1
|
Blažič A, Guinard M, Leskovar T, O'Connor RP, Rems L. Long-term changes in transmembrane voltage after electroporation are governed by the interplay between nonselective leak current and ion channel activation. Bioelectrochemistry 2024; 161:108802. [PMID: 39243733 DOI: 10.1016/j.bioelechem.2024.108802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
Electroporation causes a temporal increase in cell membrane permeability and leads to prolonged changes in transmembrane voltage (TMV) in both excitable and non-excitable cells. However, the mechanisms of these TMV changes remain to be fully elucidated. To this end, we monitored TMV over 30 min after exposing two different cell lines to a single 100 µs electroporation pulse using the FLIPR Membrane Potential dye. In CHO-K1 cells, which express very low levels of endogenous ion channels, membrane depolarization following pulse exposure could be explained by nonselective leak current, which persists until the membrane reseals, enabling the cells to recover their resting TMV. In U-87 MG cells, which express many different ion channels, we unexpectedly observed membrane hyperpolarization following the initial depolarization phase, but only at 33 °C and not at 25 °C. We developed a theoretical model, supported by experiments with ion channel inhibitors, which indicated that hyperpolarization could largely be attributed to the activation of calcium-activated potassium channels. Ion channel activation, coupled with changes in TMV and intracellular calcium, participates in various physiological processes, including cell proliferation, differentiation, migration, and apoptosis. Therefore, our study suggests that ion channels could present a potential target for influencing the biological response after electroporation.
Collapse
Affiliation(s)
- Anja Blažič
- University of Ljubljana, Faculty of Electrical Engineering, SI-1000 Ljubljana, Slovenia
| | - Manon Guinard
- University of Ljubljana, Faculty of Electrical Engineering, SI-1000 Ljubljana, Slovenia
| | - Tomaž Leskovar
- University of Ljubljana, Faculty of Electrical Engineering, SI-1000 Ljubljana, Slovenia
| | - Rodney P O'Connor
- Mines Saint-Etienne, Centre CMP, Département BEL, F-13541 Gardanne, France
| | - Lea Rems
- University of Ljubljana, Faculty of Electrical Engineering, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
2
|
Lee GW, Kim B, Lee TW, Yim S, Chandrasekharan A, Kim H, Choi S, Yang SY. Nanoporous electroporation needle for localized intracellular delivery in deep tissues. Bioeng Transl Med 2023; 8:e10418. [PMID: 37476054 PMCID: PMC10354752 DOI: 10.1002/btm2.10418] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/03/2022] [Accepted: 09/18/2022] [Indexed: 07/22/2023] Open
Abstract
The exogenous control of intracellular drug delivery has been shown to improve the overall efficacy of therapies by reducing nonspecific off-target toxicity. However, achieving a precise on-demand dosage of a drug in deep tissues with minimal damage is still a challenge. In this study, we report an electric-pulse-driven nanopore-electroporation (nEP) system for the localized intracellular delivery of a model agent in deep tissues. Compared with conventional bulk electroporation, in vitro nEP achieved better transfection efficiency (>60%) with a high cell recovery rate (>95%) under a nontoxic low electroporation condition (40 V). Furthermore, in vivo nEP using a nanopore needle electrode with a side drug-releasing compartment offered better control over the dosage release, time, and location of propidium iodide, which was used as a model agent for intracellular delivery. In a pilot study using experimental animals, the nEP system exhibited two times higher transfection efficiency of propidium iodide in the thigh muscle tissue, while minimizing tissue damage (<20%) compared to that of bulk electroporation. This tissue-penetrating nEP platform can provide localized, safe, and effective intracellular delivery of diverse therapeutics into deep tissues in a controlled manner.
