1
|
Hiraoka D, Hosoda E, Chiba K, Kishimoto T. SGK phosphorylates Cdc25 and Myt1 to trigger cyclin B-Cdk1 activation at the meiotic G2/M transition. J Cell Biol 2019; 218:3597-3611. [PMID: 31537708 PMCID: PMC6829662 DOI: 10.1083/jcb.201812122] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/03/2019] [Accepted: 07/26/2019] [Indexed: 02/06/2023] Open
Abstract
The kinase cyclin B-Cdk1 complex is a master regulator of M-phase in both mitosis and meiosis. At the G2/M transition, cyclin B-Cdk1 activation is initiated by a trigger that reverses the balance of activities between Cdc25 and Wee1/Myt1 and is further accelerated by autoregulatory loops. In somatic cell mitosis, this trigger was recently proposed to be the cyclin A-Cdk1/Plk1 axis. However, in the oocyte meiotic G2/M transition, in which hormonal stimuli induce cyclin B-Cdk1 activation, cyclin A-Cdk1 is nonessential and hence the trigger remains elusive. Here, we show that SGK directly phosphorylates Cdc25 and Myt1 to trigger cyclin B-Cdk1 activation in starfish oocytes. Upon hormonal stimulation of the meiotic G2/M transition, SGK is activated by cooperation between the Gβγ-PI3K pathway and an unidentified pathway downstream of Gβγ, called the atypical Gβγ pathway. These findings identify the trigger in oocyte meiosis and provide insights into the role and activation of SGK.
Collapse
Affiliation(s)
- Daisaku Hiraoka
- Science and Education Center, Ochanomizu University, Tokyo, Japan
| | - Enako Hosoda
- Department of Biological Sciences, Ochanomizu University, Tokyo, Japan
| | - Kazuyoshi Chiba
- Department of Biological Sciences, Ochanomizu University, Tokyo, Japan
| | - Takeo Kishimoto
- Science and Education Center, Ochanomizu University, Tokyo, Japan
| |
Collapse
|
2
|
Hosoda E, Hiraoka D, Hirohashi N, Omi S, Kishimoto T, Chiba K. SGK regulates pH increase and cyclin B-Cdk1 activation to resume meiosis in starfish ovarian oocytes. J Cell Biol 2019; 218:3612-3629. [PMID: 31537709 PMCID: PMC6829648 DOI: 10.1083/jcb.201812133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/19/2019] [Accepted: 08/15/2019] [Indexed: 12/31/2022] Open
Abstract
Tight regulation of intracellular pH (pHi) is essential for biological processes. Fully grown oocytes, having a large nucleus called the germinal vesicle, arrest at meiotic prophase I. Upon hormonal stimulus, oocytes resume meiosis to become fertilizable. At this time, the pHi increases via Na+/H+ exchanger activity, although the regulation and function of this change remain obscure. Here, we show that in starfish oocytes, serum- and glucocorticoid-regulated kinase (SGK) is activated via PI3K/TORC2/PDK1 signaling after hormonal stimulus and that SGK is required for this pHi increase and cyclin B-Cdk1 activation. When we clamped the pHi at 6.7, corresponding to the pHi of unstimulated ovarian oocytes, hormonal stimulation induced cyclin B-Cdk1 activation; thereafter, oocytes failed in actin-dependent chromosome transport and spindle assembly after germinal vesicle breakdown. Thus, this SGK-dependent pHi increase is likely a prerequisite for these events in ovarian oocytes. We propose a model that SGK drives meiotic resumption via concomitant regulation of the pHi and cell cycle machinery.
