1
|
Boroni M, Sammeth M, Gava SG, Jorge NAN, Macedo AM, Machado CR, Mourão MM, Franco GR. Landscape of the spliced leader trans-splicing mechanism in Schistosoma mansoni. Sci Rep 2018; 8:3877. [PMID: 29497070 PMCID: PMC5832876 DOI: 10.1038/s41598-018-22093-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 02/12/2018] [Indexed: 11/09/2022] Open
Abstract
Spliced leader dependent trans-splicing (SLTS) has been described as an important RNA regulatory process that occurs in different organisms, including the trematode Schistosoma mansoni. We identified more than seven thousand putative SLTS sites in the parasite, comprising genes with a wide spectrum of functional classes, which underlines the SLTS as a ubiquitous mechanism in the parasite. Also, SLTS gene expression levels span several orders of magnitude, showing that SLTS frequency is not determined by the expression level of the target gene, but by the presence of particular gene features facilitating or hindering the trans-splicing mechanism. Our in-depth investigation of SLTS events demonstrates widespread alternative trans-splicing (ATS) acceptor sites occurring in different regions along the entire gene body, highlighting another important role of SLTS generating alternative RNA isoforms in the parasite, besides the polycistron resolution. Particularly for introns where SLTS directly competes for the same acceptor substrate with cis-splicing, we identified for the first time additional and important features that might determine the type of splicing. Our study substantially extends the current knowledge of RNA processing by SLTS in S. mansoni, and provide basis for future studies on the trans-splicing mechanism in other eukaryotes.
Collapse
Affiliation(s)
- Mariana Boroni
- Laboratório de Genética Bioquímica, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
- Laboratório de Bioinformática e Biologia Computacional, Coordenação de Pesquisa, Instituto Nacional de Câncer José Alencar Gomes da Silva, Rio de Janeiro, 20231-050, Brazil
| | - Michael Sammeth
- Bioinformatics in Transcriptomics and Functional Genomics (BITFUN), Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-901, Brazil
- Laboratório Nacional de Computação Científica, Petrópolis, 25651-075, Brazil
| | - Sandra Grossi Gava
- Grupo de Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, 30190-009, Brazil
| | - Natasha Andressa Nogueira Jorge
- Laboratório de Bioinformática e Biologia Computacional, Coordenação de Pesquisa, Instituto Nacional de Câncer José Alencar Gomes da Silva, Rio de Janeiro, 20231-050, Brazil
| | - Andréa Mara Macedo
- Laboratório de Genética Bioquímica, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Carlos Renato Machado
- Laboratório de Genética Bioquímica, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Marina Moraes Mourão
- Grupo de Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, 30190-009, Brazil.
| | - Glória Regina Franco
- Laboratório de Genética Bioquímica, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil.
| |
Collapse
|
2
|
Craig HL, Wirtz J, Bamps S, Dolphin CT, Hope IA. The significance of alternative transcripts for Caenorhabditis elegans transcription factor genes, based on expression pattern analysis. BMC Genomics 2013; 14:249. [PMID: 23586691 PMCID: PMC3685541 DOI: 10.1186/1471-2164-14-249] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 04/09/2013] [Indexed: 11/30/2022] Open
Abstract
Background Sequence-specific DNA-binding proteins, with their paramount importance in the regulation of expression of the genetic material, are encoded by approximately 5% of the genes in an animal’s genome. But it is unclear to what extent alternative transcripts from these genes may further increase the complexity of the transcription factor complement. Results Of the 938 potential C. elegans transcription factor genes, 197 were annotated in WormBase as encoding at least two distinct isoforms. Evaluation of prior evidence identified, with different levels of confidence, 50 genes with alternative transcript starts, 23 with alternative transcript ends, 35 with alternative splicing and 34 with alternative transcripts generated by a combination of mechanisms, leaving 55 that were discounted. Expression patterns were determined for transcripts for a sample of 29 transcription factor genes, concentrating on those with alternative transcript starts for which the evidence was strongest. Seamless fosmid recombineering was used to generate reporter gene fusions with minimal modification to assay expression of specific transcripts while maintaining the broad genomic DNA context and alternative transcript production. Alternative transcription factor gene transcripts were typically expressed with identical or substantially overlapping distributions rather than in distinct domains. Conclusions Increasingly sensitive sequencing technologies will reveal rare transcripts but many of these are clearly non-productive. The majority of the transcription factor gene alternative transcripts that are productive may represent tolerable noise rather than encoding functionally distinct isoforms.
