1
|
Lemaire LA, Cao C, Yoon PH, Long J, Levine M. The hypothalamus predates the origin of vertebrates. SCIENCE ADVANCES 2021; 7:7/18/eabf7452. [PMID: 33910896 PMCID: PMC8081355 DOI: 10.1126/sciadv.abf7452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/09/2021] [Indexed: 05/02/2023]
Abstract
The hypothalamus coordinates neuroendocrine functions in vertebrates. To explore its evolutionary origin, we describe integrated transcriptome/connectome brain maps for swimming tadpoles of Ciona, which serves as an approximation of the ancestral proto-vertebrate. This map features several cell types related to different regions of the vertebrate hypothalamus, including the mammillary nucleus, the arcuate nucleus, and magnocellular neurons. Coronet cells express melanopsin and share additional properties with the saccus vasculosus, a specialized region of the hypothalamus that mediates photoperiodism in nontropical fishes. Comparative transcriptome analyses identified orthologous cell types for mechanosensory switch neurons, and VP+ and VPR+ relay neurons in different regions of the mouse hypothalamus. These observations provide evidence that the hypothalamus predates the evolution of the vertebrate brain. We discuss the possibility that switch neurons, coronet cells, and FoxP+ /VPR+ relay neurons comprise a behavioral circuit that helps trigger metamorphosis of Ciona larvae in response to twilight.
Collapse
Affiliation(s)
- Laurence A Lemaire
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Chen Cao
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Peter H Yoon
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Juanjuan Long
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Michael Levine
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
2
|
Racioppi C, Wiechecki KA, Christiaen L. Combinatorial chromatin dynamics foster accurate cardiopharyngeal fate choices. eLife 2019; 8:49921. [PMID: 31746740 PMCID: PMC6952182 DOI: 10.7554/elife.49921] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/18/2019] [Indexed: 12/22/2022] Open
Abstract
During embryogenesis, chromatin accessibility profiles control lineage-specific gene expression by modulating transcription, thus impacting multipotent progenitor states and subsequent fate choices. Subsets of cardiac and pharyngeal/head muscles share a common origin in the cardiopharyngeal mesoderm, but the chromatin landscapes that govern multipotent progenitors competence and early fate choices remain largely elusive. Here, we leveraged the simplicity of the chordate model Ciona to profile chromatin accessibility through stereotyped transitions from naive Mesp+ mesoderm to distinct fate-restricted heart and pharyngeal muscle precursors. An FGF-Foxf pathway acts in multipotent progenitors to establish cardiopharyngeal-specific patterns of accessibility, which govern later heart vs. pharyngeal muscle-specific expression profiles, demonstrating extensive spatiotemporal decoupling between early cardiopharyngeal enhancer accessibility and late cell-type-specific activity. We found that multiple cis-regulatory elements, with distinct chromatin accessibility profiles and motif compositions, are required to activate Ebf and Tbx1/10, two key determinants of cardiopharyngeal fate choices. We propose that these 'combined enhancers' foster spatially and temporally accurate fate choices, by increasing the repertoire of regulatory inputs that control gene expression, through either accessibility and/or activity.
Collapse
Affiliation(s)
- Claudia Racioppi
- Center for Developmental Genetics, Department of Biology, New York University, New York, United States
| | - Keira A Wiechecki
- Center for Developmental Genetics, Department of Biology, New York University, New York, United States
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, United States
| |
Collapse
|
3
|
Razy-Krajka F, Stolfi A. Regulation and evolution of muscle development in tunicates. EvoDevo 2019; 10:13. [PMID: 31249657 PMCID: PMC6589888 DOI: 10.1186/s13227-019-0125-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/08/2019] [Indexed: 12/16/2022] Open
Abstract
For more than a century, studies on tunicate muscle formation have revealed many principles of cell fate specification, gene regulation, morphogenesis, and evolution. Here, we review the key studies that have probed the development of all the various muscle cell types in a wide variety of tunicate species. We seize this occasion to explore the implications and questions raised by these findings in the broader context of muscle evolution in chordates.
Collapse
Affiliation(s)
- Florian Razy-Krajka
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| |
Collapse
|
4
|
Kourakis MJ, Borba C, Zhang A, Newman-Smith E, Salas P, Manjunath B, Smith WC. Parallel visual circuitry in a basal chordate. eLife 2019; 8:44753. [PMID: 30998184 PMCID: PMC6499539 DOI: 10.7554/elife.44753] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/11/2019] [Indexed: 12/28/2022] Open
Abstract
A common CNS architecture is observed in all chordates, from vertebrates to basal chordates like the ascidian Ciona. Ciona stands apart among chordates in having a complete larval connectome. Starting with visuomotor circuits predicted by the Ciona connectome, we used expression maps of neurotransmitter use with behavioral assays to identify two parallel visuomotor circuits that are responsive to different components of visual stimuli. The first circuit is characterized by glutamatergic photoreceptors and responds to the direction of light. These photoreceptors project to cholinergic motor neurons, via two tiers of cholinergic interneurons. The second circuit responds to changes in ambient light and mediates an escape response. This circuit uses GABAergic photoreceptors which project to GABAergic interneurons, and then to cholinergic interneurons. Our observations on the behavior of larvae either treated with a GABA receptor antagonist or carrying a mutation that eliminates photoreceptors indicate the second circuit is disinhibitory.
Collapse
Affiliation(s)
- Matthew J Kourakis
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, United States
| | - Cezar Borba
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | - Angela Zhang
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, United States
| | - Erin Newman-Smith
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, United States.,Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | - Priscilla Salas
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| | - B Manjunath
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, United States
| | - William C Smith
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, United States.,Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, United States
| |
Collapse
|
5
|
Yu D, Oda-Ishii I, Kubo A, Satou Y. The regulatory pathway from genes directly activated by maternal factors to muscle structural genes in ascidian embryos. Development 2019; 146:dev.173104. [PMID: 30674480 DOI: 10.1242/dev.173104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/14/2019] [Indexed: 10/27/2022]
Abstract
Striated muscle cells in the tail of ascidian tadpole larvae differentiate cell-autonomously. Although several key regulatory factors have been identified, the genetic regulatory pathway is not fully understood; comprehensive understanding of the regulatory pathway is essential for accurate modeling in order to deduce principles for gene regulatory network dynamics, and for comparative analysis on how ascidians have evolved the cell-autonomous gene regulatory mechanism. Here, we reveal regulatory interactions among three key regulatory factors, Zic-r.b, Tbx6-r.b and Mrf, and elucidate the mechanism by which these factors activate muscle structural genes. We reveal a cross-regulatory circuit among these regulatory factors, which maintains the expression of Tbx6-r.b and Mrf during gastrulation. Although these two factors combinatorially activate muscle structural genes in late-stage embryos, muscle structural genes are activated mainly by Tbx6-r.b before gastrulation. Time points when expression of muscle structural genes become first detectable are strongly correlated with the degree of Tbx6-r.b occupancy. Thus, the genetic pathway, starting with Tbx6-r.b and Zic-r.b, which are activated by maternal factors, and ending with expression of muscle structural genes, has been revealed.