Collapse
Affiliation(s)
- Enako Hosoda
- Department of Biological Sciences, Ochanomizu University, Tokyo, Japan
| | - Daisaku Hiraoka
- Science and Education Center, Ochanomizu University, Tokyo, Japan
| | | | - Saki Omi
- Department of Biological Sciences, Ochanomizu University, Tokyo, Japan
| | - Takeo Kishimoto
- Science and Education Center, Ochanomizu University, Tokyo, Japan
| | - Kazuyoshi Chiba
- Department of Biological Sciences, Ochanomizu University, Tokyo, Japan
| |
Collapse
|
3
|
Starfish Apaf-1 activates effector caspase-3/9 upon apoptosis of aged eggs. Sci Rep 2018; 8:1611. [PMID: 29371610 PMCID: PMC5785508 DOI: 10.1038/s41598-018-19845-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/09/2018] [Indexed: 11/29/2022] Open
Abstract
Caspase-3-related DEVDase activity is initiated upon apoptosis in unfertilized starfish eggs. In this study, we cloned a starfish procaspase-3 corresponding to mammalian effector caspase containing a CARD that is similar to the amino terminal CARD of mammalian capsase-9, and we named it procaspase-3/9. Recombinant procaspase-3/9 expressed at 15 °C was cleaved to form active caspase-3/9 which has DEVDase activity. Microinjection of the active caspase-3/9 into starfish oocytes/eggs induced apoptosis. An antibody against the recombinant protein recognized endogenous procaspase-3/9 in starfish oocytes, which was cleaved upon apoptosis in aged unfertilized eggs. These results indicate that caspase-3/9 is an effector caspase in starfish. To verify the mechanism of caspase-3/9 activation, we cloned starfish Apaf-1 containing a CARD, a NOD, and 11 WD40 repeat regions, and we named it sfApaf-1. Recombinant sfApaf-1 CARD interacts with recombinant caspase-3/9 CARD and with endogenous procaspase-3/9 in cell-free preparations made from starfish oocytes, causing the formation of active caspase-3/9. When the cell-free preparation without mitochondria was incubated with inactive recombinant procaspase-3/9 expressed at 37 °C, DEVDase activity increased and apoptosome-like complexes were formed in the high molecular weight fractions containing both sfApaf-1 and cleaved caspase-3/9. These results suggest that sfApaf-1 activation is not dependent on cytochrome c.
Collapse
|
4
|
Toraya T, Kuyama A, Tanaka S, Yamamoto M, Ohmiya T, Saito Y, Tanabe T. Affinity chromatography of a binder of 1-methyladenine, the maturation-inducing hormone for starfish oocytes. Biochem Biophys Res Commun 2017; 486:1055-1061. [PMID: 28366629 DOI: 10.1016/j.bbrc.2017.03.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 03/30/2017] [Indexed: 10/19/2022]
Abstract
Starfish oocytes are arrested at the prophase stage of the first meiotic division in the ovary. They resume meiosis by the stimulus of 1-methyladenine (1-MeAde), the maturation-inducing hormone for starfish oocytes. Putative 1-MeAde receptors have been suggested to be present on the oocyte surface, but not yet been characterized biochemically. As reported recently (T. Toraya, T. Kida, A. Kuyama, S. Matsuda, S. Tanaka, Y. Komatsu, T. Tsurukai, Biochem. Biophys. Res. Commun. 485 (2017) 41-46), it became possible to detect unknown 1-MeAde binders of starfish oocytes by immunophotoaffinity labeling, i.e., photoaffinity labeling combined with immunochemical detection. We designed and synthesized water-soluble and insoluble polymer-bound 1-MeAde derivatives. A water-soluble polymer-bound 1-MeAde derivative, in which 1-MeAde is bound to dextran through an N6-substituent, triggered the germinal-vesicle breakdown toward follicle-free oocytes, dejellied oocytes, and denuded oocytes. This is consistent with the idea that putative 1-MeAde receptors are located on the cell surface of starfish oocytes. A water-insoluble polymer-bound 1-MeAde derivative, in which 1-MeAde is bound to Sepharose 4B through an N6-substituent, served as an effective affinity adsorbent for the partial purification of a 1-MeAde binder with Mr of 47.5 K that might be a possible candidate of the maturation-inducing hormone receptors of starfish oocytes.
Collapse
Affiliation(s)
- Tetsuo Toraya
- Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| | - Atsushi Kuyama
- Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Seiichi Tanaka
- Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Masatoyo Yamamoto
- Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Tadamasa Ohmiya
- Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yuri Saito
- Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Tomoko Tanabe
- Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
5
|
Toraya T, Kida T, Kuyama A, Matsuda S, Tanaka S, Komatsu Y, Tsurukai T. Immunophotoaffinity labeling of binders of 1-methyladenine, the oocyte maturation-inducing hormone of starfish. Biochem Biophys Res Commun 2017; 485:41-46. [PMID: 28174006 DOI: 10.1016/j.bbrc.2017.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/03/2017] [Indexed: 10/20/2022]
Abstract
Starfish oocytes are arrested at the prophase stage of the first meiotic division in the ovary and resume meiosis by the stimulus of 1-methyladenine (1-MeAde), the oocyte maturation-inducing hormone of starfish. Putative 1-MeAde receptors on the oocyte surface have been suggested, but not yet been biochemically characterized. Immunophotoaffinity labeling, i.e., photoaffinity labeling combined with immunochemical detection, was attempted to detect unknown 1-MeAde binders including putative maturation-inducing hormone receptors in starfish oocytes. When the oocyte crude membrane fraction or its Triton X-100/EDTA extract was incubated with N6-[6-(5-azido-2-nitrobenzoyl)aminohexyl]carboxamidomethyl-1-methyladenine and then photo-irradiated, followed by western blotting with antibody that was raised against a 1-MeAde hapten, a single band with Mr of 47.5 K was detected. The band was lost when extract was heated at 100 °C. A similar 47.5 K band was detected in the crude membrane fraction of testis as well. Upon labeling with whole cells, this band was detected in immature and maturing oocytes, but only faintly in mature oocytes. As judged from these results, this 1-MeAde binder might be a possible candidate of the starfish maturation-inducing hormone receptors.