Collapse
Affiliation(s)
- Gyeong Won Lee
- Department of Biomaterials Science (BK21 Four Program)Pusan National UniversityMiryangSouth Korea
| | - Byeongyeon Kim
- Department of Biomedical Engineering, Department of Electronic Engineering, Hanyang Institute of Bioscience and BiotechnologyHanyang UniversitySeoulSouth Korea
| | - Tae Wook Lee
- Department of Biomaterials Science (BK21 Four Program)Pusan National UniversityMiryangSouth Korea
| | - Sang‐Gu Yim
- Department of Biomaterials Science (BK21 Four Program)Pusan National UniversityMiryangSouth Korea
| | - Ajeesh Chandrasekharan
- Department of Biomaterials Science (BK21 Four Program)Pusan National UniversityMiryangSouth Korea
| | - Hyewon Kim
- Department of Biomedical Engineering, Department of Electronic Engineering, Hanyang Institute of Bioscience and BiotechnologyHanyang UniversitySeoulSouth Korea
| | - Sungyoung Choi
- Department of Biomedical Engineering, Department of Electronic Engineering, Hanyang Institute of Bioscience and BiotechnologyHanyang UniversitySeoulSouth Korea
| | - Seung Yun Yang
- Department of Biomaterials Science (BK21 Four Program)Pusan National UniversityMiryangSouth Korea
| |
Collapse
|
3
|
Abstract
Species that can regrow their lost appendages have been studied with the ultimate aim of developing methods to enable human limb regeneration. These examinations highlight that appendage regeneration progresses through shared tissue stages and gene activities, leading to the assumption that appendage regeneration paradigms (e.g. tails and limbs) are the same or similar. However, recent research suggests these paradigms operate differently at the cellular level, despite sharing tissue descriptions and gene expressions. Here, collecting the findings from disparate studies, I argue appendage regeneration is context dependent at the cellular level; nonetheless, it requires (i) signalling centres, (ii) stem/progenitor cell types and (iii) a regeneration-permissive environment, and these three common cellular principles could be more suitable for cross-species/paradigm/age comparisons.
Collapse
Affiliation(s)
- Can Aztekin
- School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
4
|
Regeneration and Regrowth Potentials of Digit Tips in Amphibians and Mammals. Int J Cell Biol 2017; 2017:5312951. [PMID: 28487741 PMCID: PMC5402240 DOI: 10.1155/2017/5312951] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/09/2017] [Indexed: 12/27/2022] Open
Abstract
Tissue regeneration and repair have received much attention in the medical field over the years. The study of amphibians, such as newts and salamanders, has uncovered many of the processes that occur in these animals during full-limb/digit regeneration, a process that is highly limited in mammals. Understanding these processes in amphibians could shed light on how to develop and improve this process in mammals. Amputation injuries in mammals usually result in the formation of scar tissue with limited regrowth of the limb/digit; however, it has been observed that the very tips of digits (fingers and toes) can partially regrow in humans and mice under certain conditions. This review will summarize and compare the processes involved in salamander limb regeneration, mammalian wound healing, and digit regeneration in mice and humans.
Collapse
|
5
|
Choi Y, Cox C, Lally K, Li Y. The strategy and method in modulating finger regeneration. Regen Med 2015; 9:231-42. [PMID: 24750063 DOI: 10.2217/rme.13.98] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The tip of the human finger can regenerate if the amputation is distal to the nail bed, usually in young children. Studies in regeneration of rodent digits have shown that regeneration occurs if the amputation is distal to the mid-third phalanx for certain ages. The digit contains many different components, such as muscle, tendon, bone, skin, nerves and blood vessels, which must all be regrown in the proper location in order to restore functionality. The mechanism behind the complex healing/regeneration processes is still under investigation; however, improvements in injured finger regeneration have been gradually developing in animal models over the past few years. This review discusses a few strategies and methods to possibly enhance digit regeneration beyond current natural limits, focusing on aspects including scarless wound healing, cell-based treatments, tissue engineering and electrical stimulation.
Collapse
Affiliation(s)
- Yohan Choi
- Children's Regenerative Medicine, Department of Pediatric Surgery, University of Texas Medical School at Houston, TX 77030, USA
| | | | | | | |
Collapse
|
6
|
Abstract
The ability to introduce DNA elements into host cells and analyze the effects has revolutionized modern biology. Here we describe a protocol to generate Moloney murine leukemia virus (MMLV)-based, replication-incompetent pseudotyped retrovirus capable of infecting axolotls and incorporating genetic information into their genome. When pseudotyped with vesicular stomatitis virus (VSV)-G glycoprotein, the retroviruses can infect a broad range of proliferative axolotl cell types. However, if the retrovirus is pseudotyped with an avian sarcoma leukosis virus (ASLV)-A envelope protein, only axolotl cells experimentally manipulated to express the cognate tumor virus A (TVA) receptor can be targeted by infections. These strategies enable robust transgene expression over many cell divisions, cell lineage tracing, and cell subtype targeting for gene expression.