Collapse
Affiliation(s)
- Deli Yu
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Izumi Oda-Ishii
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Atsushi Kubo
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| |
Collapse
|
6
|
Sasakura Y. Cellulose production and the evolution of the sessile lifestyle in ascidians. ACTA ACUST UNITED AC 2018. [DOI: 10.4282/sosj.35.21] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Shimai K, Kusakabe TG. The Use of cis-Regulatory DNAs as Molecular Tools. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018. [DOI: 10.1007/978-981-10-7545-2_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Tolkin T, Christiaen L. Rewiring of an ancestral Tbx1/10-Ebf-Mrf network for pharyngeal muscle specification in distinct embryonic lineages. Development 2017; 143:3852-3862. [PMID: 27802138 DOI: 10.1242/dev.136267] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 08/30/2016] [Indexed: 01/01/2023]
Abstract
Skeletal muscles arise from diverse embryonic origins in vertebrates, yet converge on extensively shared regulatory programs that require muscle regulatory factor (MRF)-family genes. Myogenesis in the tail of the simple chordate Ciona exhibits a similar reliance on its single MRF-family gene, and diverse mechanisms activate Ci-Mrf Here, we show that myogenesis in the atrial siphon muscles (ASMs) and oral siphon muscles (OSMs), which control the exhalant and inhalant siphons, respectively, also requires Mrf We characterize the ontogeny of OSM progenitors and compare the molecular basis of Mrf activation in OSM versus ASM. In both muscle types, Ebf and Tbx1/10 are expressed and function upstream of Mrf However, we demonstrate that regulatory relationships between Tbx1/10, Ebf and Mrf differ between the OSM and ASM lineages. We propose that Tbx1, Ebf and Mrf homologs form an ancient conserved regulatory state for pharyngeal muscle specification, whereas their regulatory relationships might be more evolutionarily variable.
Collapse
Affiliation(s)
- Theadora Tolkin
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY 10003, USA
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
9
|
José-Edwards DS, Oda-Ishii I, Kugler JE, Passamaneck YJ, Katikala L, Nibu Y, Di Gregorio A. Brachyury, Foxa2 and the cis-Regulatory Origins of the Notochord. PLoS Genet 2015; 11:e1005730. [PMID: 26684323 PMCID: PMC4684326 DOI: 10.1371/journal.pgen.1005730] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/16/2015] [Indexed: 11/18/2022] Open
Abstract
A main challenge of modern biology is to understand how specific constellations of genes are activated to differentiate cells and give rise to distinct tissues. This study focuses on elucidating how gene expression is initiated in the notochord, an axial structure that provides support and patterning signals to embryos of humans and all other chordates. Although numerous notochord genes have been identified, the regulatory DNAs that orchestrate development and propel evolution of this structure by eliciting notochord gene expression remain mostly uncharted, and the information on their configuration and recurrence is still quite fragmentary. Here we used the simple chordate Ciona for a systematic analysis of notochord cis-regulatory modules (CRMs), and investigated their composition, architectural constraints, predictive ability and evolutionary conservation. We found that most Ciona notochord CRMs relied upon variable combinations of binding sites for the transcription factors Brachyury and/or Foxa2, which can act either synergistically or independently from one another. Notably, one of these CRMs contains a Brachyury binding site juxtaposed to an (AC) microsatellite, an unusual arrangement also found in Brachyury-bound regulatory regions in mouse. In contrast, different subsets of CRMs relied upon binding sites for transcription factors of widely diverse families. Surprisingly, we found that neither intra-genomic nor interspecific conservation of binding sites were reliably predictive hallmarks of notochord CRMs. We propose that rather than obeying a rigid sequence-based cis-regulatory code, most notochord CRMs are rather unique. Yet, this study uncovered essential elements recurrently used by divergent chordates as basic building blocks for notochord CRMs.
Collapse
Affiliation(s)
- Diana S. José-Edwards
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Izumi Oda-Ishii
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Jamie E. Kugler
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Yale J. Passamaneck
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Lavanya Katikala
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Yutaka Nibu
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Anna Di Gregorio
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
10
|
Yokomori R, Shimai K, Nishitsuji K, Suzuki Y, Kusakabe TG, Nakai K. Genome-wide identification and characterization of transcription start sites and promoters in the tunicate Ciona intestinalis. Genome Res 2015; 26:140-50. [PMID: 26668163 PMCID: PMC4691747 DOI: 10.1101/gr.184648.114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 10/13/2015] [Indexed: 02/05/2023]
Abstract
The tunicate Ciona intestinalis, an invertebrate chordate, has recently emerged as a powerful model organism for gene regulation analysis. However, few studies have been conducted to identify and characterize its transcription start sites (TSSs) and promoters at the genome-wide level. Here, using TSS-seq, we identified TSSs at the genome-wide scale and characterized promoters in C. intestinalis. Specifically, we identified TSS clusters (TSCs), high-density regions of TSS-seq tags, each of which appears to originate from an identical promoter. TSCs were found not only at known TSSs but also in other regions, suggesting the existence of many unknown transcription units in the genome. We also identified candidate promoters of 79 ribosomal protein (RP) genes, each of which had the major TSS in a polypyrimidine tract and showed a sharp TSS distribution like human RP gene promoters. Ciona RP gene promoters, however, did not appear to have typical TATA boxes, unlike human RP gene promoters. In Ciona non-RP promoters, two pyrimidine-purine dinucleotides, CA and TA, were frequently used as TSSs. Despite the absence of CpG islands, Ciona TATA-less promoters showed low expression specificity like CpG-associated human TATA-less promoters. By using TSS-seq, we also predicted trans-spliced gene TSSs and found that their downstream regions had higher G+T content than those of non-trans-spliced gene TSSs. Furthermore, we identified many putative alternative promoters, some of which were regulated in a tissue-specific manner. Our results provide valuable information about TSSs and promoter characteristics in C. intestinalis and will be helpful in future analysis of transcriptional regulation in chordates.
Collapse
Affiliation(s)
- Rui Yokomori
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8568, Japan
| | - Kotaro Shimai
- Institute for Integrative Neurobiology, Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan
| | - Koki Nishitsuji
- Graduate School of Life Science, University of Hyogo, Kamigori, Hyogo 678-1297, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8568, Japan
| | - Takehiro G Kusakabe
- Institute for Integrative Neurobiology, Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan; Department of Biology, Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan
| | - Kenta Nakai
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8568, Japan; Institute for Integrative Neurobiology, Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan; Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
11
|
Stefanakis N, Carrera I, Hobert O. Regulatory Logic of Pan-Neuronal Gene Expression in C. elegans. Neuron 2015; 87:733-50. [PMID: 26291158 DOI: 10.1016/j.neuron.2015.07.031] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/01/2015] [Accepted: 07/20/2015] [Indexed: 01/03/2023]
Abstract
While neuronal cell types display an astounding degree of phenotypic diversity, most if not all neuron types share a core panel of terminal features. However, little is known about how pan-neuronal expression patterns are genetically programmed. Through an extensive analysis of the cis-regulatory control regions of a battery of pan-neuronal C. elegans genes, including genes involved in synaptic vesicle biology and neuropeptide signaling, we define a common organizational principle in the regulation of pan-neuronal genes in the form of a surprisingly complex array of seemingly redundant, parallel-acting cis-regulatory modules that direct expression to broad, overlapping domains throughout the nervous system. These parallel-acting cis-regulatory modules are responsive to a multitude of distinct trans-acting factors. Neuronal gene expression programs therefore fall into two fundamentally distinct classes. Neuron-type-specific genes are generally controlled by discrete and non-redundantly acting regulatory inputs, while pan-neuronal gene expression is controlled by diverse, coincident and seemingly redundant regulatory inputs.