Collapse
Affiliation(s)
- Hannah L Craig
- School of Biology, Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | |
Collapse
|
3
|
Li H, Chen D, Zhang J. Statistical analysis of combinatorial transcriptional regulatory motifs in human intron-containing promoter sequences. Comput Biol Chem 2013; 43:35-45. [DOI: 10.1016/j.compbiolchem.2012.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 12/19/2012] [Accepted: 12/23/2012] [Indexed: 11/16/2022]
|
4
|
[Analysis of transcriptional regulatory sites in introns of human and mouse ribosomal protein genes]. YI CHUAN = HEREDITAS 2012; 34:1577-82. [PMID: 23262105 DOI: 10.3724/sp.j.1005.2012.01577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Previous studies from oligonucleotides in the ribosomal protein (RP) genes of the yeast and fruitfly indicated that the potential transcriptional regulatory sites are located in the introns of the genes. The transcriptional regulatory sites in introns are still poorly understood. To explore the functional significance of transcriptional regulation of introns, we extracted over-represented oligonucleotides (also known as motifs) in the first introns of the human and mouse ribosomal protein genes by statistical comparative analysis, and found that over 85% of these oligonucleotides were consistent with the known transcriptional factor binding sites, which might be potential transcriptional regulatory elements. By analyzing the base compositions of these elements, we found that a majority (>95%) of the detected motifs were rich in C and G and only a few of them were rich in A and T. Moreover, the oligonucleotides were close to the 5'-ends of the first introns (the distances between the motifs and the transcriptional start sites or upstream regions of genes are short). We speculated that the properties of over-represented motifs in the first introns might be associated with the transcriptional control.
Collapse
|
5
|
Li H, Chen D, Zhang J. Analysis of intron sequence features associated with transcriptional regulation in human genes. PLoS One 2012; 7:e46784. [PMID: 23082130 PMCID: PMC3474797 DOI: 10.1371/journal.pone.0046784] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 09/06/2012] [Indexed: 11/18/2022] Open
Abstract
Although some preliminary work has revealed the potential transcriptional regulatory function of the introns in eukaryotes, additional evidences are needed to support this conjecture. In this study, we perform systemic analyses of the sequence characteristics of human introns. The results show that the first introns are generally longer and C, G and their dinucleotide compositions are over-represented relative to other introns, which are consistent with the previous findings. In addition, some new phenomena concerned with transcriptional regulation are found: i) the first introns are enriched in CpG islands; and ii) the percentages of the first introns containing TATA, CAAT and GC boxes are relatively higher than other position introns. The similar features of introns are observed in tissue-specific genes. The results further support that the first introns of human genes are likely to be involved in transcriptional regulation, and give an insight into the transcriptional regulatory regions of genes.