Collapse
|
7
|
Rao N, Song F, Jhamb D, Wang M, Milner DJ, Price NM, Belecky-Adams TL, Palakal MJ, Cameron JA, Li B, Chen X, Stocum DL. Proteomic analysis of fibroblastema formation in regenerating hind limbs of Xenopus laevis froglets and comparison to axolotl. BMC DEVELOPMENTAL BIOLOGY 2014; 14:32. [PMID: 25063185 PMCID: PMC4222900 DOI: 10.1186/1471-213x-14-32] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 07/03/2014] [Indexed: 01/01/2023]
Abstract
Background To gain insight into what differences might restrict the capacity for limb regeneration in Xenopus froglets, we used High Performance Liquid Chromatography (HPLC)/double mass spectrometry to characterize protein expression during fibroblastema formation in the amputated froglet hindlimb, and compared the results to those obtained previously for blastema formation in the axolotl limb. Results Comparison of the Xenopus fibroblastema and axolotl blastema revealed several similarities and significant differences in proteomic profiles. The most significant similarity was the strong parallel down regulation of muscle proteins and enzymes involved in carbohydrate metabolism. Regenerating Xenopus limbs differed significantly from axolotl regenerating limbs in several ways: deficiency in the inositol phosphate/diacylglycerol signaling pathway, down regulation of Wnt signaling, up regulation of extracellular matrix (ECM) proteins and proteins involved in chondrocyte differentiation, lack of expression of a key cell cycle protein, ecotropic viral integration site 5 (EVI5), that blocks mitosis in the axolotl, and the expression of several patterning proteins not seen in the axolotl that may dorsalize the fibroblastema. Conclusions We have characterized global protein expression during fibroblastema formation after amputation of the Xenopus froglet hindlimb and identified several differences that lead to signaling deficiency, failure to retard mitosis, premature chondrocyte differentiation, and failure of dorsoventral axial asymmetry. These differences point to possible interventions to improve blastema formation and pattern formation in the froglet limb.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - David L Stocum
- Department of Biology, and Center for Developmental and Regenerative Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|
8
|
Heber-Katz E, Zhang Y, Bedelbaeva K, Song F, Chen X, Stocum DL. Cell cycle regulation and regeneration. Curr Top Microbiol Immunol 2013; 367:253-76. [PMID: 23263201 DOI: 10.1007/82_2012_294] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Regeneration of ear punch holes in the MRL mouse and amputated limbs of the axolotl show a number of similarities. A large proportion of the fibroblasts of the uninjured MRL mouse ear are arrested in G2 of the cell cycle, and enter nerve-dependent mitosis after injury to form a ring-shaped blastema that regenerates the ear tissue. Multiple cell types contribute to the establishment of the regeneration blastema of the urodele limb by dedifferentiation, and there is substantial reason to believe that the cells of this early blastema are also arrested in G2, and enter mitosis under the influence of nerve-dependent factors supplied by the apical epidermal cap. Molecular analysis reveals other parallels, such as; (1) the upregulation of Evi5, a centrosomal protein that prevents mitosis by stabilizing Emi1, a protein that inhibits the degradation of cyclins by the anaphase promoting complex and (2) the expression of sodium channels by the epidermis. A central feature in the entry into the cell cycle by MRL ear fibroblasts is a natural downregulation of p21, and knockout of p21 in wild-type mice confers regenerative capacity on non-regenerating ear tissue. Whether the same is true for entry into the cell cycle in regenerating urodele limbs is presently unknown.