Collapse
Affiliation(s)
- Nikolaos Stefanakis
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University Medical Center, New York, NY, USA
| | - Ines Carrera
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University Medical Center, New York, NY, USA
| | - Oliver Hobert
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
12
|
Hozumi A, Horie T, Sasakura Y. Neuronal map reveals the highly regionalized pattern of the juvenile central nervous system of the ascidian Ciona intestinalis. Dev Dyn 2015; 244:1375-93. [PMID: 26250096 DOI: 10.1002/dvdy.24317] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/28/2015] [Accepted: 08/02/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The dorsally located central nervous system (CNS) is an important hallmark of chordates. Among chordates, tunicate ascidians change their CNS remarkably by means of a metamorphosis from a highly regionalized larval CNS to an oval-shaped juvenile CNS without prominent morphological features. The neuronal organization of the CNS of ascidian tadpole larvae has been well described, but that in the CNS of postmetamorphosis juveniles has not been characterized well. RESULTS We investigated the number of neural cells, the number and position of differentiated neurons, and their axonal trajectories in the juvenile CNS of the ascidian Ciona intestinalis. The cell bodies of cholinergic, glutamatergic, and GABAergic/glycinergic neurons exhibited different localization patterns along the anterior-posterior axis in the juvenile CNS. Cholinergic neurons extended their axons toward the oral, atrial and body wall muscles and pharyngeal gill to regulate muscle contraction and ciliary movement. CONCLUSIONS Unlike its featureless shape, the juvenile CNS is highly patterned along the anterior-posterior axis. This patterning may be necessary for exerting multiple roles in the regulation of adult tissues distributed throughout the body. This basic information of the juvenile CNS of Ciona will allow in-depth studies of molecular mechanisms underlying the reconstruction of the CNS during ascidian metamorphosis.
Collapse
Affiliation(s)
- Akiko Hozumi
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| | - Takeo Horie
- Japan Science and Technology Agency, PRESTO, Honcho, Kawaguchi, Saitama, Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| |
Collapse
|
13
|
Irvine SQ. Study of Cis-regulatory Elements in the Ascidian Ciona intestinalis. Curr Genomics 2013; 14:56-67. [PMID: 23997651 PMCID: PMC3580780 DOI: 10.2174/138920213804999192] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Revised: 12/30/2012] [Accepted: 01/01/2013] [Indexed: 01/31/2023] Open
Abstract
The ascidian (sea squirt) C. intestinalis has become an important model organism for the study of cis-regulation. This is largely due to the technology that has been developed for assessing cis-regulatory activity through the use of transient reporter transgenes introduced into fertilized eggs. This technique allows the rapid and inexpensive testing of endogenous or altered DNA for regulatory activity in vivo. This review examines evidence that C. intestinaliscis-regulatory elements are located more closely to coding regions than in other model organisms. I go on to compare the organization of cis-regulatory elements and conserved non-coding sequences in Ciona, mammals, and other deuterostomes for three representative C.intestinalis genes, Pax6, FoxAa, and the DlxA-B cluster, along with homologs in the other species. These comparisons point out some of the similarities and differences between cis-regulatory elements and their study in the various model organisms. Finally, I provide illustrations of how C. intestinalis lends itself to detailed study of the structure of cis-regulatory elements, which have led, and promise to continue to lead, to important insights into the fundamentals of transcriptional regulation.
Collapse
Affiliation(s)
- Steven Q Irvine
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
14
|
Izzi SA, Colantuono BJ, Sullivan K, Khare P, Meedel TH. Functional studies of the Ciona intestinalis myogenic regulatory factor reveal conserved features of chordate myogenesis. Dev Biol 2013; 376:213-23. [PMID: 23391688 DOI: 10.1016/j.ydbio.2013.01.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/08/2013] [Accepted: 01/24/2013] [Indexed: 10/27/2022]
Abstract
Ci-MRF is the sole myogenic regulatory factor (MRF) of the ascidian Ciona intestinalis, an invertebrate chordate. In order to investigate its properties we developed a simple in vivo assay based on misexpressing Ci-MRF in the notochord of Ciona embryos. We used this assay to examine the roles of three structural motifs that are conserved among MRFs: an alanine-threonine (Ala-Thr) dipeptide of the basic domain that is known in vertebrates as the myogenic code, a cysteine/histidine-rich (C/H) domain found just N-terminal to the basic domain, and a carboxy-terminal amphipathic α-helix referred to as Helix III. We show that the Ala-Thr dipeptide is necessary for normal Ci-MRF function, and that while eliminating the C/H domain or Helix III individually has no demonstrable effect on Ci-MRF, simultaneous loss of both motifs significantly reduces its activity. Our studies also indicate that direct interaction between CiMRF and an essential E-box of Ciona Troponin I is required for the expression of this muscle-specific gene and that multiple classes of MRF-regulated genes exist in Ciona. These findings are consistent with substantial conservation of MRF-directed myogenesis in chordates and demonstrate for the first time that the Ala/Thr dipeptide of the basic domain of an invertebrate MRF behaves as a myogenic code.
Collapse
Affiliation(s)
- Stephanie A Izzi
- Department of Biology, Rhode Island College, Providence, RI 02908, USA
| | | | | | | | | |
Collapse
|
15
|
Woznica A, Haeussler M, Starobinska E, Jemmett J, Li Y, Mount D, Davidson B. Initial deployment of the cardiogenic gene regulatory network in the basal chordate, Ciona intestinalis. Dev Biol 2012; 368:127-39. [PMID: 22595514 DOI: 10.1016/j.ydbio.2012.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 04/26/2012] [Accepted: 05/04/2012] [Indexed: 12/31/2022]
Abstract
The complex, partially redundant gene regulatory architecture underlying vertebrate heart formation has been difficult to characterize. Here, we dissect the primary cardiac gene regulatory network in the invertebrate chordate, Ciona intestinalis. The Ciona heart progenitor lineage is first specified by Fibroblast Growth Factor/Map Kinase (FGF/MapK) activation of the transcription factor Ets1/2 (Ets). Through microarray analysis of sorted heart progenitor cells, we identified the complete set of primary genes upregulated by FGF/Ets shortly after heart progenitor emergence. Combinatorial sequence analysis of these co-regulated genes generated a hypothetical regulatory code consisting of Ets binding sites associated with a specific co-motif, ATTA. Through extensive reporter analysis, we confirmed the functional importance of the ATTA co-motif in primary heart progenitor gene regulation. We then used the Ets/ATTA combination motif to successfully predict a number of additional heart progenitor gene regulatory elements, including an intronic element driving expression of the core conserved cardiac transcription factor, GATAa. This work significantly advances our understanding of the Ciona heart gene network. Furthermore, this work has begun to elucidate the precise regulatory architecture underlying the conserved, primary role of FGF/Ets in chordate heart lineage specification.