Collapse
Affiliation(s)
- Tetsuo Toraya
- Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| | - Tetsuo Kida
- Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Atsushi Kuyama
- Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Shinjiro Matsuda
- Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Seiichi Tanaka
- Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yo Komatsu
- Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Taro Tsurukai
- Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
6
|
Mita M. Inhibitory mechanism of l
-glutamic acid on spawning of the starfish Patiria
(Asterina
) pectinifera. Mol Reprod Dev 2017; 84:246-256. [DOI: 10.1002/mrd.22769] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/17/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Masatoshi Mita
- Department of Biology; Faculty of Education; Tokyo Gakugei University; Koganei Tokyo Japan
| |
Collapse
|
7
|
Hiraoka D, Aono R, Hanada SI, Okumura E, Kishimoto T. Two new competing pathways establish the threshold for cyclin-B-Cdk1 activation at the meiotic G2/M transition. J Cell Sci 2016; 129:3153-66. [PMID: 27390173 PMCID: PMC5004895 DOI: 10.1242/jcs.182170] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 07/01/2016] [Indexed: 01/14/2023] Open
Abstract
Extracellular ligands control biological phenomena. Cells distinguish physiological stimuli from weak noise stimuli by establishing a ligand-concentration threshold. Hormonal control of the meiotic G2/M transition in oocytes is essential for reproduction. However, the mechanism for threshold establishment is unclear. In starfish oocytes, maturation-inducing hormones activate the PI3K–Akt pathway through the Gβγ complex of heterotrimeric G-proteins. Akt directly phosphorylates both Cdc25 phosphatase and Myt1 kinase, resulting in activation of cyclin-B–Cdk1, which then induces meiotic G2/M transition. Here, we show that cyclin-B–Cdk1 is partially activated after subthreshold hormonal stimuli, but this triggers negative feedback, resulting in dephosphorylation of Akt sites on Cdc25 and Myt1, thereby canceling the signal. We also identified phosphatase activity towards Akt substrates that exists independent of stimuli. In contrast to these negative regulatory activities, an atypical Gβγ-dependent pathway enhances PI3K–Akt-dependent phosphorylation. Based on these findings, we propose a model for threshold establishment in which hormonal dose-dependent competition between these new pathways establishes a threshold; the atypical Gβγ-pathway becomes predominant over Cdk-dependent negative feedback when the stimulus exceeds this threshold. Our findings provide a regulatory connection between cell cycle and signal transduction machineries. Summary: Ligand–dose thresholds control ligand-dependent responses. To establish the hormonal threshold for driving meiosis, a stimulus-dependent positive regulatory pathway competes against negative feedback from cell cycle machinery.