Collapse
Affiliation(s)
- Huimin Li
- Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming, China
- School of Mathematics and Computer Science, Yunnan University of Nationalities, Kunming, China
| | - Dan Chen
- Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming, China
- School of Mathematics and Statistics, Yunnan University, Kunming, China
| | - Jing Zhang
- School of Mathematics and Statistics, Yunnan University, Kunming, China
- * E-mail:
| |
Collapse
|
6
|
Mohamed AM, Chin-Sang ID. The C. elegans nck-1 gene encodes two isoforms and is required for neuronal guidance. Dev Biol 2011; 354:55-66. [PMID: 21443870 DOI: 10.1016/j.ydbio.2011.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 03/03/2011] [Accepted: 03/20/2011] [Indexed: 11/30/2022]
Abstract
The NCK adaptor proteins are composed entirely of SH3 and SH2 domains and serve as protein interaction bridges for several receptors during signal transduction events. Here we report the molecular and genetic analysis of the Caenorhabditis elegans nck-1 gene. C. elegans nck-1 encodes two isoforms: NCK-1A and a shorter isoform that lacks the first SH3 domain, NCK-1B. C. elegans nck-1 mutants exhibit defects in axon guidance and neuronal cell position, as well as defects in the excretory canal cell, gonad, and male mating. NCK-1 is broadly expressed in neurons and epithelial cells with NCK-1B being the most abundant isoform. NCK-1A and NCK-1B share a similar expression pattern in parts of the nervous system, but also have independent expression patterns in other tissues. Interestingly, NCK-1B is localized to the nuclei of many cells. Genetic rescue experiments show that NCK-1 functions cell autonomously and, in general, either NCK-1A or NCK-1B is sufficient to function in axon guidance. However, there appears to be specific roles for each isoform, for example NCK-1B is required for HSN cell migration while NCK-1A is required for efficient male mating. Genetic epistasis experiments show that NCK-1 functions redundantly with the LAR Receptor Tyrosine Phosphatase, PTP-3, and the Netrin receptor UNC-40.
Collapse
Affiliation(s)
- Ahmed M Mohamed
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
7
|
Allen MA, Hillier LW, Waterston RH, Blumenthal T. A global analysis of C. elegans trans-splicing. Genome Res 2010; 21:255-64. [PMID: 21177958 DOI: 10.1101/gr.113811.110] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Trans-splicing of one of two short leader RNAs, SL1 or SL2, occurs at the 5' ends of pre-mRNAs of many C. elegans genes. We have exploited RNA-sequencing data from the modENCODE project to analyze the transcriptome of C. elegans for patterns of trans-splicing. Transcripts of ∼70% of genes are trans-spliced, similar to earlier estimates based on analysis of far fewer genes. The mRNAs of most trans-spliced genes are spliced to either SL1 or SL2, but most genes are not trans-spliced to both, indicating that SL1 and SL2 trans-splicing use different underlying mechanisms. SL2 trans-splicing occurs in order to separate the products of genes in operons genome wide. Shorter intercistronic distance is associated with greater use of SL2. Finally, increased use of SL1 trans-splicing to downstream operon genes can indicate the presence of an extra promoter in the intercistronic region, creating what has been termed a "hybrid" operon. Within hybrid operons the presence of the two promoters results in the use of the two SL classes: Transcription that originates at the promoter upstream of another gene creates a polycistronic pre-mRNA that receives SL2, whereas transcription that originates at the internal promoter creates transcripts that receive SL1. Overall, our data demonstrate that >17% of all C. elegans genes are in operons.
Collapse
Affiliation(s)
- Mary Ann Allen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Colorado 80309, USA
| | | | | | | |
Collapse
|
8
|
Abstract
In animals, RFX transcription factors govern ciliogenesis by binding to an X-box motif in the promoters of ciliogenic genes. In Caenorhabditis elegans, the sole RFX transcription factor (TF) daf-19 null mutant lacks all sensory cilia, fails to express many ciliogenic genes, and is defective in many sensory behaviors, including male mating. The daf-19c isoform is expressed in all ciliated sensory neurons and is necessary and sufficient for activating X-box containing ciliogenesis genes. Here, we describe the daf-19(n4132) mutant that is defective in expression of the sensory polycystic kidney disease (PKD) gene battery and male mating behavior, without affecting expression of ciliogenic genes or ciliogenesis. daf-19(n4132) disrupts expression of a new isoform, daf-19m (for function in male mating). daf-19m is expressed in male-specific PKD and core IL2 neurons via internal promoters and remote enhancer elements located in introns of the daf-19 genomic locus. daf-19m genetically programs the sensory functions of a subset of ciliated neurons, independent of daf-19c. In the male-specific HOB neuron, DAF-19(M) acts downstream of the zinc finger TF EGL-46, indicating that a TF cascade controls the PKD gene battery in this cell-type specific context. We conclude that the RFX TF DAF-19 regulates ciliogenesis via X-box containing ciliogenic genes and controls ciliary specialization by regulating non-X-box containing sensory genes. This study reveals a more extensive role for RFX TFs in generating fully functional cilia.