Collapse
|
9
|
Henry JJ, Thomas AG, Hamilton PW, Moore L, Perry KJ. Cell signaling pathways in vertebrate lens regeneration. Curr Top Microbiol Immunol 2013; 367:75-98. [PMID: 23224710 DOI: 10.1007/82_2012_289] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Certain vertebrates are capable of regenerating parts of the eye, including the lens. Depending on the species, two principal forms of in vivo lens regeneration have been described wherein the new lens arises from either the pigmented epithelium of the dorsal iris or the cornea epithelium. These forms of lens regeneration are triggered by retinal factors present in the eye. Studies have begun to illuminate the nature of the signals that support lens regeneration. This review describes evidence for the involvement of specific signaling pathways in lens regeneration, including the FGF, retinoic acid, TGF-beta, Wnt, and Hedgehog pathways.
Collapse
Affiliation(s)
- Jonathan J Henry
- Department of Cell and Developmental Biology, University of Illinois, Urbana, IL 61801, USA.
| | | | | | | | | |
Collapse
|
10
|
Whited JL, Tsai SL, Beier KT, White JN, Piekarski N, Hanken J, Cepko CL, Tabin CJ. Pseudotyped retroviruses for infecting axolotl in vivo and in vitro. Development 2013; 140:1137-46. [PMID: 23344705 DOI: 10.1242/dev.087734] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Axolotls are poised to become the premiere model system for studying vertebrate appendage regeneration. However, very few molecular tools exist for studying crucial cell lineage relationships over regeneration or for robust and sustained misexpression of genetic elements to test their function. Furthermore, targeting specific cell types will be necessary to understand how regeneration of the diverse tissues within the limb is accomplished. We report that pseudotyped, replication-incompetent retroviruses can be used in axolotls to permanently express markers or genetic elements for functional study. These viruses, when modified by changing their coat protein, can infect axolotl cells only when they have been experimentally manipulated to express the receptor for that coat protein, thus allowing for the possibility of targeting specific cell types. Using viral vectors, we have found that progenitor populations for many different cell types within the blastema are present at all stages of limb regeneration, although their relative proportions change with time.
Collapse
Affiliation(s)
- Jessica L Whited
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
The Flatworm Macrostomum lignano Is a Powerful Model Organism for Ion Channel and Stem Cell Research. Stem Cells Int 2012; 2012:167265. [PMID: 23024658 PMCID: PMC3447372 DOI: 10.1155/2012/167265] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 08/02/2012] [Indexed: 11/28/2022] Open
Abstract
Bioelectrical signals generated by ion channels play crucial roles in many cellular processes in both excitable and nonexcitable cells. Some ion channels are directly implemented in chemical signaling pathways, the others are involved in regulation of cytoplasmic or vesicular ion concentrations, pH, cell volume, and membrane potentials. Together with ion transporters and gap junction complexes, ion channels form steady-state voltage gradients across the cell membranes in nonexcitable cells. These membrane potentials are involved in regulation of such processes as migration guidance, cell proliferation, and body axis patterning during development and regeneration. While the importance of membrane potential in stem cell maintenance, proliferation, and differentiation is evident, the mechanisms of this bioelectric control of stem cell activity are still not well understood, and the role of specific ion channels in these processes remains unclear. Here we introduce the flatworm Macrostomum lignano as a versatile model organism for addressing these topics. We discuss biological and experimental properties of M. lignano, provide an overview of the recently developed experimental tools for this animal model, and demonstrate how manipulation of membrane potential influences regeneration in M. lignano.
