction of DAG in PLCzeta-injected eggs can lead to PKC-mediated Ca(2+) influx and subsequent overloading of Ca(2+) stores. These results suggest that DAG generation in the plasma membrane of fertilizing mouse eggs is minimized since it can perturb egg Ca(2+) homoeostasis via excessive Ca(2+) influx.
Collapse
|
22
|
Ma W, Koch JA, Viveiros MM. Protein kinase C delta (PKCdelta) interacts with microtubule organizing center (MTOC)-associated proteins and participates in meiotic spindle organization. Dev Biol 2008; 320:414-25. [PMID: 18602096 DOI: 10.1016/j.ydbio.2008.05.550] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 05/21/2008] [Accepted: 05/27/2008] [Indexed: 12/23/2022]
Abstract
Defects in meiotic spindle structure can lead to chromosome segregation errors and genomic instability. In this study the potential role of protein kinase C delta (PKCdelta) on meiotic spindle organization was evaluated in mouse oocytes. PKCdelta was previously shown to be phosphorylated during meiotic maturation and concentrate on the meiotic spindle during metaphases I and II. Currently we show that when phosphorylated on Threonine 505 (pPKCdelta(Thr505)), within the activation loop of its C4 domain, PKCdelta expression was restricted to the meiotic spindle poles and a few specific cytoplasmic foci. In addition, pPKCdelta(Thr505) co-localized with two key microtubule organizing center (MTOC)-associated proteins, pericentrin and gamma-tubulin. An interaction between pPKCdelta(Thr505) and pericentrin as well as gamma-tubulin was confirmed by co-immunoprecipitation analysis using both fetal fibroblast cells and oocytes. Notably, targeted knockdown of PKCdelta expression in oocytes using short interfering RNAs effectively reduced pPKCdelta(Thr505) protein expression at MTOCs and leads to a significant (P < 0.05) disruption of meiotic spindle organization and chromosome alignment during MI and MII. Moreover, both gamma-tubulin and pericentrin expression at MTOCs were decreased in pPKCdelta(Thr505)-depleted oocytes. In sum, these results indicate that pPKCdelta(Thr505) interacts with MTOC-associated proteins and plays a role in meiotic spindle organization in mammalian oocytes.
Collapse
Affiliation(s)
- Wei Ma
- Center for Animal Transgenesis and Germ Cell Research, Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, PA 19348, USA
| | | | | |
Collapse
|
23
|
Baluch DP, Capco DG. GSK3β mediates acentromeric spindle stabilization by activated PKCζ. Dev Biol 2008; 317:46-58. [DOI: 10.1016/j.ydbio.2008.01.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 01/25/2008] [Accepted: 01/30/2008] [Indexed: 11/28/2022]
|
24
|
Ducibella T, Fissore R. The roles of Ca2+, downstream protein kinases, and oscillatory signaling in regulating fertilization and the activation of development. Dev Biol 2008; 315:257-79. [PMID: 18255053 DOI: 10.1016/j.ydbio.2007.12.012] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 12/12/2007] [Accepted: 12/13/2007] [Indexed: 12/12/2022]
Abstract
Reviews in Developmental Biology have covered the pathways that generate the all-important intracellular calcium (Ca(2+)) signal at fertilization [Miyazaki, S., Shirakawa, H., Nakada, K., Honda, Y., 1993a. Essential role of the inositol 1,4,5-trisphosphate receptor/Ca(2+) release channel in Ca(2+) waves and Ca(2+) oscillations at fertilization of mammalian eggs. Dev. Biol. 158, 62-78; Runft, L., Jaffe, L., Mehlmann, L., 2002. Egg activation at fertilization: where it all begins. Dev. Biol. 245, 237-254] and the different temporal responses of Ca(2+) in many organisms [Stricker, S., 1999. Comparative biology of calcium signaling during fertilization and egg activation in animals. Dev. Biol. 211, 157-176]. Those reviews raise the importance of identifying how Ca(2+) causes the events of egg activation (EEA) and to what extent these temporal Ca(2+) responses encode developmental information. This review covers recent studies that have analyzed how these Ca(2+) signals are interpreted by specific proteins, and how these proteins regulate various EEA responsible for the onset of development. Many of these proteins are protein kinases (CaMKII, PKC, MPF, MAPK, MLCK) whose activity is directly or indirectly regulated by Ca(2+), and whose amount increases during late oocyte maturation. We cover biochemical progress in defining the signaling pathways between Ca(2+) and the EEA, as well as discuss how oscillatory or multiple Ca(2+) signals are likely to have specific advantages biochemically and/or developmentally. These emerging concepts are put into historical context, emphasizing that key contributions have come from many organisms. The intricate interdependence of Ca(2+), Ca(2+)-dependent proteins, and the EEA raise many new questions for future investigations that will provide insight into the extent to which fertilization-associated signaling has long-range implications for development. In addition, answers to these questions should be beneficial to establishing parameters of egg quality for human and animal IVF, as well as improving egg activation protocols for somatic cell nuclear transfer to generate stem cells and save endangered species.