Collapse
Affiliation(s)
- Arielle Woznica
- Department of Molecular and Cellular Biology, Molecular Cardiovascular Research Program, University of Arizona, Arizona 85724, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Nishitsuji K, Horie T, Ichinose A, Sasakura Y, Yasuo H, Kusakabe TG. Cell lineage and cis-regulation for a unique GABAergic/glycinergic neuron type in the larval nerve cord of the ascidian Ciona intestinalis. Dev Growth Differ 2012; 54:177-86. [DOI: 10.1111/j.1440-169x.2011.01319.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
17
|
Abstract
The study of cis-regulatory DNAs that control developmental gene expression is integral to the modeling of comprehensive genomic regulatory networks for embryogenesis. Ascidian embryos provide a unique opportunity for the analysis of cis-regulatory DNAs with cellular resolution in the context of a simple but typical chordate body plan. Here, we review landmark studies that have laid the foundations for the study of transcriptional enhancers, among other cis-regulatory DNAs, and their roles in ascidian development. The studies using ascidians of the Ciona genus have capitalized on a unique electroporation technique that permits the simultaneous transfection of hundreds of fertilized eggs, which develop rapidly and express transgenes with little mosaicism. Current studies using the ascidian embryo benefit from extensively annotated genomic resources to characterize transcript models in silico. The search for functional noncoding sequences can be guided by bioinformatic analyses combining evolutionary conservation, gene coexpression, and combinations of overrepresented short-sequence motifs. The power of the transient transfection assays has allowed thorough dissection of numerous cis-regulatory modules, which provided insights into the functional constraints that shape enhancer architecture and diversification. Future studies will benefit from pioneering stable transgenic lines and the analysis of chromatin states. Whole genome expression, functional and DNA binding data are being integrated into comprehensive genomic regulatory network models of early ascidian cell specification with a single-cell resolution that is unique among chordate model systems.
Collapse
|
18
|
Hobert O, Carrera I, Stefanakis N. The molecular and gene regulatory signature of a neuron. Trends Neurosci 2011; 33:435-45. [PMID: 20663572 DOI: 10.1016/j.tins.2010.05.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 05/17/2010] [Accepted: 05/25/2010] [Indexed: 12/13/2022]
Abstract
Neuron-type specific gene batteries define the morphological and functional diversity of cell types in the nervous system. Here, we discuss the composition of neuron-type specific gene batteries and illustrate gene regulatory strategies which determine the unique gene expression profiles and molecular composition of individual neuronal cell types from C. elegans to higher vertebrates. Based on principles learned from prokaryotic gene regulation, we argue that neuronal terminal gene batteries are functionally grouped into parallel-acting 'regulons'. The theoretical concepts discussed here provide testable hypotheses for future experimental analysis of the exact gene-regulatory mechanisms employed in the generation of neuronal diversity and identity.
Collapse
Affiliation(s)
- Oliver Hobert
- Columbia University Medical Center, Howard Hughes Medical Institute, New York, NY, USA.
| | | | | |
Collapse
|
19
|
Ependymal cells of chordate larvae are stem-like cells that form the adult nervous system. Nature 2011; 469:525-8. [PMID: 21196932 DOI: 10.1038/nature09631] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 10/27/2010] [Indexed: 12/27/2022]
Abstract
In ascidian tunicates, the metamorphic transition from larva to adult is accompanied by dynamic changes in the body plan. For instance, the central nervous system (CNS) is subjected to extensive rearrangement because its regulating larval organs are lost and new adult organs are created. To understand how the adult CNS is reconstructed, we traced the fate of larval CNS cells during ascidian metamorphosis by using transgenic animals and imaging technologies with photoconvertible fluorescent proteins. Here we show that most parts of the ascidian larval CNS, except for the tail nerve cord, are maintained during metamorphosis and recruited to form the adult CNS. We also show that most of the larval neurons disappear and only a subset of cholinergic motor neurons and glutamatergic neurons are retained. Finally, we demonstrate that ependymal cells of the larval CNS contribute to the construction of the adult CNS and that some differentiate into neurons in the adult CNS. An unexpected role of ependymal cells highlighted by this study is that they serve as neural stem-like cells to reconstruct the adult nervous network during chordate metamorphosis. Consequently, the plasticity of non-neuronal ependymal cells and neuronal cells in chordates should be re-examined by future studies.
Collapse
|
20
|
Kugler JE, Gazdoiu S, Oda-Ishii I, Passamaneck YJ, Erives AJ, Di Gregorio A. Temporal regulation of the muscle gene cascade by Macho1 and Tbx6 transcription factors in Ciona intestinalis. J Cell Sci 2010; 123:2453-63. [PMID: 20592183 DOI: 10.1242/jcs.066910] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For over a century, muscle formation in the ascidian embryo has been representative of 'mosaic' development. The molecular basis of muscle-fate predetermination has been partly elucidated with the discovery of Macho1, a maternal zinc-finger transcription factor necessary and sufficient for primary muscle development, and of its transcriptional intermediaries Tbx6b and Tbx6c. However, the molecular mechanisms by which the maternal information is decoded by cis-regulatory modules (CRMs) associated with muscle transcription factor and structural genes, and the ways by which a seamless transition from maternal to zygotic transcription is ensured, are still mostly unclear. By combining misexpression assays with CRM analyses, we have identified the mechanisms through which Ciona Macho1 (Ci-Macho1) initiates expression of Ci-Tbx6b and Ci-Tbx6c, and we have unveiled the cross-regulatory interactions between the latter transcription factors. Knowledge acquired from the analysis of the Ci-Tbx6b CRM facilitated both the identification of a related CRM in the Ci-Tbx6c locus and the characterization of two CRMs associated with the structural muscle gene fibrillar collagen 1 (CiFCol1). We use these representative examples to reconstruct how compact CRMs orchestrate the muscle developmental program from pre-localized ooplasmic determinants to differentiated larval muscle in ascidian embryos.
Collapse
Affiliation(s)
- Jamie E Kugler
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, Box 60, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
21
|
Network structure of projections extending from peripheral neurons in the tunic of ascidian larva. Dev Dyn 2010; 239:2278-87. [DOI: 10.1002/dvdy.22361] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
22
|
Takahashi H, Hotta K, Takagi C, Ueno N, Satoh N, Shoguchi E. Regulation of notochord-specific expression of Ci-Bra downstream genes in Ciona intestinalis embryos. Zoolog Sci 2010; 27:110-8. [PMID: 20141416 DOI: 10.2108/zsj.27.110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Brachyury, a T-box transcription factor, is expressed in ascidian embryos exclusively in primordial notochord cells and plays a pivotal role in differentiation of notochord cells. Previously, we identified approximately 450 genes downstream of Ciona intestinalis Brachyury (Ci-Bra), and characterized the expression profiles of 45 of these in differentiating notochord cells. In this study, we looked for cisregulatory sequences in minimal enhancers of 20 Ci-Bra downstream genes by electroporating region within approximately 3 kb upstream of each gene fused with lacZ. Eight of the 20 reporters were expressed in notochord cells. The minimal enchancer for each of these eight genes was narrowed to a region approximately 0.5-1.0-kb long. We also explored the genome-wide and coordinate regulation of 43 Ci-Bra-downstream genes. When we determined their chromosomal localization, it became evident that they are not clustered in a given region of the genome, but rather distributed evenly over 13 of the 14 pairs of chromosomes, suggesting that gene clustering does not contribute to coordinate control of the Ci-Bra downstream gene expression. Our results might provide Insights Into the molecular mechanisms underlying notochord formation in chordates.