Collapse
|
12
|
MIYOSHI T, NAKANO SI, NAKAMURA K, YAMANOUCHI K, NISHIHARA M. In Vivo Electroporation Induces Cell Cycle Reentry of Myonuclei in Rat Skeletal Muscle. J Vet Med Sci 2012; 74:1291-7. [DOI: 10.1292/jvms.12-0195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Takahiro MIYOSHI
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo 113–8657, Japan
| | - Shin-ichi NAKANO
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo 113–8657, Japan
| | - Katsuyuki NAKAMURA
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo 113–8657, Japan
| | - Keitaro YAMANOUCHI
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo 113–8657, Japan
| | - Masugi NISHIHARA
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo 113–8657, Japan
| |
Collapse
|
13
|
Messerli MA, Graham DM. Extracellular electrical fields direct wound healing and regeneration. THE BIOLOGICAL BULLETIN 2011; 221:79-92. [PMID: 21876112 DOI: 10.1086/bblv221n1p79] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Endogenous DC electric fields (EFs) are important, fundamental components of development, regeneration, and wound healing. The fields are the result of polarized ion transport and current flow through electrically conductive pathways. Nullification of endogenous EFs with pharmacological agents or applied EFs of opposite polarity disturbs the aforementioned processes, while enhancement increases the rate of wound closure and the extent of regeneration. EFs are applied to humans in the clinic, to provide an overwhelming signal for the enhancement of healing of chronic wounds. Although clinical trials, spanning a course of decades, have shown that applied EFs enhance healing of chronic wounds, the mechanisms by which cells sense and respond to these weak cues remains unknown. EFs are thought to influence many different processes in vivo. However, under more rigorously controlled conditions in vitro, applied EFs induce cellular polarity and direct migration and outgrowth. Here we review the generation of endogenous EFs, the results of their alteration, and the mechanisms by which cells may sense these weak fields. Understanding the mechanisms by which native and applied EFs direct development and repair will enable current and future therapeutic applications to be optimized.
Collapse
Affiliation(s)
- Mark A Messerli
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering.
| | | |
Collapse
|
14
|
Chua SJ, Casper RF, Rogers IM. Toward transgene-free induced pluripotent stem cells: lessons from transdifferentiation studies. Cell Reprogram 2011; 13:273-80. [PMID: 21599518 DOI: 10.1089/cell.2010.0108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Abstract Regenerative medicine has received much attention over the years due to its clinical and commercial potential. The excitement around regenerative medicine waxes and wanes as new discoveries add to its foundation but are not immediately clinically applicable. The recent discovery of induced pluripotent stem cells has lead to a sustained effort from many research groups to develop clinically relevant regenerative medicine therapies. A major focus of cellular reprogramming is to generate safe cellular products through the use of proteins or small molecules instead of transgenes. The successful reprogramming of somatic nuclei to generate pluripotential cells capable of embryo development was pioneered over 50 years ago by Briggs and King and followed by Gurdon in the early 1960s. The success of these studies, the cloning of Dolly, and more current studies involving adult stem cells and transdifferentiation provide us with a large repository of potential candidate molecules and experimental systems that will assist in the generation of safe, transgene-free pluripotential cells.
Collapse
Affiliation(s)
- Shawn J Chua
- Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | | | | |
Collapse
|
15
|
Stocum DL, Cameron JA. Looking proximally and distally: 100 years of limb regeneration and beyond. Dev Dyn 2011; 240:943-68. [DOI: 10.1002/dvdy.22553] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2010] [Indexed: 01/08/2023] Open
|
16
|
Rao N, Jhamb D, Milner DJ, Li B, Song F, Wang M, Voss SR, Palakal M, King MW, Saranjami B, Nye HLD, Cameron JA, Stocum DL. Proteomic analysis of blastema formation in regenerating axolotl limbs. BMC Biol 2009; 7:83. [PMID: 19948009 PMCID: PMC2794268 DOI: 10.1186/1741-7007-7-83] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 11/30/2009] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Following amputation, urodele salamander limbs reprogram somatic cells to form a blastema that self-organizes into the missing limb parts to restore the structure and function of the limb. To help understand the molecular basis of blastema formation, we used quantitative label-free liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS)-based methods to analyze changes in the proteome that occurred 1, 4 and 7 days post amputation (dpa) through the mid-tibia/fibula of axolotl hind limbs. RESULTS We identified 309 unique proteins with significant fold change relative to controls (0 dpa), representing 10 biological process categories: (1) signaling, (2) Ca2+ binding and translocation, (3) transcription, (4) translation, (5) cytoskeleton, (6) extracellular matrix (ECM), (7) metabolism, (8) cell protection, (9) degradation, and (10) cell cycle. In all, 43 proteins exhibited exceptionally high fold changes. Of these, the ecotropic viral integrative factor 5 (EVI5), a cell cycle-related oncoprotein that prevents cells from entering the mitotic phase of the cell cycle prematurely, was of special interest because its fold change was exceptionally high throughout blastema formation. CONCLUSION Our data were consistent with previous studies indicating the importance of inositol triphosphate and Ca2+ signaling in initiating the ECM and cytoskeletal remodeling characteristic of histolysis and cell dedifferentiation. In addition, the data suggested that blastema formation requires several mechanisms to avoid apoptosis, including reduced metabolism, differential regulation of proapoptotic and antiapoptotic proteins, and initiation of an unfolded protein response (UPR). Since there is virtually no mitosis during blastema formation, we propose that high levels of EVI5 function to arrest dedifferentiated cells somewhere in the G1/S/G2 phases of the cell cycle until they have accumulated under the wound epidermis and enter mitosis in response to neural and epidermal factors. Our findings indicate the general value of quantitative proteomic analysis in understanding the regeneration of complex structures.