Collapse
Affiliation(s)
- Daisaku Hiraoka
- Science and Education Center, Ochanomizu University, Tokyo 112-8610, Japan
| | - Ryota Aono
- Laboratory of Cell and Developmental Biology, Graduate School of Bioscience, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Shin-Ichiro Hanada
- Laboratory of Cell and Developmental Biology, Graduate School of Bioscience, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Eiichi Okumura
- Laboratory of Cell and Developmental Biology, Graduate School of Bioscience, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Takeo Kishimoto
- Science and Education Center, Ochanomizu University, Tokyo 112-8610, Japan Laboratory of Cell and Developmental Biology, Graduate School of Bioscience, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| |
Collapse
|
8
|
Ochi H, Chiba K. Hormonal stimulation of starfish oocytes induces partial degradation of the 3' termini of cyclin B mRNAs with oligo(U) tails, followed by poly(A) elongation. RNA (NEW YORK, N.Y.) 2016; 22:822-829. [PMID: 27048146 PMCID: PMC4878609 DOI: 10.1261/rna.054882.115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 03/07/2016] [Indexed: 05/30/2023]
Abstract
In yeast, plant, and mammalian somatic cells, short poly(A) tails on mRNAs are subject to uridylation, which mediates mRNA decay. Although mRNA uridylation has never been reported in animal oocytes, maternal mRNAs with short poly(A) tails are believed to be translationally repressed. In this study, we found that 96% of cyclin B mRNAs with short poly(A) tails were uridylated in starfish oocytes. Hormonal stimulation induced poly(A) elongation of cyclin B mRNA, and 62% of long adenine repeats did not contain uridine residues. To determine whether uridylated short poly(A) tails destabilize cyclin B mRNA, we developed a method for producing RNAs with the strict 3' terminal sequences of cyclin B, with or without oligo(U) tails. When we injected these synthetic RNAs into starfish oocytes prior to hormonal stimulation, we found that uridylated RNAs were as stable as nonuridylated RNAs. Following hormonal stimulation, the 3' termini of short poly(A) tails of synthesized RNAs containing oligo(U) tails were trimmed, and their poly(A) tails were subsequently elongated. These results indicate that uridylation of short poly(A) tails in cyclin B mRNA of starfish oocytes does not mediate mRNA decay; instead, hormonal stimulation induces partial degradation of uridylated short poly(A) tails in the 3'-5' direction, followed by poly(A) elongation. Oligo(U) tails may be involved in translational inactivation of mRNAs.
Collapse
Affiliation(s)
- Hiroe Ochi
- Department of Biological Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Kazuyoshi Chiba
- Department of Biological Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan
| |
Collapse
|
9
|
Mita M. Release of Relaxin-Like Gonad-Stimulating Substance from Starfish Radial Nerves by lonomycin. Zoolog Sci 2013; 30:602-6. [DOI: 10.2108/zsj.30.602] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Zheng W, Nagaraju G, Liu Z, Liu K. Functional roles of the phosphatidylinositol 3-kinases (PI3Ks) signaling in the mammalian ovary. Mol Cell Endocrinol 2012; 356:24-30. [PMID: 21684319 DOI: 10.1016/j.mce.2011.05.027] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 05/10/2011] [Indexed: 12/31/2022]
Abstract
Phosphatidylinositol 3-kinase (PI3K) signaling is a fundamental pathway for the regulation of cell proliferation, survival, migration, and metabolism in a variety of physiological and pathological processes. In recent years information provided by genetically modified mouse models has revealed that PI3K signaling plays vital roles in oogenesis, folliculogenesis, ovulation, and carcinogenesis in mouse ovary. In this review, we summarize (1) the physiological function of intra-oocyte PI3K signaling in regulation of primordial follicle survival and activation; (2) intra-granulosa cell PI3K signaling in regulation of cyclic follicular recruitment and ovulation; (3) intra-oocyte PI3K signaling in regulation of meiosis resumption and early embryogenesis; and also (4) the pathological function of PI3K signaling in ovarian diseases such as premature ovarian failure, granulosa cell tumors, and ovarian surface epithelium carcinomas. This updated info hopefully will lead to a better understanding of the human ovary and provide potential therapies for treating human infertility.
Collapse
Affiliation(s)
- Wenjing Zheng
- Department of Cell and Molecular Biology, University of Gothenburg, Gothenburg SE-40530, Sweden.
| | | | | | | |
Collapse
|
11
|
Kishimoto T. A primer on meiotic resumption in starfish oocytes: the proposed signaling pathway triggered by maturation-inducing hormone. Mol Reprod Dev 2011; 78:704-7. [PMID: 21714029 DOI: 10.1002/mrd.21343] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Accepted: 05/22/2011] [Indexed: 11/06/2022]
Abstract
This short review updates the maturation-inducing hormonal signaling in starfish oocytes. In this system, the activation of cyclin B-Cdc2 kinase (Cdk1) that leads to meiotic resumption does not require new protein synthesis. The key intracellular mediator after hormonal stimulation by 1-methyladenine is the protein kinase Akt/PKB, which in turn directly downregulates Myt1 and upregulates Cdc25 toward the activation of cyclin B-Cdc2. Mitotic kinases including Aurora, Plk1 and Greatwall are activated downstream of cyclin B-Cdc2. The starfish oocyte thus provides a simple model system for the study of meiotic resumption.