Collapse
Affiliation(s)
- Tom Ducibella
- Department of OB/GYN, Tufts-New England Medical Center, Boston, MA 02111, USA.
| | | |
Collapse
|
25
|
Akabane H, Fan J, Zheng X, Zhu GZ. Protein kinase C activity in mouse eggs regulates gamete membrane interaction. Mol Reprod Dev 2007; 74:1465-72. [PMID: 17410540 DOI: 10.1002/mrd.20718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Gamete membrane interaction is critical to initiate the development of a new organism. The signaling pathways governing this event, however, are poorly understood. In this report, we provide the first evidence that protein kinase C activity in mouse eggs plays a crucial role in the regulation of this process. Stimulating PKC activity in mouse eggs by phorbol 12-myristate 13-acetate (PMA) drastically inhibited the egg's membrane ability to bind and fuse with sperm. Surprisingly, this significant reduction of gamete membrane interaction was also observed in eggs treated with the PKC inhibitors staurosporine and calphostin c. In further analysis, we found that while no change of egg actin cytoskeleton was detected after either PMA or calphostin c treatment, the structural morphology of egg surface microvilli was severely altered in the PMA-treated eggs, but not in the calphostin c-treated eggs. Moreover, sperm, which bound but did not fuse with the eggs treated with the anti-CD9 antibody KMC8, were liberated from the egg membrane after PMA, but not calphostin c, treatment. Taken together, these results suggest that egg PKC may be precisely balanced to regulate gamete membrane interaction in a biphasic mode, and this biphasic regulation is executed through two different mechanisms.
Collapse
Affiliation(s)
- Hiroto Akabane
- Department of Biological Sciences, Marshall University, Huntington, WV 25755, USA
| | | | | | | |
Collapse
|
26
|
Liu XF, Xie X, Miki T. Inhibition of protein kinase C zeta blocks the attachment of stable microtubules to kinetochores leading to abnormal chromosome alignment. Cell Signal 2006; 18:2314-23. [PMID: 16820280 DOI: 10.1016/j.cellsig.2006.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 05/19/2006] [Accepted: 05/19/2006] [Indexed: 11/18/2022]
Abstract
The attachment of spindle microtubules to kinetochores is crucial for accurate segregation of chromosomes to daughter cells during mitosis. While a growing number of proteins involving this step are being identified, its molecular mechanisms are still not clear. Here we show that protein kinase C zeta (PKCzeta) is localized at the mitotic spindle during mitosis and plays a role in stable kinetochore-microtubule attachment. Striking staining for PKCzeta was observed at the mitotic spindle and spindle poles in cells at prometaphase and metaphase. PKCzeta molecules at these stages were phosphorylated at Thr-410, as detected by a phosphospecific antibody. PKCzeta was also detected at the spindle midzone and the midbody during anaphase and telophase, respectively, and PKCzeta at these stages was no longer phosphorylated at Thr-410. The polarity determinants Par3 and Par6, which are known to associate with PKCzeta, were also localized to the spindles and spindle poles at prometaphase and metaphase. Knockdown of PKCzeta by RNA interference affected normal chromosome alignment leading to generation of cells with aberrant nuclei. A specific PKCzeta inhibitor strongly blocked the formation of cold-sensitive stable kinetochore microtubules, and thus prevented microtubule-kinetochore attachment. Treatment of cells with the PKCzeta inhibitor also dislocated the minus-end directed motor protein dynein from kinetochores, but not the mitotic checkpoint proteins Mad2 and CENP-E. Prolonged exposure to the PKCzeta inhibitor eventually resulted in cell death. These results suggest a critical role of PKCzeta in spindle microtubule-kinetochore attachment and subsequent chromosomal separation.