Collapse
Affiliation(s)
- Nandini Rao
- Department of Biology and Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Deepali Jhamb
- School of Informatics and Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Derek J Milner
- Department of Cell and Developmental Biology, and Regeneration Biology and Tissue Engineering Theme, Institute for Genomic Biology, University of Illinois-Urbana Champaign, Urbana, IL, USA
| | - Bingbing Li
- Department of Biology and Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Fengyu Song
- Department of Oral Biology, School of Dentistry and Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Mu Wang
- Department of Biochemistry, School of Medicine and Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - S Randal Voss
- Department of Biology and Spinal Cord and Brain Injury Center, University of Kentucky at Lexington, Lexington, KY, USA
| | - Mathew Palakal
- School of Informatics and Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Michael W King
- Department of Biochemistry, School of Medicine and Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Behnaz Saranjami
- Department of Biology and Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Holly LD Nye
- Department of Cell and Developmental Biology, and Regeneration Biology and Tissue Engineering Theme, Institute for Genomic Biology, University of Illinois-Urbana Champaign, Urbana, IL, USA
| | - Jo Ann Cameron
- Department of Cell and Developmental Biology, and Regeneration Biology and Tissue Engineering Theme, Institute for Genomic Biology, University of Illinois-Urbana Champaign, Urbana, IL, USA
| | - David L Stocum
- Department of Biology and Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| |
Collapse
|
17
|
Blackiston DJ, McLaughlin KA, Levin M. Bioelectric controls of cell proliferation: ion channels, membrane voltage and the cell cycle. Cell Cycle 2009; 8:3527-36. [PMID: 19823012 DOI: 10.4161/cc.8.21.9888] [Citation(s) in RCA: 299] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
All cells possess long-term, steady-state voltage gradients across the plasma membrane. These transmembrane potentials arise from the combined activity of numerous ion channels, pumps and gap junction complexes. Increasing data from molecular physiology now reveal that the role of changes in membrane voltage controls, and is in turn controlled by, progression through the cell cycle. We review recent functional data on the regulation of mitosis by bioelectric signals, and the function of membrane voltage and specific potassium, sodium and chloride ion channels in the proliferation of embryonic, somatic and neoplastic cells. Its unique properties place this powerful, well-conserved, but still poorly-understood signaling system at the center of the coordinated cellular interactions required for complex pattern formation. Moreover, disregulation of ion channel expression and function is increasingly observed to be not only a useful marker but likely a functional element in oncogenesis. New advances in genomics and the development of in vivo biophysical techniques suggest exciting opportunities for molecular medicine, bioengineering and regenerative approaches to human health.
Collapse
Affiliation(s)
- Douglas J Blackiston
- Biology Department, and Center for Regenerative and Developmental Biology, Tufts University, Medford, MA, USA
| | | | | |
Collapse
|
18
|
Malloch EL, Perry KJ, Fukui L, Johnson VR, Wever J, Beck CW, King MW, Henry JJ. Gene expression profiles of lens regeneration and development in Xenopus laevis. Dev Dyn 2009; 238:2340-56. [PMID: 19681139 PMCID: PMC2773617 DOI: 10.1002/dvdy.21998] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Seven hundred and thirty-four unique genes were recovered from a cDNA library enriched for genes up-regulated during the process of lens regeneration in the frog Xenopus laevis. The sequences represent transcription factors, proteins involved in RNA synthesis/processing, components of prominent cell signaling pathways, genes involved in protein processing, transport, and degradation (e.g., the ubiquitin/proteasome pathway), matrix metalloproteases (MMPs), as well as many other proteins. The findings implicate specific signal transduction pathways in the process of lens regeneration, including the FGF, TGF-beta, MAPK, Retinoic acid, Wnt, and hedgehog signaling pathways, which are known to play important roles in eye/lens development and regeneration in various systems. In situ hybridization revealed that the majority of genes recovered are expressed during embryogenesis, including in eye tissues. Several novel genes specifically expressed in lenses were identified. The suite of genes was compared to those up-regulated in other regenerating tissues/organisms, and a small degree of overlap was detected.