Collapse
Affiliation(s)
- Hiroki Takahashi
- Department of Developmental Biology, National Institute for Basic Biology, Okazaki, Aichi 445-8585, Japan.
| | | | | | | | | | | |
Collapse
|
23
|
Maternal factor-mediated epigenetic gene silencing in the ascidian Ciona intestinalis. Mol Genet Genomics 2009; 283:99-110. [PMID: 19946786 DOI: 10.1007/s00438-009-0500-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 11/14/2009] [Indexed: 10/20/2022]
Abstract
Epigenetic regulation of genes plays a critical role in achieving proper gene expression during development, and it has been reported that epigenetic modifications are associated with transposon silencing in many organisms. Here, we report a type of epigenetic gene silencing, maternal gfp/gene silencing (MGS), in the basal chordate Ciona intestinalis. A transgenic line of Ciona, Tg[MiTFr3dTPOG]45 (abbreviated as Tg45), which was created with the Minos transposon, has a tandemly arrayed insertion of gfp in the promoter region of Ci-CesA. Progeny of Tg45 showed a reduced level of GFP expression when eggs of Tg45 were fertilized with sperm of other gfp transgenic lines. Although the genotype is the same, animals developed from Tg45 sperm and the eggs of other transgenic lines did not exhibit this phenomenon, suggesting the involvement of a maternal cytoplasmic factor that influences GFP expression. The silencing starts during oogenesis and continues after fertilization without any tissue specificity. We found that post-transcriptional degradation of the gfp mRNA is involved in MGS.
Collapse
|
24
|
Kubo A, Imai KS, Satou Y. Gene-regulatory networks in the Ciona embryos. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2009; 8:250-5. [PMID: 19535506 DOI: 10.1093/bfgp/elp018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ascidians belong to the subphylum Urochordata or Tunicata, which is the sister group of the vertebrates. The simple architecture of the ascidian larva represents the basic chordate body plan. Recent analyses have shown many instances of developmental mechanisms conserved during evolution, while these studies have also revealed a much larger number of instances of divergence. However, to precisely determine the degree of conservation and divergence, that is, how many ways are used to make tadpole-like larvae, we need a systems-level understanding of development. Because animal development is organized by the genome and the minimal functional unit of development is a cell, comprehensiveness and single-cell resolution are necessary for a systems-biological understanding of the development. In the ascidian Ciona intestinalis, gene-regulatory networks responsible for the embryonic development have been studied on a genome-wide scale and at single-cell resolution. The simplicity and compactness of the genome facilitates genome-wide studies. In the Ciona genome, only approximately 670 transcription factor genes are encoded, and their expression profiles during the embryonic development have been analyzed. Gene-knockdown analyses of the transcription factor genes expressed during the embryonic development have been performed. The simplicity of the embryo permits these analyses to be done at single-cell resolution. Actually, these simple embryos are now being modeled in the computer, which allows us to understand the gene-regulatory networks very precisely in three dimensions.
Collapse
Affiliation(s)
- Atsushi Kubo
- Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | | | | |
Collapse
|
25
|
Satou Y, Satoh N, Imai KS. Gene regulatory networks in the early ascidian embryo. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:268-73. [DOI: 10.1016/j.bbagrm.2008.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 03/06/2008] [Accepted: 03/18/2008] [Indexed: 12/19/2022]
|
26
|
Matsumoto J, Katsuyama Y, Ohtsuka Y, Lemaire P, Okamura Y. Functional analysis of synaptotagmin gene regulatory regions in two distantly related ascidian species. Dev Growth Differ 2009; 50:543-52. [PMID: 19238725 DOI: 10.1111/j.1440-169x.2008.01049.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We have studied the structure and function of a promoter region of the Halocynthia synaptotagmin (Hr-Syt) gene, which is abundantly expressed in neuronal cells. Our previous analysis suggested that the expression of Hr-Syt is regulated by at least one epidermal and two neuronal regulatory regions. In this study, the regulatory regions of Hr-Syt promoter were further characterized by using two species of ascidians, Halocynthia roretzi and Ciona intestinalis embryos. A putative GATA transcription factor binding site in the epidermal regulatory region has ectodermal enhancer activity in the Halocynthia embryo. Neuronal expression of Hr-Syt was regulated by multiple redundant enhancer regions. Among these enhancer regions, a 200-bp (-2900/-2700) region drove the reporter expression in neurons in both species of ascidian. Although the synaptotagmin promoter sequences did not show overall similarity between Hr-Syt and Ciona synaptotagmin (Ci-Syt), 5'-upsteream two short sequences of Ci-Syt have similarity to the -2766/-2732 region of the Hr-Syt promoter. The homeodomain binding sites in this region are required for the neuronal enhancer activity. These results suggest that GATA and homeodomain transcription factors regulate the expression of synaptotagmin.
Collapse
Affiliation(s)
- Jun Matsumoto
- Molecular Neurobiology Group, Neuroscience Research Institute, AIST Tsukuba Central 6-12, Tsukuba, Ibaraki 305-8566, Japan.
| | | | | | | | | |
Collapse
|
27
|
Horie T, Kusakabe T, Tsuda M. Glutamatergic networks in the Ciona intestinalis larva. J Comp Neurol 2008; 508:249-63. [PMID: 18314906 DOI: 10.1002/cne.21678] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glutamate is a major neurotransmitter in the excitatory synapses of both vertebrate and invertebrate nervous systems and is involved in many neural processes including photo-, mechano-, and chemosensations, neural development, motor control, learning, and memory. We identified and characterized the gene (Ci-VGLUT) encoding a member of the vesicular glutamate transporter subfamily, a specific marker of glutamatergic neurons, in the ascidian Ciona intestinalis. The Ci-VGLUT gene is expressed in the adhesive organ, the epidermal neurons, and the brain vesicle, but not in the visceral ganglion. The Ci-VGLUT promoter and an anti-Ci-VGLUT antibody were used to analyze the distribution and axonal connections of prospective glutamatergic neurons in the C. intestinalis larva. The green fluorescent protein (GFP) reporter driven by the 4.6-kb upstream region of Ci-VGLUT recapitulated the endogenous gene expression patterns and visualized both the cell bodies and neurites of glutamatergic neurons. Papillar neurons of the adhesive organs, almost all epidermal neurons, the otolith cell, and ocellus photoreceptor cells were shown to be glutamatergic. Each papillar neuron connects with a rostral epidermal neuron. Axons from rostral epidermal neurons, ocellus photoreceptor cells, and neurons underlying the otolith terminate in the posterior brain vesicle. Some caudal epidermal neurons also send long axons toward the brain vesicle. The posterior brain vesicle contains a group of Ci-VGLUT-positive neurons that send axons posteriorly to the visceral ganglion. Our results suggest that glutamatergic neurotransmission plays a major role in sensory systems and in the integration of the sensory inputs of the ascidian larva.