Collapse
Affiliation(s)
- Takeo Kishimoto
- Laboratory of Cell and Developmental Biology, Graduate School of Bioscience, Tokyo Institute of Technology, Nagatsuta, Midoriku, Yokohama, Japan.
| |
Collapse
|
12
|
Turn motif phosphorylation negatively regulates activation loop phosphorylation in Akt. Oncogene 2011; 30:4487-97. [PMID: 21577208 DOI: 10.1038/onc.2011.155] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Akt, also known as protein kinase B, has a central role in various signaling pathways that regulate cellular processes such as metabolism, proliferation and survival. On stimulation, phosphorylation of the activation loop (A-loop) and hydrophobic motif (HM) of Akt by the kinase phosphoinositide-dependent kinase 1 (PDK1) and the mammalian target of rapamycin complex 2 (mTORC2), respectively, results in Akt activation. A well-conserved threonine in the turn motif (TM) is also constitutively phosphorylated by mTORC2 and contributes to the stability of Akt. The role of TM phosphorylation in HM and A-loop phosphorylation has not been sufficiently evaluated. Using starfish oocytes as a model system, this study provides the first evidence that TM phosphorylation has a negative role in A-loop phosphorylation. In this system, the maturation-inducing hormone, 1-methyladenine, stimulates Akt to reinitiate meiosis through activation of cyclin B-Cdc2. The phosphorylation status of Akt was monitored via introduction of exogenous human Akt (hAkt) in starfish oocytes. TM and HM phosphorylation was inhibited by microinjection of an anti-starfish TOR antibody, but not by rapamycin treatment, suggesting that both phosphorylation events depend on TORC2, as reported in mammalian cells. A single or double alanine substitution at each of three phosphorylation residues revealed that TM phosphorylation renders Akt susceptible to dephosphorylation on the A-loop. When A-loop phosphatase was inhibited by okadaic acid (OA), TM phosphorylation still reduced A-loop phosphorylation, suggesting that the effect is caused at least partially through reduction of sensitivity to PDK1. Negative regulation by TM phosphorylation was also observed in constitutively active Akt and was functionally reflected in meiosis resumption. By contrast, HM phosphorylation enhanced A-loop phosphorylation and achieved full activation of Akt via a mechanism at least partially independent of TM phosphorylation. These observations provide new insight into the mechanism controlling Akt phosphorylation in the cell.
Collapse
|
13
|
Mommens M, Fernandes JM, Bizuayehu TT, Bolla SL, Johnston IA, Babiak I. Maternal gene expression in Atlantic halibut (Hippoglossus hippoglossus L.) and its relation to egg quality. BMC Res Notes 2010; 3:138. [PMID: 20497529 PMCID: PMC2897799 DOI: 10.1186/1756-0500-3-138] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 05/24/2010] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The commercial production of Atlantic halibut (Hippoglossus hippoglossus L.) suffers from a major bottleneck due to the low success of producing juveniles for on-growing. Atlantic halibut females are routinely hand-stripped and incorrect timing of stripping can result in low quality eggs due to post-ovulatory aging. Post-ovulatory aging leads to compositional changes in eggs that include maternally provided proteins and RNAs. There have been few studies of the maternally provided mRNA transcripts that control early development in commercially important fish species. The present study aimed to study maternal gene expression in Atlantic halibut and its relation to egg quality parameters including blastomere symmetry and hatching success. RESULTS A maternal EST library containing 2341 sequences was constructed by suppressive subtractive hybridisation. Thirty genes were selected for expression studies; 23 novel genes and 7 genes with documented roles in early development. The expressions of twenty-one selected genes were measured by qPCR from fertilization to the 10-somite stage. Three genes were identified as strictly maternal genes that were expressed until the start of gastrulation; askopos (kop), si:dkey-30j22.9 (Tudor family member), and Tudor 5 protein (Tdrd5). The expressions of 18 genes at the 8-cell stage were correlated with egg quality parameters. The majority of genes showed either no or very minor correlations with egg quality parameter. However, two genes correlated positively with hatching success (r> 0.50, HHC00353: r = 0.58, p < 0.01; HHC01517: r = 0.56, p < 0.01) and one gene (HHC00255) was negatively correlated with the percentage of normal blastomeres (r = -0.62, p < 0.05). CONCLUSIONS During this study we have related maternal levels of gene expression to hatching success in fish. Poor hatching success was not correlated with a general decrease in transcript abundance but with low transcript levels of some specific genes. Thus, the molecular mechanisms leading to low Atlantic halibut egg quality cannot be entirely explained by post-ovulatory aging.