Collapse
Affiliation(s)
- Erica L. Malloch
- University of Illinois, Department of Cell & Developmental Biology, 601 S. Goodwin Ave. Urbana, IL 61801
| | - Kimberly J. Perry
- University of Illinois, Department of Cell & Developmental Biology, 601 S. Goodwin Ave. Urbana, IL 61801
| | - Lisa Fukui
- University of Illinois, Department of Cell & Developmental Biology, 601 S. Goodwin Ave. Urbana, IL 61801
| | - Verity R. Johnson
- University of Illinois, Department of Cell & Developmental Biology, 601 S. Goodwin Ave. Urbana, IL 61801
| | - Jason Wever
- University of Illinois, Department of Cell & Developmental Biology, 601 S. Goodwin Ave. Urbana, IL 61801
| | - Caroline W. Beck
- University of Otago, Department of Zoology, 340 Great King Street, Dunedin, New Zealand
| | - Michael W. King
- Indiana University School of Medicine and Center for Regenerative Biology and Medicine, Terre Haute, IN 47809
| | - Jonathan J. Henry
- University of Illinois, Department of Cell & Developmental Biology, 601 S. Goodwin Ave. Urbana, IL 61801
| |
Collapse
|
19
|
Dutton JR, Daughters RS, Chen Y, O'Neill KE, Slack JMW. Use of adenovirus for ectopic gene expression in Xenopus. Dev Dyn 2009; 238:1412-21. [PMID: 19334276 DOI: 10.1002/dvdy.21932] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We show that replication defective adenovirus can be used for localized overexpression of a chosen gene in Xenopus tadpoles. Xenopus contains two homologs of the Coxsackie and Adenovirus Receptor (xCAR1 and 2), both of which can confer sensitivity for adenovirus infection. xCAR1 mRNA is present from the late gastrula stage and xCAR2 throughout development, both being widely expressed in the embryo and tadpole. Consistent with the expression of the receptors, adenovirus will infect a wide range of Xenopus tissues cultured in vitro. It will also infect early embryos when injected into the blastocoel or archenteron cavities. Furthermore, adenovirus can be delivered by localized injection to tadpoles and will infect a patch of cells around the injection site. The expression of green fluorescent protein in infected cells persists for several weeks. This new gene delivery method complements the others that are already available. Developmental Dynamics 238:1412-1421, 2009. (c) 2009 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- James R Dutton
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
Most but not all phyla include examples of species that are able to regenerate large sections of the body plan. The mechanisms underlying regeneration on this scale are currently being studied in a variety of contexts in both vertebrates and invertebrates. Regeneration generally involves the formation of a wound epithelium after transection or injury, followed by the generation of regenerative progenitor cells and morphogenesis to give the regenerate. Common mechanisms may exist in relation to each of these aspects. For example, the initial proliferation of progenitor cells often depends on the nerve supply, whereas morphogenesis reflects the generation of positional disparity between adjacent cells-the principle of intercalation. These mechanisms are reviewed here across a range of contexts. We also consider the evolutionary origins of regeneration and how regeneration may relate to both agametic reproduction and to ontogeny.