Collapse
Affiliation(s)
- Xiu Fen Liu
- Laboratory of Cell Biology, National Cancer Institute, Bethesda, Maryland, 20892-4255, United States
| | | | | |
Collapse
|
27
|
Dehghani H, Hahnel AC. Expression profile of protein kinase C isozymes in preimplantation mouse development. Reproduction 2006; 130:441-51. [PMID: 16183862 DOI: 10.1530/rep.1.00571] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the preimplantation mouse embryo, the protein kinase C (PKC) family has been implicated in regulation of egg activation, progression of meiotic and mitotic cell cycles, embryo compaction, and blastulation, but the involvement of the individual isozymes is largely unknown. Here, using semiquantitative immunocytochemistry and confocal microscopy we analyze the relative amount and subcellular distribution of ten isozymes of PKC (alpha, betaI, betaII, gamma, delta, epsilon, eta, theta, zeta, iota/lambda) and a PKC-anchoring protein, receptor for activated C-kinase 1 (RACK1). Our results show that all of these isoforms of PKC are present between the two-cell and blastocyst stages of mouse preimplantation development, and that each has a distinct, dynamic pattern and level of expression. The data suggest that different complements of the isozymes are involved in various steps of preimplantation development, and will serve as a framework for further functional studies of the individual isozymes. In particular, there was a transient increase in the nuclear concentration of several isozymes at the early four-cell stage, suggesting that some of the PKC isozymes might be involved in regulation of nuclear organization and function in the early mouse embryo.
Collapse
Affiliation(s)
- Hesam Dehghani
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, N1G 2W1 Canada
| | | |
Collapse
|
28
|
Wang XL, Sun M, Mei J, Gui JF. Identification of a Spindlin homolog in gibel carp (Carassius auratus gibelio). Comp Biochem Physiol B Biochem Mol Biol 2005; 141:159-67. [PMID: 15939319 DOI: 10.1016/j.cbpc.2005.02.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 02/18/2005] [Accepted: 02/20/2005] [Indexed: 11/23/2022]
Abstract
Spindlin has been suggested to play an important role during the transition from oocyte maturation to embryo development in mouse, but its homolog similar to the mouse Spindlin in molecular and expression characterization has not been identified up to now in other vertebrates. In this study, a full length of cDNA sequence is cloned and sequenced from the gibel carp (Carassius auratus gibelio). It contains 1240 nucleotides with an open reading frame of 771 nt encoding 257 amino acids. Based on its amino acid sequence alignment and comparison analysis with the known Spin family proteins, the newly cloned Spin is named Carassius auratus gibelio Spindlin (CagSpin). Its product could be detected from mature eggs to blastula embryos, but its content decreased from the two-cell stage, and could not be detected after the gastrula stage. It suggests that the CagSpin should be a maternal protein that is expressed during oocyte maturation, and plays a crucial role in early cleavage of embryogenesis. CagSpin is the first homolog similar to mouse spindlin identified in fish, and also in other vertebrates. GST pull-down assay reveals the first biochemical evidence for the association of CagSpin and beta-tubulin, the microtubule component. Therefore, CagSpin may play important functions by interacting with beta-tubulin and other spindle proteins during oocyte maturation and egg fertilization.
Collapse
Affiliation(s)
- Xiao-Lei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Wuhan Center for Developmental Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate School of Chinese Academy of Sciences, Wuhan 430072, China
| | | | | | | |
Collapse
|
29
|
Michaut MA, Williams CJ, Schultz RM. Phosphorylated MARCKS: A novel centrosome component that also defines a peripheral subdomain of the cortical actin cap in mouse eggs. Dev Biol 2005; 280:26-37. [PMID: 15766745 DOI: 10.1016/j.ydbio.2005.01.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Revised: 12/23/2004] [Accepted: 01/04/2005] [Indexed: 01/13/2023]
Abstract
MARCKS (myristoylated alanine-rich C-kinase substrate) is a major substrate for protein kinase C (PKC), a kinase that has multiple functions during oocyte maturation and egg activation, for example, spindle function and cytoskeleton reorganization. We examined temporal and spatial changes in p-MARCKS localization during maturation of mouse oocytes and found that p-MARCKS is a novel centrosome component based its co-localization with pericentrin and gamma-tubulin within microtubule organizing centers (MTOCs). Like pericentrin, p-MARCKS staining at the MI spindle poles was asymmetric. Based on this asymmetry, we found that one end of the spindle was preferentially extruded with the first polar body. At MII, however, the spindle poles had symmetrical p-MARCKS staining. p-MARCKS also was enriched in the periphery of the actin cap overlying the MI or MII spindle to form a ring-shaped subdomain. Because phosphorylation of MARCKS modulates its actin crosslinking function, this localization suggests p-MARCKS functions as part of the contractile apparatus during polar body emission. Our finding that an activator of conventional and novel PKC isoforms did not increase the amount of p-MARCKS suggested that an atypical isoform was responsible for MARCKS phosphorylation. Consistent with this idea, immunostaining revealed that the staining patterns of p-MARCKS and the active form of the atypical PKC zeta/lambda isoform(s) were very similar. These results show that p-MARCKS is a novel centrosome component and also defines a previously unrecognized subdomain of the actin cap overlying the spindle.