Collapse
Affiliation(s)
- Takeo Horie
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan
| | | | | |
Collapse
|
28
|
Vandenbon A, Miyamoto Y, Takimoto N, Kusakabe T, Nakai K. Markov chain-based promoter structure modeling for tissue-specific expression pattern prediction. DNA Res 2008; 15:3-11. [PMID: 18258700 PMCID: PMC2650632 DOI: 10.1093/dnares/dsm034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional regulation is the first level of regulation of gene expression and is therefore a major topic in computational biology. Genes with similar expression patterns can be assumed to be co-regulated at the transcriptional level by promoter sequences with a similar structure. Current approaches for modeling shared regulatory features tend to focus mainly on clustering of cis-regulatory sites. Here we introduce a Markov chain-based promoter structure model that uses both shared motifs and shared features from an input set of promoter sequences to predict candidate genes with similar expression. The model uses positional preference, order, and orientation of motifs. The trained model is used to score a genomic set of promoter sequences: high-scoring promoters are assumed to have a structure similar to the input sequences and are thus expected to drive similar expression patterns. We applied our model on two datasets in Caenorhabditis elegans and in Ciona intestinalis. Both computational and experimental verifications indicate that this model is capable of predicting candidate promoters driving similar expression patterns as the input-regulatory sequences. This model can be useful for finding promising candidate genes for wet-lab experiments and for increasing our understanding of transcriptional regulation.
Collapse
Affiliation(s)
- Alexis Vandenbon
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | |
Collapse
|
29
|
Brown CD, Johnson DS, Sidow A. Functional architecture and evolution of transcriptional elements that drive gene coexpression. Science 2007; 317:1557-60. [PMID: 17872446 DOI: 10.1126/science.1145893] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Transcriptional coexpression of interacting gene products is required for complex molecular processes; however, the function and evolution of cis-regulatory elements that orchestrate coexpression remain largely unexplored. We mutagenized 19 regulatory elements that drive coexpression of Ciona muscle genes and obtained quantitative estimates of the cis-regulatory activity of the 77 motifs that comprise these elements. We found that individual motif activity ranges broadly within and among elements, and among different instantiations of the same motif type. The activity of orthologous motifs is strongly constrained, although motif arrangement, type, and activity vary greatly among the elements of different co-regulated genes. Thus, the syntactical rules governing this regulatory function are flexible but become highly constrained evolutionarily once they are established in a particular element.
Collapse
Affiliation(s)
- Christopher D Brown
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
30
|
Yoshida R, Horie T, Tsuda M, Kusakabe TG. Comparative genomics identifies a cis-regulatory module that activates transcription in specific subsets of neurons in Ciona intestinalis larvae. Dev Growth Differ 2007; 49:657-67. [PMID: 17711474 DOI: 10.1111/j.1440-169x.2007.00960.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The larval nervous system of the ascidian Ciona intestinalis exhibits an abstract form of the vertebrate nervous system. The Ci-Galphai1 gene, which encodes a G-protein alpha subunit, is specifically expressed in distinct sets of neurons in C. intestinalis larvae, including papillar neurons of the adhesive organ, ocellus photoreceptor cells, and cholinergic and GABAergic neurons in the central nervous system (CNS). A GFP reporter gene driven by the 4.2-kb 5' flanking region of Ci-Galphai1 recapitulated the endogenous gene expression patterns. Comparative genomic analysis of the Galphai1 gene between C. intestinalis and Ciona savignyi identified an 87-bp highly conserved non-coding sequence located between -3176 and -3090 bp upstream of the gene. Deletion of this conserved upstream sequence resulted in the complete loss of reporter expression in the central nervous system, while reporter expression in the adhesive organ and mesenchyme cells remained unaffected. The conserved upstream sequence can activate gene expression from basal promoters in the brain vesicle, although it requires additional cis-regulatory sequences to fully activate the CNS-specific gene expression. These results suggest that different types of central neurons share a common transcriptional activation mechanism that is different from that of papillar neurons.
Collapse
Affiliation(s)
- Reiko Yoshida
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako-gun, Hyogo 678-1297, Japan
| | | | | | | |
Collapse
|
31
|
Meedel TH, Chang P, Yasuo H. Muscle development in Ciona intestinalis requires the b-HLH myogenic regulatory factor gene Ci-MRF. Dev Biol 2007; 302:333-44. [PMID: 17055476 PMCID: PMC1797879 DOI: 10.1016/j.ydbio.2006.09.043] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 09/22/2006] [Accepted: 09/22/2006] [Indexed: 11/21/2022]
Abstract
The activity of myogenic regulatory factor (MRF) genes is essential for vertebrate muscle development, whereas invertebrate muscle development is largely independent of MRF function. This difference indicates that myogenesis is controlled by distinct regulatory mechanisms in these two groups of animals. Here we used overexpression and gene knockdown to investigate the role in embryonic myogenesis of the single MRF gene of the invertebrate chordate Ciona intestinalis (Ci-MRF). Injection of Ci-MRF mRNA into eggs resulted in increased embryonic muscle-specific gene activity and revealed the myogenic activity of Ci-MRF by inducing the expression of four muscle marker genes, Acetylcholinesterase, Actin, Troponin I, and Myosin Light Chain in non-muscle lineages. Conversely, inhibiting Ci-MRF activity with antisense morpholinos down-regulated the expression of these genes. Consistent with the effects of morpholinos on muscle gene activity, larvae resulting from morpholino injection were paralyzed and their "muscle" cells lacked myofibrils. We conclude that Ci-MRF is required for larval tail muscle development and thus that an MRF-dependent myogenic regulatory network probably existed in the ancestor of tunicates and vertebrates. This possibility raises the question of whether the earliest myogenic regulatory networks were MRF-dependent or MRF-independent.
Collapse
Affiliation(s)
- Thomas H Meedel
- Department of Biology, Rhode Island College, Providence, RI, USA.
| | | | | |
Collapse
|
32
|
Sasakura Y. Germline transgenesis and insertional mutagenesis in the ascidianCiona intestinalis. Dev Dyn 2007; 236:1758-67. [PMID: 17342755 DOI: 10.1002/dvdy.21111] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Stable transgenesis is a splendid technique that is applicable to the creation of useful marker lines, enhancer/gene traps, and insertional mutagenesis. Recently, transposon-mediated transformation using a Tc1/mariner transposable element Minos has been reported in two ascidians: Ciona intestinalis and C. savignyi. The transposon derived from an insect, Drosophila hydei, has high activity for excision in Ciona embryos and transposition in their genome. As much as 37% of Minos-injected C. intestinalis transmitted transposon insertions to the subsequent generation. Minos-mediated germline transgenesis has also been achieved by means of electroporation method. Minos techniques have been applied to enhancer traps and insertional mutagenesis in Ciona. For those reasons, Minos offers the high potential for use as a powerful tool for future genetic studies. This review specifically addresses recent achievements of transformation techniques in Ciona, as exemplified using the Minos system.