Collapse
Affiliation(s)
- Maren Mommens
- Faculty of Biosciences and Aquaculture, Bodø University College, N-8049 Bodø, Norway.
| | | | | | | | | | | |
Collapse
|
14
|
Kato S, Tsurumaru S, Taga M, Yamane T, Shibata Y, Ohno K, Fujiwara A, Yamano K, Yoshikuni M. Neuronal peptides induce oocyte maturation and gamete spawning of sea cucumber, Apostichopus japonicus. Dev Biol 2009; 326:169-76. [DOI: 10.1016/j.ydbio.2008.11.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 10/20/2008] [Accepted: 11/05/2008] [Indexed: 11/26/2022]
|
15
|
Hirohashi N, Harada K, Chiba K. Hormone-induced cortical maturation ensures the slow block to polyspermy and does not couple with meiotic maturation in starfish. Dev Biol 2008; 318:194-202. [DOI: 10.1016/j.ydbio.2008.03.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2007] [Revised: 03/17/2008] [Accepted: 03/18/2008] [Indexed: 10/22/2022]
|
16
|
Pelech S, Jelinkova L, Susor A, Zhang H, Shi X, Pavlok A, Kubelka M, Kovarova H. Antibody Microarray Analyses of Signal Transduction Protein Expression and Phosphorylation during Porcine Oocyte Maturation. J Proteome Res 2008; 7:2860-71. [DOI: 10.1021/pr800082a] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Steven Pelech
- Kinexus Bioinformatics Corporation, Suite 1, 8755 Ash Street, Vancouver, BC, Canada V6P 6T3, Department of Medicine, University of British Columbia, Vancouver, BC, Canada, and Department of Reproductive and Developmental Biology, Institute of Animal Physiology and Genetics, Rumburska 89, Libechov, Czech Republic
| | - Lucie Jelinkova
- Kinexus Bioinformatics Corporation, Suite 1, 8755 Ash Street, Vancouver, BC, Canada V6P 6T3, Department of Medicine, University of British Columbia, Vancouver, BC, Canada, and Department of Reproductive and Developmental Biology, Institute of Animal Physiology and Genetics, Rumburska 89, Libechov, Czech Republic
| | - Andrej Susor
- Kinexus Bioinformatics Corporation, Suite 1, 8755 Ash Street, Vancouver, BC, Canada V6P 6T3, Department of Medicine, University of British Columbia, Vancouver, BC, Canada, and Department of Reproductive and Developmental Biology, Institute of Animal Physiology and Genetics, Rumburska 89, Libechov, Czech Republic
| | - Hong Zhang
- Kinexus Bioinformatics Corporation, Suite 1, 8755 Ash Street, Vancouver, BC, Canada V6P 6T3, Department of Medicine, University of British Columbia, Vancouver, BC, Canada, and Department of Reproductive and Developmental Biology, Institute of Animal Physiology and Genetics, Rumburska 89, Libechov, Czech Republic
| | - Xiaoqing Shi
- Kinexus Bioinformatics Corporation, Suite 1, 8755 Ash Street, Vancouver, BC, Canada V6P 6T3, Department of Medicine, University of British Columbia, Vancouver, BC, Canada, and Department of Reproductive and Developmental Biology, Institute of Animal Physiology and Genetics, Rumburska 89, Libechov, Czech Republic
| | - Antonin Pavlok
- Kinexus Bioinformatics Corporation, Suite 1, 8755 Ash Street, Vancouver, BC, Canada V6P 6T3, Department of Medicine, University of British Columbia, Vancouver, BC, Canada, and Department of Reproductive and Developmental Biology, Institute of Animal Physiology and Genetics, Rumburska 89, Libechov, Czech Republic
| | - Michal Kubelka
- Kinexus Bioinformatics Corporation, Suite 1, 8755 Ash Street, Vancouver, BC, Canada V6P 6T3, Department of Medicine, University of British Columbia, Vancouver, BC, Canada, and Department of Reproductive and Developmental Biology, Institute of Animal Physiology and Genetics, Rumburska 89, Libechov, Czech Republic
| | - Hana Kovarova
- Kinexus Bioinformatics Corporation, Suite 1, 8755 Ash Street, Vancouver, BC, Canada V6P 6T3, Department of Medicine, University of British Columbia, Vancouver, BC, Canada, and Department of Reproductive and Developmental Biology, Institute of Animal Physiology and Genetics, Rumburska 89, Libechov, Czech Republic
| |
Collapse
|
17
|
Gaffré M, Dupré A, Valuckaite R, Suziedelis K, Jessus C, Haccard O. Deciphering the H-Ras pathway in Xenopus oocyte. Oncogene 2006; 25:5155-62. [PMID: 16607282 DOI: 10.1038/sj.onc.1209523] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Xenopus oocytes are arrested in prophase of the first meiotic division. In response to progesterone, they re-enter meiosis and arrest again in metaphase of the second meiotic division. This process, called meiotic maturation, is under the control of the Cyclin B-Cdc2 complex, M phase promoting factor (MPF). Injection of a constitutively active Xenopus H-Ras protein activates MPF, suggesting that Ras proteins could be implicated in the progesterone transduction pathway. The aim of this study was (1) to elucidate the pathway triggered by H-Ras leading to MPF activation in Xenopus oocytes and (2) to investigate whether endogenous H-Ras is involved in the physiological process of meiotic maturation. We generated three constitutively active double mutants, each of them recruiting a single effector in mammalian cells, mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K) or RalGDS. Our results show that the activation of a PI3K-related enzyme is crucial for H-Ras-induced MPF activation, whereas the recruitment of either MAPK or RalGDS is not. However, although the H-Ras/PI3K pathway is functional in Xenopus oocytes, it is not the physiological transducer of progesterone responsible for meiotic resumption.