Collapse
Affiliation(s)
- Marcela A Michaut
- Center for Research on Reproduction and Women's Health and Department of Obstetrics and Gynecology, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
30
|
Zheng ZY, Li QZ, Chen DY, Schatten H, Sun QY. Translocation of phospho-protein kinase Cs implies their roles in meiotic-spindle organization, polar-body emission and nuclear activity in mouse eggs. Reproduction 2005; 129:229-34. [PMID: 15695617 DOI: 10.1530/rep.1.00336] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The protein kinase Cs (PKCs) are a family of Ser/Thr protein kinases categorized into three subfamilies: classical, novel, and atypical. The phosphorylation of PKC in germ cells is not well defined. In this study, we described the subcellular localization of phopho-PKC in the process of mouse oocyte maturation, fertilization, and early embryonic mitosis. Confocal microscopy revealed that phospho-PKC (pan) was distributed abundantly in the nucleus at the germinal vesicle stage. After germinal vesicle breakdown, phospho-PKC was localized in the vicinity of the condensed chromosomes, distributed in the whole meiotic spindle, and concentrated at the spindle poles. After metaphase I, phospho-PKC was translocated gradually to the spindle mid-zone during emission of the first polar body. After sperm penetration and electrical activation, the distribution of phospho-PKC was moved from the spindle poles to the spindle mid-zone. After the extrusion of the second polar body (PB2) phospho-PKC was localized in the area between the oocyte and the PB2. In fertilized eggs, phospho-PKC was concentrated in the pronuclei except for the nucleolus. Phospho-PKC was dispersed after pronuclear envelope breakdown, but distributed on the entire spindle at mitotic metaphase. The results suggest that PKC activation may play important roles in regulating spindle organization and stabilization, polar-body extrusion, and nuclear activity during mouse oocyte meiosis, fertilization, and early embryonic mitosis.
Collapse
Affiliation(s)
- Zhen-Yu Zheng
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
| | | | | | | | | |
Collapse
|
31
|
Abstract
Fertilization is the union of a single sperm and an egg, an event that results in a diploid embryo. Animals use many mechanisms to achieve this ratio; the most prevalent involves physically blocking the fusion of subsequent sperm. Selective pressures to maintain monospermy have resulted in an elaboration of diverse egg and sperm structures. The processes employed for monospermy are as diverse as the animals that result from this process. Yet, the fundamental molecular requirements for successful monospermic fertilization are similar, implying that animals may have a common ancestral block to polyspermy. Here, we explore this hypothesis, reviewing biochemical, molecular, and genetic discoveries that lend support to a common ancestral mechanism. We also consider the evolution of alternative or radical techniques, including physiological polyspermy, with respect to our ability to describe a parsimonious guide to fertilization.
Collapse
Affiliation(s)
- Julian L Wong
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | | |
Collapse
|
32
|
Halet G. PKC signaling at fertilization in mammalian eggs. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1742:185-9. [PMID: 15590069 DOI: 10.1016/j.bbamcr.2004.09.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 09/09/2004] [Accepted: 09/12/2004] [Indexed: 10/26/2022]
Abstract
Protein kinase C (PKC) has been proposed to regulate major egg activation events during mammalian fertilization. Most of the evidence supporting this assumption has first been obtained using pharmacological activation and inhibition of the kinase, while egg activation was assessed by checking for exocytosis of the cortical granules, extrusion of the second polar body and formation of pronuclei. However, results have been inconclusive and sometimes contradictory regarding the exact role of PKC in regulating egg activation events. The PKC family is composed of various isotypes, which differ in their modular structures and regulatory properties. Hence the need to re-examine the roles of egg PKCs more specifically. Mammalian eggs express many PKC isotypes, the roles of which have been investigated using immunodetection, isotype-specific inhibition and, more recently, live imaging of fluorescent chimaeras. Here, I review the recent development of PKC research in mammalian fertilization and the evidence for a specific role for certain PKC isotypes in fertilization-induced egg activation.
Collapse
Affiliation(s)
- Guillaume Halet
- Department of Physiology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|