Collapse
Affiliation(s)
- Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan.
| |
Collapse
|
33
|
Ruvinsky I, Ohler U, Burge CB, Ruvkun G. Detection of broadly expressed neuronal genes in C. elegans. Dev Biol 2006; 302:617-26. [PMID: 17046742 DOI: 10.1016/j.ydbio.2006.09.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 09/01/2006] [Accepted: 09/07/2006] [Indexed: 01/03/2023]
Abstract
The genes that are expressed in most or all types of neurons define generic neuronal features and provide a window into the developmental origin and function of the nervous system. Few such genes (sometimes referred to as pan-neuronal or broadly expressed neuronal genes) have been defined to date and the mechanisms controlling their regulation are not well understood. As a first step in investigating their regulation, we used a computational approach to detect sequences overrepresented in their promoter elements. We identified a ten-nucleotide cis-regulatory motif shared by many broadly expressed neuronal genes and demonstrated that it is involved in control of neuronal expression. Our results further suggest that global and cell-type-specific controls likely act in concert to establish pan-neuronal gene expression. Using the newly discovered motif and genome-level gene expression data, we identified a set of 234 candidate broadly expressed genes. The known involvement of many of these genes in neurogenesis and physiology of the nervous system supports the utility of this set for future targeted analyses.
Collapse
Affiliation(s)
- Ilya Ruvinsky
- Department of Molecular Biology, Massachusetts General Hospital and Department of Genetics, Harvard Medical School, 185 Cambridge Street, Simches 7, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
34
|
Yamada L. Embryonic expression profiles and conserved localization mechanisms of pem/postplasmic mRNAs of two species of ascidian, Ciona intestinalis and Ciona savignyi. Dev Biol 2006; 296:524-36. [PMID: 16797000 DOI: 10.1016/j.ydbio.2006.05.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 05/12/2006] [Accepted: 05/13/2006] [Indexed: 11/17/2022]
Abstract
In many animals, the first cue for development is transcripts and/or proteins that are provided maternally and are localized at specific regions of fertilized eggs and early embryos. The ascidian is known to exhibit a mosaic mode of development, which is largely dependent on localized maternal factors. In early Ciona intestinalis embryos, the posterior-most localization appears to be the major specialized pattern of maternal transcripts. The present study examined the temporal and spatial expression pattern of 40 genes known as pem/postplasmic genes, for which maternal mRNAs are localized at the posterior-most region during early Ciona embryogenesis. Ten of these genes showed redistribution to B8.12-line cells, which are known to give rise to germ cells in ascidians. In addition 23 orthologues were newly identified in a related ascidian species, Ciona savignyi, and 16 of them showed the mRNA localization pattern at the posterior-most region. Furthermore, the localized pattern of exogenous mRNA, which comprised the 3' UTR of C. intestinalis pem/postplasmic genes conjugated with the LacZ ORF, showed the localization at the posterior-most region in C. savignyi embryos. Likewise, the 3' UTR of C. savignyi pem/postplasmic genes conjugated with the LacZ ORF showed localization at the posterior most region in C. intestinalis embryos, suggesting that localization mechanisms are conserved between the two species. The present study therefore provides basic information for future functional analyses of these pem/postplasmic genes and for exploring the mechanisms of localization of mRNAs.
Collapse
Affiliation(s)
- Lixy Yamada
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
35
|
Shoguchi E, Kawashima T, Satou Y, Hamaguchi M, Sin-I T, Kohara Y, Putnam N, Rokhsar DS, Satoh N. Chromosomal mapping of 170 BAC clones in the ascidian Ciona intestinalis. Genes Dev 2006; 16:297-303. [PMID: 16354750 PMCID: PMC1361726 DOI: 10.1101/gr.4156606] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2005] [Accepted: 10/23/2005] [Indexed: 11/25/2022]
Abstract
The draft genome ( approximately 160 Mb) of the urochordate ascidian Ciona intestinalis has been sequenced by the whole-genome shotgun method and should provide important insights into the origin and evolution of chordates as well as vertebrates. However, because this genomic data has not yet been mapped onto chromosomes, important biological questions including regulation of gene expression at the genome-wide level cannot yet be addressed. Here, we report the molecular cytogenetic characterization of all 14 pairs of C. intestinalis chromosomes, as well as initial large-scale mapping of genomic sequences onto chromosomes by fluorescent in situ hybridization (FISH). Two-color FISH using 170 bacterial artificial chromosome (BAC) clones and construction of joined scaffolds using paired BAC end sequences allowed for mapping of up to 65% of the deduced 117-Mb nonrepetitive sequence onto chromosomes. This map lays the foundation for future studies of the protochordate C. intestinalis genome at the chromosomal level.
Collapse
Affiliation(s)
- Eiichi Shoguchi
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zeller RW, Weldon DS, Pellatiro MA, Cone AC. Optimized green fluorescent protein variants provide improved single cell resolution of transgene expression in ascidian embryos. Dev Dyn 2006; 235:456-67. [PMID: 16287050 DOI: 10.1002/dvdy.20644] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The green fluorescent protein (GFP) is used extensively to monitor gene expression and protein localization in living cells, particularly in developing embryos from a variety of species. Several GFP mutations have been characterized that improve protein expression and alter the emission spectra to produce proteins that emit green, blue, cyan, and yellow wavelengths. DsRed and its variants encode proteins that emit in the orange to red wavelengths. Many of these commercially available fluorescent proteins have been "codon optimized" for maximal levels of expression in mammalian cells. We have generated several fluorescent protein color variants that have been codon optimized for maximal expression in the ascidian Ciona intestinalis. By analyzing quantitative time-lapse recordings of transgenic embryos, we demonstrate that, in general, our Ciona optimized variants are detected and expressed at higher levels than commercially available fluorescent proteins. We show that three of these proteins, expressed simultaneously in different spatial domains within the same transgenic embryo are easily detectable using optimized fluorescent filter sets for epifluorescent microscopy. Coupled with recently developed quantitative imaging techniques, our GFP variants should provide useful reagents for monitoring the simultaneous expression of multiple genes in transgenic ascidian embryos.
Collapse
Affiliation(s)
- Robert W Zeller
- Molecular Biology Institute and Coastal and Marine Institute, San Diego State University, San Diego, California 92182-4614, USA.
| | | | | | | |
Collapse
|
37
|
Satou Y, Satoh N. Cataloging transcription factor and major signaling molecule genes for functional genomic studies in Ciona intestinalis. Dev Genes Evol 2005; 215:580-96. [PMID: 16252120 DOI: 10.1007/s00427-005-0016-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Accepted: 07/05/2005] [Indexed: 11/29/2022]
Abstract
The ascidian Ciona intestinalis provides an excellent experimental system for functional genomic studies because (1) its genome has been sequenced, (2) the transcription factor genes and genes for major signal transduction molecules have been extensively screened and annotated on a genome-wide scale using the molecular phylogenetical method, and (3) their embryonic expression profiles have been almost completely determined. However, the entire genetic structure, including the 5' and 3' untranslated regions and the protein-coding regions, of most gene models used in these prior studies is not always supported by cDNA evidence, and thus, these gene models are potentially imprecise. To facilitate functional genomic studies based on precise gene structures, our present study determined 406 cDNA sequences for 357 transcription factor genes and 112 cDNA sequences for 107 signal transduction molecule genes, greatly improving the previous gene models and revealing transcript variants for 44 genes. Considering these data alongside those of previously characterized genes deposited in the DNA Data Bank of Japan/European Molecular Biology Laboratory/GENBANK databases, 95.6% of the catalogued transcription factor genes (373/390) and 98.3% of the catalogued signal transduction molecule genes (117/119) have now been verified by cDNA sequences. Thus, the present study greatly improves the resources available for functional genomic studies in C. intestinalis.