Collapse
Affiliation(s)
- M Gaffré
- Laboratoire de Biologie du Développement, UMR-CNRS 7622, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | |
Collapse
|
18
|
Kalous J, Solc P, Baran V, Kubelka M, Schultz RM, Motlik J. PKB/AKT is involved in resumption of meiosis in mouse oocytes. Biol Cell 2006; 98:111-23. [PMID: 15842198 DOI: 10.1042/bc20050020] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION In fully grown mouse oocytes, a decrease in cAMP concentration precedes and is linked to CDK1 (cyclin-dependent kinase 1) activation. The molecular mechanism for this coupling, however, is not defined. PKB (protein kinase B, also called AKT) is implicated in CDK1 activation in lower species. During resumption of meiosis in starfish oocytes, MYT1, a negative regulator of CDK1, is phosphorylated by PKB in an inhibitory manner. It can imply that PKB is also involved in CDK1 activation in mammalian oocytes. RESULTS We monitored activation of PKB and CDK1 during maturation of mouse oocytes. PKB phosphorylation and activation preceded GVBD (germinal vesicle breakdown) in oocytes maturing either in vitro or in vivo. Activation was transient and PKB activity was markedly reduced when virtually all of the oocytes had undergone GVBD. PKB activation was independent of CDK1 activity, because although butyrolactone I prevented CDK1 activation and GVBD, PKB was nevertheless transiently phosphorylated and activated. LY-294002, an inhibitor of phosphoinositide 3-kinase-PKB signalling, suppressed activation of PKB and CDK1 as well as resumption of meiosis. OA (okadaic acid)-sensitive phosphatases are involved in PKB-activity regulation, because OA induced PKB hyperphosphorylation. During resumption of meiosis, PKB phosphorylated on Ser(473) is associated with nuclear membrane and centrosome, whereas PKB phosphorylated on Thr(308) is localized on centrosome only. CONCLUSIONS The results of the present paper indicate that PKB is involved in CDK1 activation and resumption of meiosis in mouse oocytes. The presence of phosphorylated PKB on centrosome at the time of GVBD suggests its important role for an initial CDK1 activation.
Collapse
Affiliation(s)
- Jaroslav Kalous
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburska 89, 277 21 Libechov, Czech Republic.
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Fertilization calcium waves are introduced, and the evidence from which we can infer general mechanisms of these waves is presented. The two main classes of hypotheses put forward to explain the generation of the fertilization calcium wave are set out, and it is concluded that initiation of the fertilization calcium wave can be most generally explained in invertebrates by a mechanism in which an activating substance enters the egg from the sperm on sperm-egg fusion, activating the egg by stimulating phospholipase C activation through a src family kinase pathway and in mammals by the diffusion of a sperm-specific phospholipase C from sperm to egg on sperm-egg fusion. The fertilization calcium wave is then set into the context of cell cycle control, and the mechanism of repetitive calcium spiking in mammalian eggs is investigated. Evidence that calcium signals control cell division in early embryos is reviewed, and it is concluded that calcium signals are essential at all three stages of cell division in early embryos. Evidence that phosphoinositide signaling pathways control the resumption of meiosis during oocyte maturation is considered. It is concluded on balance that the evidence points to a need for phosphoinositide/calcium signaling during resumption of meiosis. Changes to the calcium signaling machinery occur during meiosis to enable the production of a calcium wave in the mature oocyte when it is fertilized; evidence that the shape and structure of the endoplasmic reticulum alters dynamically during maturation and after fertilization is reviewed, and the link between ER dynamics and the cytoskeleton is discussed. There is evidence that calcium signaling plays a key part in the development of patterning in early embryos. Morphogenesis in ascidian, frog, and zebrafish embryos is briefly described to provide the developmental context in which calcium signals act. Intracellular calcium waves that may play a role in axis formation in ascidian are discussed. Evidence that the Wingless/calcium signaling pathway is a strong ventralizing signal in Xenopus, mediated by phosphoinositide signaling, is adumbrated. The central role that calcium channels play in morphogenetic movements during gastrulation and in ectodermal and mesodermal gene expression during late gastrulation is demonstrated. Experiments in zebrafish provide a strong indication that calcium signals are essential for pattern formation and organogenesis.