Collapse
Affiliation(s)
- Jeremy P Brockes
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, England.
| | | |
Collapse
|
21
|
Abstract
Augmentation of regenerative ability is a powerful strategy being pursued for the biomedical management of traumatic injury, cancer, and degeneration. While considerable attention has been focused on embryonic stem cells, it is clear that much remains to be learned about how somatic cells may be controlled in the adult organism. The tadpole of the frog Xenopus laevis is a powerful model system within which fundamental mechanisms of regeneration are being addressed. The tadpole tail contains spinal cord, muscle, vasculature, and other terminally differentiated cell types and can fully regenerate itself through tissue renewal--a process that is most relevant to mammalian healing. Recent insight into this process has uncovered fascinating molecular details of how a complex appendage senses injury and rapidly repairs the necessary morphology. Here, we review what is known about the chemical and bioelectric signals underlying this process and draw analogies to evolutionarily conserved pathways in other patterning systems. The understanding of this process is not only of fundamental interest for the evolutionary and cell biology of morphogenesis, but will also generate information that is crucial to the development of regenerative therapies for human tissues and organs.
Collapse
Affiliation(s)
- A.-S. Tseng
- Center for Regenerative and Developmental Biology, Forsyth Institute, and Developmental Biology Department, Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115, USA
| | - M. Levin
- Center for Regenerative and Developmental Biology, Forsyth Institute, and Developmental Biology Department, Harvard School of Dental Medicine, 140 The Fenway, Boston, MA 02115, USA
| |
Collapse
|
22
|
Abstract
New scientific knowledge offers fresh opportunities for regenerative medicine and tissue repair. Among various clinical options, multipotent embryonic stem cells (ESC) prepared from inner cell masses of rabbit blastocysts have been tested over many years. More recently, stem cells have been isolated from individual tissues and from umbilical cord blood. These methods seemingly offer similar rates of repair and avoid ethical complexities arising from the need for human embryos to prepare ESC. Different methods of regenerating tissues have now emerged, based on the well-known forms of organ regeneration in urodeles such as salamanders. These methods depend on the formation of a blastema, and recent studies on MRL mice have revealed that they possess similar methods of repair as in salamanders. There is also some evidence showing that this form of repair is also active in human fetuses but not in adults. Detailed knowledge of these various forms of tissue repair is now urgently needed in order to assess the benefits of each form of treatment. These matters are discussed at the end of this review where various investigations clarify the benefits and drawbacks of these varied approaches to tissue repair.
Collapse
Affiliation(s)
- R G Edwards
- Reproductive BioMedicine Online, Park Lane, Dry Drayton, Cambridge CB3 8DB, UK.
| |
Collapse
|
23
|
Makarev E, Call MK, Grogg MW, Atkinson DL, Milash B, Odelberg SJ, Tsonis PA. Gene expression signatures in the newt irises during lens regeneration. FEBS Lett 2007; 581:1865-70. [PMID: 17434491 PMCID: PMC1941784 DOI: 10.1016/j.febslet.2007.03.082] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 03/23/2007] [Accepted: 03/28/2007] [Indexed: 11/30/2022]
Abstract
Lens regeneration in adult newts is possible by transdifferentiation of the pigment epithelial cells (PECs) of the dorsal iris. The same cells in the ventral iris are not capable of such a process. To understand this difference in regenerative competency, we examined gene expression of 373 genes in the intact dorsal and ventral irises as well as in irises during the process of lens regeneration. We found similar signatures of gene expression in dorsal and ventral with several cases of even higher levels in the ventral iris. Such transcriptional activity in the regeneration-incompetent ventral iris was unexpected and calls for a revision of our views about mechanisms of lens regeneration induction.
Collapse
Affiliation(s)
- Evgeny Makarev
- Department of Biology and Center for Tissue Regeneration and Engineering, University of Dayton, Dayton, OH 45469-2320, USA
| | - Mindy K. Call
- Department of Biology and Center for Tissue Regeneration and Engineering, University of Dayton, Dayton, OH 45469-2320, USA
| | - Matthew W. Grogg
- Department of Biology and Center for Tissue Regeneration and Engineering, University of Dayton, Dayton, OH 45469-2320, USA
| | | | - Brett Milash
- University of Utah Health Science Center, Salt Lake City, Utah 84132
| | | | - Panagiotis A. Tsonis
- Department of Biology and Center for Tissue Regeneration and Engineering, University of Dayton, Dayton, OH 45469-2320, USA
- *Corresponding author: Fax: 1-937-2292021 E-mail address:
| |
Collapse
|