Collapse
Affiliation(s)
- Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan.
| | | |
Collapse
|
38
|
Johnson DS, Zhou Q, Yagi K, Satoh N, Wong W, Sidow A. De novo discovery of a tissue-specific gene regulatory module in a chordate. Genome Res 2005; 15:1315-24. [PMID: 16169925 PMCID: PMC1240073 DOI: 10.1101/gr.4062605] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We engage the experimental and computational challenges of de novo regulatory module discovery in a complex and largely unstudied metazoan genome. Our analysis is based on the comprehensive characterization of regulatory elements of 20 muscle genes in the chordate, Ciona savignyi. Three independent types of data we generate contribute to the characterization of a muscle-specific regulatory module: (1) Positive elements (PEs), short sequences sufficient for strong muscle expression that are identified in a high-resolution in vivo analysis; (2) CisModules (CMs), candidate regulatory modules defined by clusters of overrepresented motifs predicted de novo; and (3) Conserved elements (CEs), short noncoding sequences of strong conservation between C. savignyi and C. intestinalis. We estimate the accuracy of the computational predictions by an analysis of the intersection of these data. As final biological validation of the discovered muscle regulatory module, we implement a novel algorithm to search the genome for instances of the module and identify seven novel enhancers.
Collapse
Affiliation(s)
- David S Johnson
- Department of Pathology, Stanford University Medical Center, Stanford, California 94305-5324, USA
| | | | | | | | | | | |
Collapse
|
39
|
Yagi K, Takatori N, Satou Y, Satoh N. Ci-Tbx6b and Ci-Tbx6c are key mediators of the maternal effect gene Ci-macho1 in muscle cell differentiation in Ciona intestinalis embryos. Dev Biol 2005; 282:535-49. [PMID: 15950616 DOI: 10.1016/j.ydbio.2005.03.029] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 03/02/2005] [Accepted: 03/22/2005] [Indexed: 11/18/2022]
Abstract
Maternally deposited mRNA encoding the Zic family zinc-finger protein Ci-macho1 is a determinant responsible for muscle cell differentiation in Ciona intestinalis embryos. In a previous study, we identified possible Ci-macho1 downstream genes, which include seven transcription factor genes and seven signaling molecule genes (Yagi, K., Satoh, N., Satou, Y., 2004. Identification of downstream genes of the ascidian muscle determinant gene Ci-macho1. Dev. Biol. 274, 478-489), suggesting complex Ci-macho1 downstream cascades. Here, we show that of the Ci-macho1 downstream genes, only Ci-Tbx6b and Ci-Tbx6c promote ectopic differentiation of muscle cells when misexpressed in non-muscle blastomeres. Overexpression of Ci-Tbx6b or Ci-Tbx6c in Ci-macho1 knockdown embryos is able to compensate for the functional loss of Ci-macho1 and promote differentiation of muscle cells. In addition, we show that knockdown of each of Ci-Tbx6b or Ci-Tbx6c suppresses the initiation of muscle protein gene expression, and both gene products appear to recognize a similar binding sequence. However, later expression of muscle protein genes at the tailbud stage is only reduced in Ci-Tbx6b knockdown embryos and undisturbed in Ci-Tbx6c knockdown embryos. Although ectopic expression or knockdown of Ci-ZicL alone does not affect muscle cell differentiation, simultaneous knockdown of Ci-Tbx6b, Ci-Tbx6c, and Ci-ZicL completely abolishes muscle cell differentiation, as in the case of knockdown of Ci-macho1 and Ci-ZicL. These results strongly suggest that muscle cell differentiation in Ciona embryos is controlled by four key factors: maternal macho1 and zygotic Tbx6b, Tbx6c, and ZicL. The two T-box genes are primary mediators of macho1 function, and cooperation between the zygotically expressed transcription factors is indispensable for muscle cell differentiation in Ciona embryos.
Collapse
Affiliation(s)
- Kasumi Yagi
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | | | |
Collapse
|
40
|
Yamada L, Kobayashi K, Satou Y, Satoh N. Microarray analysis of localization of maternal transcripts in eggs and early embryos of the ascidian, Ciona intestinalis. Dev Biol 2005; 284:536-50. [PMID: 16040026 DOI: 10.1016/j.ydbio.2005.05.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 05/11/2005] [Accepted: 05/18/2005] [Indexed: 11/26/2022]
Abstract
The establishment of body axes and specification of early embryonic cells depend on maternally supplied transcripts and/or proteins, several of which are localized at specific regions of fertilized eggs and early embryos. The ascidian is known to exhibit a mosaic mode of development, and this mode is largely dependent on localized maternal factors. Using blastomere isolation, microarray and whole-mount in situ hybridization, the present study of Ciona intestinalis demonstrates that maternal transcripts of a total of 17 genes are localized at the posterior-most region of fertilized eggs and early embryos. Ten of them are newly identified in the present study, while the remaining seven genes have already been characterized in previous studies. In addition, maternal transcripts of two genes, in addition to 14 genes encoded by the mitochondrial genome, showed a mitochondria-like distribution. Despite the present comprehensive approach, we could not identify maternal transcripts that are clearly localized to the animal-pole side, the vegetal-pole side, the anterior-side or other specific regions of the early embryo. Therefore, we concluded that the posterior-most localization and mitochondria-like distribution appear to be major specialized patterns of maternal transcripts in early Ciona embryos.
Collapse
Affiliation(s)
- Lixy Yamada
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | | | |
Collapse
|
41
|
Abstract
Ascidians, or sea squirts, are lower chordates, and share basic gene repertoires and many characteristics, both developmental and physiological, with vertebrates. Therefore, decoding cis-regulatory systems in ascidians will contribute toward elucidating the genetic regulatory systems underlying the developmental and physiological processes of vertebrates. cis-Regulatory DNAs can also be used for tissue-specific genetic manipulation, a powerful tool for studying ascidian development and physiology. Because the ascidian genome is compact compared with vertebrate genomes, both intergenic regions and introns are relatively small in ascidians. Short upstream intergenic regions contain a complete set of cis-regulatory elements for spatially regulated expression of a majority of ascidian genes. These features of the ascidian genome are a great advantage in identifying cis-regulatory sequences and in analyzing their functions. Function of cis-regulatory DNAs has been analyzed for a number of tissue-specific and developmentally regulated genes of ascidians by introducing promoter-reporter fusion constructs into ascidian embryos. The availability of the whole genome sequences of the two Ciona species, Ciona intestinalis and Ciona savignyi, facilitates comparative genomics approaches to identify cis-regulatory DNAs. Recent studies demonstrate that computational methods can help identify cis-regulatory elements in the ascidian genome. This review presents a comprehensive list of ascidian genes whose cis-regulatory regions have been subjected to functional analysis, and highlights the recent advances in bioinformatics and comparative genomics approaches to cis-regulatory systems in ascidians.
Collapse
Affiliation(s)
- Takehiro Kusakabe
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Japan.
| |
Collapse
|