Collapse
|
9
|
Yin J, Yu L, Savage-Dunn C. Alternative trans-splicing of Caenorhabditis elegans sma-9/schnurri generates a short transcript that provides tissue-specific function in BMP signaling. BMC Mol Biol 2010; 11:46. [PMID: 20565799 PMCID: PMC2904332 DOI: 10.1186/1471-2199-11-46] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 06/17/2010] [Indexed: 11/25/2022] Open
Abstract
Background Transcription cofactors related to Drosophila Schnurri facilitate the transcriptional programs regulated by BMP signaling in C. elegans, Drosophila, Xenopus, and mouse. In different systems, Schnurri homologs have been shown to act as either agonists or antagonists of Smad function, and as either positive or negative regulators of transcription. How Schnurri proteins achieve this diversity of activities is not clear. The C. elegans sma-9/schnurri locus undergoes alternative splicing, including an unusual trans-splicing event that could generate two non-overlapping shorter transcripts. Results We demonstrate here that the shorter transcripts are expressed in vivo. Furthermore, we find that one of the short transcripts plays a tissue-specific role in sma-9 function, contributing to the patterning of male-specific sensory rays, but not to the regulation of body size. Based on previous results, we suggest that this transcript encodes a C-terminal SMA-9 isoform that may provide transcriptional activation activity, while full length isoforms may mediate transcriptional repression and/or activation in a context-dependent manner. Conclusion The alternative trans-splicing of sma-9 may contribute to the diversity of functions necessary to mediate tissue-specific outputs of BMP signaling.
Collapse
Affiliation(s)
- Jianghua Yin
- Department of Biology, Queens College, and Biochemistry PhD Program, Graduate School and University Center, City University of New York, Flushing, NY 11367, USA
| | | | | |
Collapse
|
10
|
Matsumoto J, Dewar K, Wasserscheid J, Wiley GB, Macmil SL, Roe BA, Zeller RW, Satou Y, Hastings KEM. High-throughput sequence analysis of Ciona intestinalis SL trans-spliced mRNAs: alternative expression modes and gene function correlates. Genome Res 2010; 20:636-45. [PMID: 20212022 DOI: 10.1101/gr.100271.109] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pre-mRNA 5' spliced-leader (SL) trans-splicing occurs in some metazoan groups but not in others. Genome-wide characterization of the trans-spliced mRNA subpopulation has not yet been reported for any metazoan. We carried out a high-throughput analysis of the SL trans-spliced mRNA population of the ascidian tunicate Ciona intestinalis by 454 Life Sciences (Roche) pyrosequencing of SL-PCR-amplified random-primed reverse transcripts of tailbud embryo RNA. We obtained approximately 250,000 high-quality reads corresponding to 8790 genes, approximately 58% of the Ciona total gene number. The great depth of this data revealed new aspects of trans-splicing, including the existence of a significant class of "infrequently trans-spliced" genes, accounting for approximately 28% of represented genes, that generate largely non-trans-spliced mRNAs, but also produce trans-spliced mRNAs, in part through alternative promoter use. Thus, the conventional qualitative dichotomy of trans-spliced versus non-trans-spliced genes should be supplanted by a more accurate quantitative view recognizing frequently and infrequently trans-spliced gene categories. Our data include reads representing approximately 80% of Ciona frequently trans-spliced genes. Our analysis also revealed significant use of closely spaced alternative trans-splice acceptor sites which further underscores the mechanistic similarity of cis- and trans-splicing and indicates that the prevalence of +/-3-nt alternative splicing events at tandem acceptor sites, NAGNAG, is driven by spliceosomal mechanisms, and not nonsense-mediated decay, or selection at the protein level. The breadth of gene representation data enabled us to find new correlations between trans-splicing status and gene function, namely the overrepresentation in the frequently trans-spliced gene class of genes associated with plasma/endomembrane system, Ca(2+) homeostasis, and actin cytoskeleton.