Collapse
Affiliation(s)
- Michael Whitaker
- Institute of Cell & Molecular Biosciences, Faculty of Medical Sciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
20
|
Riley JK, Carayannopoulos MO, Wyman AH, Chi M, Ratajczak CK, Moley KH. The PI3K/Akt pathway is present and functional in the preimplantation mouse embryo. Dev Biol 2005; 284:377-86. [PMID: 16005454 DOI: 10.1016/j.ydbio.2005.05.033] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 05/24/2005] [Accepted: 05/25/2005] [Indexed: 11/19/2022]
Abstract
The PI3K/Akt signal transduction pathway is a well-known mediator of growth promoting and cell survival signals. While the expression and function of this pathway have been documented during early and late stages of the reproductive process, currently, there is no evidence demonstrating either the presence or function of the PI3K/Akt pathway in murine preimplantation embryos. We found, using confocal immunofluorescent microscopy and Western blot analysis, that the p 85 and p110 subunits of PI3K and Akt are expressed from the 1-cell through the blastocyst stage of murine preimplantation embryo development. These proteins were localized predominantly at the cell surface from the 1-cell through the morula stage. At a blastocyst stage, both PI3K and Akt exhibited an apical staining pattern in the trophectoderm cells. Interestingly, phosphorylated Akt was detected throughout murine preimplantation development, and its presence at the plasma membrane is a reflection of its activation status. Inhibition of Akt activity had significant effects on the normal physiology of the blastocyst. Specifically, inhibition of this pathway resulted in a reduction in insulin-stimulated glucose uptake. In addition, inhibiting Akt activity resulted in a significant delay in blastocyst hatching, a developmental step facilitating implantation. Finally, we established the presence of this pathway in trophoblast stem (TS) cells, a potentially useful in vitro model to study this signaling cascade. Taken together, these data are the first to demonstrate the presence and function of the PI3K/Akt pathway in mammalian preimplantation embryos.
Collapse
Affiliation(s)
- Joan K Riley
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
21
|
Lee SR, Park JH, Park EK, Chung CH, Kang SS, Bang OS. Akt-induced promotion of cell-cycle progression at G2/M phase involves upregulation of NF-Y binding activity in PC12 cells. J Cell Physiol 2005; 205:270-7. [PMID: 15887249 DOI: 10.1002/jcp.20395] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Akt is a key downstream effector of the PI3K signaling pathway and plays a role in cell growth and survival. Expression of a myristoylated constitutively active form of Akt (myr-Akt) in PC12 cells could override cell-growth arrest at G2/M phase and apoptosis that were induced by etoposide treatment. On the other hand, inactivation of Akt by expression of its dominant negative mutant form (km-Akt) inhibited cell proliferation by arresting the cells at G2/M phase. Expression of myr-Akt also led to an increase in the protein and mRNA levels of CDK1 and cyclin B1. Furthermore, EMSA data revealed that expression of myr-Akt promoted the binding of NF-Y to the consensus CCAAT promoter sequence, whereas expression of km-Akt almost completely abolished it. Moreover, the Akt activity was minimal in the cells that were arrested at G2/M phase by nocodazole treatment, but reached to a maximal level as the cells progressed to mitosis and G1 phase upon removal of the drug. Treatment with Akt inhibitors, but not with those of MEK or p70S6K, blocked the release of the cells from the nocodazole-induced G2/M arrest, further revealing that the Akt activity is required for G2/M phase transition. These results suggest that Akt facilitate cell-cycle progression at G2/M phase in PC12 cells and this Akt activity is correlated with upregulation of NF-Y DNA-binding activity and cyclin B1/CDK1 gene expression.
Collapse
Affiliation(s)
- Sun-Ryung Lee
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Korea
| | | | | | | | | | | |
Collapse
|