Collapse
Affiliation(s)
- Jun Matsumoto
- Department of Neurology & Neurosurgery, McGill University, Montreal Neurological Institute, Montréal, Québec H3A 2B4, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Schmidt KL, Marcus-Gueret N, Adeleye A, Webber J, Baillie D, Stringham EG. The cell migration molecule UNC-53/NAV2 is linked to the ARP2/3 complex by ABI-1. Development 2009; 136:563-74. [PMID: 19168673 DOI: 10.1242/dev.016816] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The shape changes that are required to position a cell to migrate or grow out in a particular direction involve a coordinated reorganization of the actin cytoskeleton. Although it is known that the ARP2/3 complex nucleates actin filament assembly, exactly how the information from guidance cues is integrated to elicit ARP2/3-mediated remodeling during outgrowth remains vague. Previous studies have shown that C. elegans UNC-53 and its vertebrate homolog NAV (Neuronal Navigators) are required for the migration of cells and neuronal processes. We have identified ABI-1 as a novel molecular partner of UNC-53/NAV2 and have found that a restricted calponin homology (CH) domain of UNC-53 is sufficient to bind ABI-1. ABI-1 and UNC-53 have an overlapping expression pattern, and display similar cell migration phenotypes in the excretory cell, and in mechanosensory and motoneurons. Migration defects were also observed after RNAi of proteins known to function with abi-1 in actin dynamics, including nck-1, wve-1 and arx-2. We propose that UNC-53/NAV2, through its CH domain, acts as a scaffold that links ABI-1 to the ARP2/3 complex to regulate actin cytoskeleton remodeling.
Collapse
|
12
|
Senti G, Swoboda P. Distinct isoforms of the RFX transcription factor DAF-19 regulate ciliogenesis and maintenance of synaptic activity. Mol Biol Cell 2008; 19:5517-28. [PMID: 18843046 DOI: 10.1091/mbc.e08-04-0416] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Neurons form elaborate subcellular structures such as dendrites, axons, cilia, and synapses to receive signals from their environment and to transmit them to the respective target cells. In the worm Caenorhabditis elegans, lack of the RFX transcription factor DAF-19 leads to the absence of cilia normally found on 60 sensory neurons. We now describe and functionally characterize three different isoforms of DAF-19. The short isoform DAF-19C is specifically expressed in ciliated sensory neurons and sufficient to rescue all cilia-related phenotypes of daf-19 mutants. In contrast, the long isoforms DAF-19A/B function in basically all nonciliated neurons. We discovered behavioral and cellular phenotypes in daf-19 mutants that depend on the isoforms daf-19a/b. These novel synaptic maintenance phenotypes are reminiscent of synaptic decline seen in many human neurodegenerative disorders. The C. elegans daf-19 mutant worms can thus serve as a molecular model for the mechanisms of functional neuronal decline.
Collapse
Affiliation(s)
- Gabriele Senti
- Department of Biosciences and Nutrition, Karolinska Institute, S-14157 Huddinge, Sweden
| | | |
Collapse
|
13
|
|
14
|
Oommen KS, Newman AP. Co-regulation by Notch and Fos is required for cell fate specification of intermediate precursors during C. elegans uterine development. Development 2007; 134:3999-4009. [PMID: 17942488 DOI: 10.1242/dev.002741] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Notch pathway is the key signal for many cell fate decisions in the nematode Caenorhabditis elegans including the uterine pi cell fate, crucial for a proper uterine-vulval connection and egg laying. Expression of the egl-13 SOX domain transcription factor is specifically upregulated upon induction of the pi lineage and not in response to other LIN-12/Notch-mediated decisions. We determined that dual regulation by LIN-12 and FOS-1 is required for egl-13 expression at specification and for complete rescue of egl-13 mutants. We found that fos-1 mutants exhibit uterine defects and fail to express pi markers. We show that FOS-1 is expressed at pi cell specification and can bind in vitro to egl-13 upstream regulatory sequence (URS) as a heterodimer with C. elegans Jun.
Collapse
Affiliation(s)
- Kavita S Oommen
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
15
|
Martin MS, Tang B, Ta N, Escayg A. Characterization of 5' untranslated regions of the voltage-gated sodium channels SCN1A, SCN2A, and SCN3A and identification of cis-conserved noncoding sequences. Genomics 2007; 90:225-35. [PMID: 17544618 PMCID: PMC2637551 DOI: 10.1016/j.ygeno.2007.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 03/30/2007] [Accepted: 04/23/2007] [Indexed: 12/26/2022]
Abstract
The human voltage-gated sodium channel gene cluster on chromosome 2q24 contains three paralogs, SCN1A, SCN2A, and SCN3A, which are expressed in the central nervous system. Mutations in SCN1A and SCN2A cause several subtypes of idiopathic epilepsy. Furthermore, many SCN1A mutations are predicted to reduce protein levels, emphasizing the importance of precise sodium channel gene regulation. To investigate the genetic factors that regulate the expression of SCN1A, SCN2A, and SCN3A, we characterized the 5' untranslated region of each gene. We identified multiple noncoding exons and observed brain region differences in the expression levels of noncoding exons. Comparative sequence analysis revealed 33 conserved noncoding sequences (CNSs) between the orthologous mammalian genes and 6 CNSs between the three human paralogs. Seven CNSs corresponded to noncoding exons. Twelve CNSs were evaluated for their ability to alter the transcription of a luciferase reporter gene, and 3 resulted in a modest, but statistically significant change.
Collapse
Affiliation(s)
- Melinda S Martin
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
16
|
|
17
|
Choi J, Richards KL, Cinar HN, Newman AP. N-ethylmaleimide sensitive factor is required for fusion of the C. elegans uterine anchor cell. Dev Biol 2006; 297:87-102. [PMID: 16769048 DOI: 10.1016/j.ydbio.2006.04.471] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 04/27/2006] [Accepted: 04/28/2006] [Indexed: 01/17/2023]
Abstract
The fusion of the Caenorhabditis elegans uterine anchor cell (AC) with the uterine-seam cell (utse) is an excellent model system for studying cell-cell fusion, which is essential to animal development. We obtained an egg-laying defective (Egl) mutant in which the AC fails to fuse with the utse. This defect is highly specific: other aspects of utse development and other cell fusions appear to occur normally. We find that defect is due to a missense mutation in the nsf-1 gene, which encodes N-ethylmaleimide-sensitive factor (NSF), an intracellular membrane fusion factor. There are two NSF-1 isoforms, which are expressed in distinct tissues through two separate promoters. NSF-1L is expressed in the uterus, including the AC. We find that nsf-1 is required cell-autonomously in the AC for its fusion with the utse. Our results establish AC fusion as a paradigm for studying cell fusion at single cell resolution and demonstrate that the NSF ATPase is a key player in this process.
Collapse
Affiliation(s)
- Jaebok Choi
- Verna and Marrs Maclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | |
Collapse
|